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REAL-TIME INTERPOLATION
OF STREAMING DATA

Abstract One of the key elements of the real-time C1-continuous cubic spline interpola-
tion of streaming data is an estimator of the first derivative of the interpolated
function that is more accurate than those based on finite difference schemas.
Two such greedy look-ahead heuristic estimators, based on the calculus of vari-
ations (denoted as MinBE and MinAJ2), are formally defined (in closed form),
along with the corresponding cubic splines that they generate. They are then
comparatively evaluated in a series of numerical experiments involving different
types of performance measures. The presented results show that the cubic Her-
mite splines generated by heuristic MinAJ2 significantly outperformed those
that were based on finite difference schemas in terms of all of the tested per-
formance measures (including convergence). The proposed approach is quite
general. It can be directly applied to streams of univariate functional data
like time-series. Multi-dimensional curves that are defined parametrically (after
splitting) can be handled as well. The streaming character of the algorithm
means that it can also be useful in processing data sets that are too large to fit
in the memory (e.g., edge computing devices, embedded time-series databases).

Keywords streaming algorithm, online algorithm, spline interpolation, cubic Hermite spline

Citation Computer Science 21(4) 2020: 513–532

Copyright © 2020 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

513

https://doi.org/10.7494/csci.2020.21.4.3932
https://orcid.org/0000-0003-3283-6032
https://creativecommons.org/licenses/by/4.0/


514 Roman Dębski

1. Introduction

Cubic splines are in widespread use in numerical analysis, statistics, computer graph-
ics, computer-aided design (CAD), and many other disciplines of science and engineer-
ing. A significant number of their applications are related to interpolation of sets of
discrete data. Well-known natural cubic splines (and B-splines) have proven effective
in many of these scenarios, yet they are not always applicable. This is often because
of their global character – they require the solution of a system of linear equations
whose coefficients depend on a whole interpolated data set.

However, access to a whole data set is impossible in a number of cases (e.g.,
streaming data, big data sets). This scenario is becoming increasingly frequent in
contemporary systems, as many sources (e.g., sensor networks, scientific data) produce
data continuously; often, the data should be processed in an online fashion. Examples
include real-time animation (in computer games or scientific simulations), real-time
control, and decision support systems.

Taking this into account, effective streaming interpolators should be entirely local
and operate in an online fashion. A classic example of such a local interpolant is
a cubic Hermite spline, which is made up of cubic polynomial segments that are
joined together with common slopes at the data points. If the slopes are not given,
they must be estimated – usually with the use of finite difference schemas. Since the
accuracy of this approximation method may be insufficient in some cases, a more
robust method is desirable.

The aim of this paper is to introduce such a method as the foundation of the
real-time algorithm that constructs C1-continuous cubic splines in an online fashion.
The proposed approach is quite general. It can be directly applied to streams of
univariate functional data (like time-series). Multi-dimensional curves that are defined
parametrically (after splitting) can be handled as well. The streaming character of the
algorithm means that it can also be useful in processing data sets that are too large
to fit in the memory (e.g., edge computing devices, embedded time-series databases).

The main contributions of this paper are the following:
• two greedy look-ahead heuristic estimators of the first derivative of the interpo-
lated function (Sections 4.1 and 4.2);

• a streaming interpolator that maps a stream of data points to a stream of cubic
spline segments (using one of these heuristic estimators), which form a C1-con-
tinuous interpolant (Section 4.3);

• numerical results that demonstrate the effectiveness of the proposed heuristics as
well as the algorithm itself (Section 5).
The remainder of this paper is organized as follows. In the next section, the

problem statement is given. Following this, the proposed solution is described. Then,
the solution is evaluated, and the obtained results are presented and discussed. The
last two sections contain a related work overview and the conclusions of the study,
respectively.
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2. Related work

There is an extensive amount of literature on interpolating splines1 that covers a num-
ber of disciplines of science and engineering. To understand the recent developments
in this field, some historical context (given in a number of seminal papers) is helpful.

Historical context. The term interpolation2, according to [26], was initially used in the
mathematical sense in [35]. Among the first contributors to the topic of interpolation
were Newton, Lagrange, Euler, Gauss, Laplace, and Cauchy. Hermite interpolation
(finding a polynomial of which also the first few derivatives assume pre-specified
values at given points) was first discussed in [19] and then generalized by [5]. A more
thorough treatment of the history of interpolation theories and techniques from the
earliest times to the present day can be seen in an excellent review paper by [26].

According to [15], the first reference to a spline (a flexible and mechanical strip
of wood that is used to draw smooth curves) appears to be [28]. The mathemati-
cal equivalent of a mechanical spline is a spline curve. At first, this corresponded to
a curve that minimized a specific functional (elastic bending energy); however, spline
curves are generally regarded as piece-wise polynomial curves with certain smooth-
ness properties these days. This new idea of a spline curve (and a basic kth-order
spline curve, nowadays known as a B-spline) was presented in [30]. This seminal work
laid the mathematical foundations for spline approximation and interpolation. More
information on splines can be found in [7, 21,31–33], for example.

Selected recent developments: computer-aided geometric design. The generaliza-
tion of B-splines to nonuniform rational B-splines (NURBS) has become the stan-
dard curve form in the CAD/CAM industry [34]. A special case of NURBS is given
by rational Bézier curves [16]. The concepts of Bézier curves [3, 17] and Casteljau’s
curves [10] are based on the use of control polygons, which involve both points on
the curve and the points close to it. Catmull-Rom splines (as local interpolants) and
blending functions are described in [9], for instance. Another piece-wise-defined curve
scheme (biarc) was proposed in [6]. Biarcs are piece-wise circular arcs pieced together
with tangent continuity; hence, these can be thought of as circle splines. More infor-
mation about curves in computer-aided geometric design can be found in [15].

Selected recent developments: real-time applications and trajectory optimization.
An approximation of a linearly varying curvature by three cubic curve segments (be-
tween four points) was described in [27]. The authors named their approach the curvic
interpolation. A similar representation of a curve but used in an online algorithm for
the generation of minimum time joint trajectories for industrial manipulators was
presented in [2]. Their approach, which they named the 3-Cubic (method), gives con-
tinuity of acceleration at the junction points by imposing zero acceleration (at the
starting and terminating ends of the segment).

1And curve fitting.
2From the Latin interpolare.
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Interpolating splines in the context of real-time/online applications were also
researched in [8, 14, 18], and [29]. Online trajectory generation methods in robotic
systems are described in [22].

An excellent overview of trajectory-planning methods can be seen in [4]. Among
other topics, the authors describe many representations of trajectories: elementary
ones like polynomial (of different degrees), trigonometric, or exponential as well as
their different compositions and multi-point variants (including different splines). An
extension of the spline-based representation to a family of trajectories (multi-spline)
used in a parallel dynamic programming-based optimization algorithm was proposed
in [12]. This can be treated as an extension of the method presented in [11, 13].
Higher-order splines (of a degree of five or seven) are detailed in an interpolation
context in [20, 23–25] and in a trajectory optimization context (3-4-5 and 4-5-6-7
interpolation polynomials) in [1].

3. Problem statement

Consider a stream Sp (finite or infinite) of data points P0, P1, . . . , Pk, . . . that arrive
(or are accessed) sequentially and describe an underlying signal F(q), q ∈ R. This
signal can represent a trajectory or a curve that is defined parametrically in the
following way3:

F(q) = (F1(q), F2(q), . . . , Fn(q)) , q ∈ R (1)

In such a case, each data point Pk can take the following form:

Pk = (qk, F1(qk), . . . , Fn(qk)) (2)

where k = 0, 1, 2 . . . , and it is assumed that qk < qk+1 < qk+2 . . . If n > 1, input
stream Sp can be split (as a prepossessing step) into n streams, S(1)

p , . . . , S
(n)
p , each

describing the characteristic of the interpolated trajectory/curve in one dimension
(see Figure 1) and defined as S(i)

p = P
(i)
0 , P

(i)
1 , . . . , P

(i)
k , . . . , where P (i)

k = (qk, Fi(qk)),
i = 1, . . . , n and k = 0, 1, 2 . . .

P6P4
...P5

P2P (1)P10
(1) (1)

..
.

P2P (2)P10
(2) (2)

P2P (n)P10
(n) (n)

P3

splitter

P3
(2)

P3
(1)

P3
(n)

Figure 1. Stream splitter as interpolation pre-processor that changes
original multi-dimensional problem to series of one-dimensional problems,

which can then be solved independently

3n = 3 for the 3D space.
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Following this, each of these new streams can be interpolated independently
(possibly in parallel); finally, the results can be combined.

Remark 1. (Problem reduction). The original multi-dimensional problem can be re-
duced to a one-dimensional problem.

Let SD = (D0, D1, D2, . . . ) be one of these new streams, and assume that each
data point Dk takes the following form:

Dk = (qk, f(qk)) (3)

where k = 0, 1, 2 . . . and f(·) stands for the component function that corresponds to
stream SD (i.e., one of F1, F2, . . . ). Then, the problem statement can be formulated
in the following manner:

Problem. (statement). Given a stream of data points SD = (D0, D1, D2, . . . ) where
Dk = (qk, fk)), qk < qk+1 < qk+2 . . . , and k = 0, 1, 2 . . . , find the corresponding
stream of cubic spline segments that form a C1-continuous interpolant of SD (see
Figure 2).

D3

streaming
interpolator

D0 D1 D2 D7D4 D5 D6
...

stream of
data points

stream of cubic segments
forming a C -continuous cubic spline1

Figure 2. Conceptual diagram of problem statement: streaming interpolator maps
stream of data points to stream of cubic spline segments, which form C1-continuous

interpolant

Remark 2. (Functional programming context). The streaming interpolator can be
considered to be a stream mapper (from a stream of data points to a stream of spline
segments).

4. Proposed solution

The streaming algorithm proposed in this paper is based on the specific use of a cu-
bic Hermite spline segment – a building block of an “on the fly”-constructed spline
interpolant. Since the first derivatives of the interpolated function are not given, they
must be estimated. Instead of classic approximations with finite difference schemas,
two specific heuristics (based on the calculus of variations) are used. Because of the
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online characteristic of the interpolation algorithm, they have to be local and are
based on a greedy strategy as a result.

The key element of the proposed approach is a specific form of looking ahead
from the current point (state), xk−1 – not just one level (i.e., xk, as in the classic
greedy approach), but two levels (i.e., xk and xk+1) to extend the planning horizon
by one data point4. These two heuristics are briefly described in the following two
subsections.

Remark 3. (Notation). To simplify the formulae, it is assumed that the current state
is k, which corresponds to xA (i.e., xk−1 = xA). Similarly, for states k and k + 1, we
have xk = xB and xk+1 = xC , respectively.

4.1. Heuristic MinBE : spline of minimum elastic bending energy

Given (in a local frame – see Fig. 3):

xA = 0 :

{
sk(xA) = sk−1(xA) = fA

s′k(xA) = s′k−1(xA) = s′A
xB :

{
sk(xB) = fB xC :

{
sk+1(xC) = fC

(4)
and assuming that, at xB : {

s′k(xB) = s′k+1(xB)

s′′k(xB) = s′′k+1(xB),
(5)

the value of s′B that minimizes the functional:

J [s] =

∫ xB

xA

[s′′k(x)]
2
dx +

∫ xC

xB

[
s′′k+1(x)

]2
dx (6)

is defined as follows:
s′B =

AsA + Bs′A + CsB + DsC
E

, (7)

where: 

A = −6(xC − xB)2

B = −2xB(xC − xB)2

C = 3(2x2
C − 4xBxC + x2

B)

D = 3x2
B

E = xB(xC − xB)(4xC − xB).

(8)

Hence, having found the missing value of s′B , we have:

xA = 0 :

{
sk(xA) = sA = fA

s′k(xA) = s′A = f ′A
xB :

{
sk(xB) = sB = fB

s′k(xB) = s′B ,
(9)

4As when using the central finite difference approximation.
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and the kth segment of the cubic spline interpolant in global coordinate system Oqy

(with q corresponding to x) is defined as follows5:

sk(q) =

4∑
j=1

aj(q − qk−1)4−j , (10)

where: 
a = (∆x)−3 [∆x(s′B + s′A)− 2(sB − sA)]

b = (∆x)−2 [3(sB − sA)− (s′B + 2s′A)∆x]

c = s′A
d = sA

(11)

assuming that ∆x = xB − xA.

4.2. Heuristic MinAJ2 : spline of minimum accumulated squared jerk

Given (in a local frame – see Fig.3):

xA = 0 :

{
sk(xA) = sk−1(xA) = fA

s′k(xA) = s′k−1(xA) = s′A
xB :

{
sk(xB) = fB xC :

{
sk+1(xC) = fC

(12)
and assuming that, at xB : {

s′k(xB) = s′k+1(xB)

s′′k(xB) = s′′k+1(xB)
(13)

the value of s′B that minimizes the functional:

J [s] =

∫ xB

xA

[s′′′k (x)]
2
dx +

∫ xC

xB

[
s′′′k+1(x)

]2
dx (14)

is defined as:
s′B =

AsA + Bs′A + CsB + DsC
E

(15)

where: 

A = −(xC − xB)2(2x2
C + 2xBxC − x2

B)

B = −xBx
2
C(xC − xB)2

C = xC(2x3
C − 2xBx

2
C − 3x2

BxC + 2x3
B)

D = x3
B(2xC − xB)

E = xBxC(xC − xB)(x2
C + xBxC − x2

B)

(16)

then, the kth segment of the interpolating spline can be found by using Equation 10
and 11.

5The monomial basis {1, x, x2, x3}, x = q − qk−1, is used – see also Figure 3.
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4.3. Algorithm

The conceptual diagram of the algorithm is shown in Figure 3, and its pseudo-code
is evident in Algorithm 1.

D3D0 D1 D2 D7D4 D5 D6
...

stream of cubic spline segments

s3

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q

y
streaming

interpolator

s

stream of
data points

x xCx =0A

Dk+1

S k-1

Sk

s1 s2 s4 s5

y

q
0

x=q-q
4

O

5

local frame

Dk

][

optional
xB

Figure 3. Conceptual diagram of the proposed algorithm: the streaming interpolator maps
(in online way) incoming data points to cubic spline segments using only data points Dk

and Dk+1 (if available) and the previous spline segment data, sk−1

The data points from the input stream shown in Figure 1 are mapped in an
online way to cubic spline segments and put into the output stream. At any step k

where k = 1, 2, 3 . . . , the streaming interpolator uses only the following:
• currently processed data point Dk as well as Dk+1 (if available);
• previous spline segment data sk−1 (needed to calculate initial conditions for cur-
rent segment sk).

For each data point Dk, the interpolator creates a cubic spline segment sk (see Equa-
tion 10), which is at once put into the output stream.

The first and last segments of the output stream are treated in a specific way. At
the beginning of the stream, the missing value of s′0 must be estimated; for instance,
in the following way:

s′0 =
(f1 − f0)(xC − xA)2 + (f1 − f2)(xB − xA)2

(xB − xA)(xC − xA)(xC − xB)
(17)

The coefficients of the last segment (i.e., at the end of the stream) can be computed
using Equations 10 and 11 with the missing s′B equal to:

s′B =

{
−0.5 (∆x)−1 (s′A∆x− 3fB + 3sA) for MinBE
−(∆x)−1 (s′A∆x− 2fB + 2sA) for MinAJ

(18)
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Algorithm 1 Real-time/streaming interpolation using cubic splines
Require:

1) Sin {non-empty input stream of data points (at least three data points required)},
2) Sout {output stream of cubic spline segments},
3) IH {interpolation heuristic (strategy)}
{1. Initialization phase}

1: Sin.open()
2: Sout.open()
3: dp0 ← Sin.nextElem() {dp - data point}
4: dp1 ← Sin.nextElem()
5: dp2 ← Sin.nextElem()
6: sic ← initCondsFrom(dp0, dp1, dp2) {sic = (s0, s

′
0) – see Eq.17}

7: s← cubicSegmFor(sic, dp1, dp2, IH) {the first segment}
8: Sout.put(s)
9: dpk+1 ← dp2

10: sic ← initCondsFrom(s)
{2. Streaming processing}

11: while Sin.hasNext() do
12: dpk ← dpk+1

13: dpk+1 ← Sin.nextElem()
14: s← cubicSegmFor(sic, dpk, dpk+1, IH) {the k-th segment}
15: Sout.put(s)
16: sic ← initCondsFrom(s)
17: end while

{3. Finalization phase}
18: s← cubicSegmFor(sic, dpk+1, IH) {the last (special) segment – see Eq.18}
19: Sout.put(s)
20: Sin.close()
21: Sout.close()

Remark 4. (Algorithm extensibility). Since Algorithm 1 is parametrized by a inter-
polation heuristic (strategy), it specifies a one-parameter family of streaming interpo-
lation algorithms.

Remark 5. (Algorithm complexity). The streaming (online) character of the pre-
sented algorithm means that it requires O(n) time and O(1) space, where n stands
for the length of Sin (potentially n→∞).

5. Results and discussion

To evaluate the proposed heuristics, a series of numerical experiments was carried out
in the form of a comparative analysis. The interpolants were examined, along with
their first three derivatives. As a point of reference, a cubic Hermite spline6 was used.

6The classic solution to the problem of (local) interpolation in which the first derivatives of the
interpolated function are given (or can be estimated by usually using finite difference schemas).
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A brief summary of the evaluation process used is given in Subsection 5.1, and
the results of the experiments are presented in Subsections 5.2–5.4.

5.1. Evaluation process overview

The key aspects of the evaluation process – test functions and algorithm performance
descriptors – are briefly described in this section, along with some remarks about the
auxiliary notation used.

Test functions. The following four test functions:

f1(x) = e−x
2

sinx , −3 ≤ x ≤ 3 (19a)

f2(x) =
log x√

x
sinx , 1 ≤ x ≤ 5 (19b)

f3(x) =
1

1 + e−x
, −2 ≤ x ≤ 2 (19c)

f4(x) =
36x7 − 229x5 + 25x3

36
, −1 ≤ x ≤ 1 (19d)

were used to generate the streams of data points to be interpolated. The graphs of
these functions are shown in Figure 4.

Performance descriptors. Each of the compared interpolants was evaluated by using
the following measures:

• Mean Absolute Error:

MAE(g1, g2) =
1

n

n∑
i=1

|g1(xi)− g2(xi)| (20)

• Root Mean Squared Error:

RMSE(g1, g2) =

{
1

n

n∑
i=1

[g1(xi)− g2(xi)]
2

}1/2

(21)

• Normalized Root Squared Error:

NRSE(g1, g2) =

{∑n
i=1 [g1(xi)− g2(xi)]

2∑n
i=1 [g2(xi)]

2

}1/2

(22)

• Mean Absolute Error Quotient:

QMAE(g1, g2)|f =
MAE(g1, f)

MAE(g2, f)
(23)

• Root Mean Squared Error Quotient:

QRMSE(g1, g2)|f =
RMSE(g1, f)

RMSE(g2, f)
(24)
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• Absolute Error (AE ):
ea(x)|g1g2 = |g1(x)− g2(x)| (25)

and its maximum value (L∞-norm):

||ea(x)|g1g2 ||∞ (26)
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Figure 4. Test functions and their first three derivatives (together with interpolation nodes
used in evaluation): a) f1(x); b) f3(x); c) f2(x); d) f4(x)
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Auxiliary notation. The auxiliary definitions and naming conventions used in this
section are as follows:

• sE(x) or sE – a cubic spline generated by heuristic MinBE ;
• sJ(x) or sJ – a cubic spline generated by heuristic MinAJ2 ;
• cubic spline of the T type – a spline generated by heuristic T ∈ {MinBE,
MinAJ2};

• h(x) or h – a cubic Hermite spline;
• {Dk}f , k = 0, 1, 2, . . . – a data stream generated by function f ;
• f ′(x), f ′′(x), and f ′′′(x) – the first, second, and third derivatives of f ;
• ea[ g1, g2, . . . ]f (x) = [ ea(x)|g1f , ea(x)|g2f , . . . ];
• ea[ g1, g2, . . . ]f = [ ea|g1f , ea|g2f , . . . ] – a special (point-free) case of the above used
for axis titles;

• enrs[g1, g2, . . . ]f = [NRSE(g1, f),NRSE(g1, f), . . . ].

Example 1. s′′′J (x) stands for the third derivative of sJ(x), where sJ(x) is a cubic
spline generated by the MinAJ2 heuristic.

Example 2. ea[sJ , h]f1(x) = [ ea(x)|sJf1 , ea(x)|hf1 ] stands for a pair of absolute error
functions (ea(x)|sJf1 and ea(x)|hf1), where f1(x) is the reference function, sJ(x) is a cubic
spline generated by the MinAJ2 heuristic, and h(x) is a cubic Hermite spline.

5.2. Streaming interpolator using heuristic MinBE

Remember that each element of the incoming stream takes the form of Dk = (xk, fk)),
k = 0, 1, 2 . . . The missing initial value of the first derivative (s′0) was calculated by
using Equation 17. Following this, the coefficients defining the current interpolating
segment were computed at each interpolation step k by using Equations 7, 8, 10,
and 11. The end of the stream was handled according to Equations 10, 11, and 18.

The performance of theMinBE interpolator, expressed in terms of the descriptors
listed in Subsection 5.1, is summarized in Figure 5 and Table 1. A cubic Hermite spline
is treated as a point of reference.

Local performance measures. Figure 5 presents the absolute interpolation error dis-
tributions for the cubic splines of the MinBE type and the cubic Hermite splines,
which both interpolate the data streams generated by the f1–f4 test functions. The
interpolants were examined, along with their first three derivatives, and the cubic
spline of the MinBE type outperformed the Hermite spline (significantly so in some
cases).

Global/integral performance measures. Table 1 gives the values of theMean Absolute
Error Quotient (QMAE) and the Root Mean Squared Error Quotient (QRMSE) for
the cubic spline of the MinBE type as compared to the cubic Hermite spline. The
two-column blocks ((·), (·)′′, . . . ) correspond to the interpolants and their first three
derivatives.
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Figure 5. Cubic spline of MinBE type (solid line) vs. cubic Hermite spline (dashed line) in
interpolation of test streams: absolute errors for interpolants and their first three derivatives.
Interpolation nodes are as shown in Figures 4a–4d: a) stream {Dk}f1 (generated by f1);
b) stream {Dk}f3 (generated by f3); c) stream {Dk}f2 (generated by f2); d) stream {Dk}f4

(generated by f4)
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Table 1
Cubic splines of MinBE type vs. cubic Hermite spline in the interpolation of {Dk}fi :
quotients of errors for the interpolants and their first three derivatives. QMAE and QRMSE

computed for g1 = sE , g2 = h. The interpolation nodes as shown in Figures 4a–4d

f
(·)(x) (·)′(x) (·)′′(x) (·)′′′(x)

QMAE QRMSE QMAE QRMSE QMAE QRMSE QMAE QRMSE

f1 1.00 0.944 0.995 0.938 0.946 0.905 0.932 0.943

f2 0.545 0.590 0.508 0.536 0.441 0.447 0.454 0.448

f3 0.546 0.552 0.518 0.512 0.498 0.468 0.515 0.500

f4 0.998 0.965 0.978 0.965 0.904 0.958 0.870 0.954

Aside from the first table entry, all of the values are less than one, which means
that the cubic spline of the MinBE type outperformed the Hermite cubic spline.

Remark 6. (Cubic spline of MinBE type’s performance). In almost all cases, the
streaming interpolator based on the cubic spline of the MinBE type outperformed
(sometimes significantly) its classic alternative – the cubic Hermite spline.

5.3. Streaming interpolator using heuristic MinAJ2

As in the previous case, the missing initial value of the first derivative (s′0) was cal-
culated by using Equation 17. Following this, the coefficients that define the current
interpolating segment were computed at each interpolation step k by using Equa-
tions 15, 16, 10, and 11. The end of the stream was handled according to Equations 10,
11, and 18.

The performance of the interpolator that was based on heuristic MinAJ2 (ex-
pressed in terms of the descriptors listed in Subsection 5.1) is summarized in Figure 6
and Table 2. As before, a cubic Hermite spline is treated as a point of reference.

Local performance measures. Figure 6 presents the absolute interpolation error dis-
tributions for the cubic splines of the MinAJ2 type and the cubic Hermite splines
interpolating the data streams that were generated by test functions f1–f4. The in-
terpolants were examined, along with their first three derivatives, and the cubic spline
of the MinAJ2 type outperformed the Hermite spline (significantly so in some cases).

Global/integral performance measures. The values of QMAE and QRMSE for the
cubic spline of the MinAJ2 type as compared to the cubic Hermite spline are given
in Table 2. The two-column blocks ((·), (·)′′, . . . ) correspond to the interpolants and
their first three derivatives.
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Figure 6. Cubic spline of MinAJ2 type (solid line) vs. cubic Hermite spline (dashed line) in
interpolation of test streams: absolute errors for interpolants and their first three derivatives.
Interpolation nodes are as shown in Figures 4a–4d: a) stream {Dk}f1 (generated by f1);
b) stream {Dk}f3 (generated by f3); c) stream {Dk}f2 (generated by f2); d) stream {Dk}f4

(generated by f4)
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Table 2
Cubic splines of MinAJ2 type vs. cubic Hermite spline in interpolation of {Dk}fi : quotients
of errors for interpolants and their first three derivatives. QMAE and QRMSE are computed

for g1 = sJ , g2 = h. Interpolation nodes are as shown in Figures 4a–4d

f
(·)(x) (·)′(x) (·)′′(x) (·)′′′(x)

QMAE QRMSE QMAE QRMSE QMAE QRMSE QMAE QRMSE

f1 0.985 0.909 0.974 0.901 0.918 0.864 0.905 0.924

f2 0.301 0.283 0.301 0.286 0.308 0.303 0.367 0.387

f3 0.573 0.564 0.505 0.475 0.397 0.358 0.355 0.346

f4 1.010 0.955 0.979 0.946 0.878 0.921 0.780 0.887

Aside from one table entry, all of values are less than one, which means that the
cubic spline of the MinAJ2 type outperformed the Hermite cubic spline.

Remark 7. (Cubic spline of MinAJ2 (type performance) In almost all cases, the
streaming interpolator based on the cubic spline of the MinAJ2 type outperformed
(sometimes significantly) its classic alternative – the cubic Hermite spline.

5.4. Streaming spline interpolation: experimental convergence analysis

The evaluation results presented so far give quite a significant insight into the per-
formance of different streaming interpolators (both the local and global/integral
performance measures were considered); however, there is still one key performance
aspect that has not been addressed at all – the convergence rate. The convergence
rate is a measure of how fast the interpolation/approximation error drops to zero
as the number of interpolation nodes increases (or the distance between subsequent
nodes decreases7). This measure is often used in numerical analysis to determine the
relative accuracy of different interpolation methods.

For the cubic Hermite spline, it is known (see, for instance, [7]) that, for x ∈
[xA, xB ]:

|f(x)− h(x)| ≤ 1

384
(∆x)4 max

xA≤z≤xB

|f (4)(z)| (27)

where f is the interpolated function, h is the cubic Hermite spline interpolant, and
∆x stands for the distance between the interpolation nodes

In the following comparative analysis, the cubic Hermite spline is again treated
as a point of reference. The results of the experimental analysis of convergence are
presented as log-log graphs.

7This is the point of view used in FEM analysis.
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Figure 7. Cubic spline of MinAJ2 type (solid line) vs. cubic spline of MinBE type (dashed
line) vs. cubic Hermite spline (dotted line) in interpolation of test streams: normalized root
squared error as function of number of interpolation intervals n for interpolants and their
first three derivatives; a) stream {Dk}f1 (generated by f1); b) stream {Dk}f3 (generated

by f3); c) stream {Dk}f2 (generated by f2); d) stream {Dk}f4 (generated by f4)

There are two key observations that are related to Figure 7:
• the splines of theMinAJ2 type significantly outperformed both the cubic Hermite
splines and the splines of the MinBE type;

• the convergence rates for the cubic Hermite splines and the splines of the MinBE
type can be negative (in the case of the third derivative)!
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Remark 8. (Convergence analysis summary). The cubic spline of the MinAJ2 type
was the best (and the only stable one) among the tested interpolants.

6. Conclusions

It has been shown that the real-time C1-continuous cubic spline interpolation of
streaming data can be effective. The key element in achieving this was to use an
estimator of the first derivative of the interpolated function that is more accurate
than those that are based on finite difference schemas.

Two greedy look-ahead heuristic estimators (denoted as MinBE and MinAJ2 )
have formally been defined (in closed form) along with the corresponding cubic splines
that they generate. They were then comparatively evaluated in a series of numerical
experiments that involved different types of performance measures. The cubic Hermite
splines that were generated by heuristic MinAJ2 significantly outperformed those that
were based on finite difference schemas in terms of all of the tested performance
measures (including convergence) – see Figures 6 and 7.

The proposed approach is quite general. It can be directly applied to streams of
univariate functional data like time-series. After splitting, multi-dimensional curves
that are defined parametrically can be handled as well. The streaming character of the
algorithm means that it can also be useful in processing data sets that are too large
to fit in the memory (e.g., edge computing devices, embedded time-series databases).

Future research could concentrate on new interpolation heuristics, their new
applications (e.g., in data compression, real-time animations), and auto-adaptation
mechanisms for streaming interpolators.
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