
Computer Science • 22(1) 2021 https://doi.org/10.7494/csci.2021.22.1.3840

Ranendu Adhikary
Manash Kumar Kundu
Buddhadeb Sau

CIRCLE FORMATION BY ASYNCHRONOUS
OPAQUE ROBOTS ON INFINITE GRID

Abstract This paper presents a distributed algorithm for the Circle Formation problem

under the infinite grid environment by asynchronous mobile opaque robots.

Initially, all of the robots acquire distinct positions, and they must form a circle

over the grid. The movements of the robots are only restricted along the grid

lines; they do not share any global coordinate system. The robots are controlled

by an asynchronous adversarial scheduler that operates in Look-Compute-

-Move cycles. The robots are indistinguishable by their nature, and they do not

have any memory of their past configurations nor previous actions. We consider

the problem under a luminous model, where robots communicate via lights; other

than that, they do not have any external communication systems. Our protocol

solves the Circle Formation problem using seven colors. A subroutine of our

algorithm also solves the Line Formation problem using three colors.

Keywords distributed computing, autonomous robots, circle formation, line formation,

robots with lights, asynchronous, Look-Compute-Move cycle, grid

Citation Computer Science 22(1) 2021: 81–100

Copyright © 2021 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

81

https://doi.org/10.7494/csci.2021.22.1.3840
https://orcid.org/0000-0002-9473-2645
https://orcid.org/0000-0003-4179-8293
https://creativecommons.org/licenses/by/4.0/

82 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

1. Introduction

Executing a task by a team of people is always better than merely by a single person.

This is certainly true for any team, whether it consists of people or robots. Completing

a task by a single robot is cumbersome and sometimes not even possible. A team

of autonomous mobile robots can distributively and collaboratively execute complex

tasks. These simple low-cost robots are emerging as an alternative for single powerful

and expensive robots. One of the research and development activities performed

on these robots is distributed motion coordination. By controlling these robots’

movements, we can form specific patterns and move in formation toward cooperating

for the achievement of certain tasks. Motion-planning algorithms for robotic systems

that are made up of robots that change their positions to form a given pattern are

very important and may become challenging in the case of severe limitations, such

as in the communication between robots, hardware constraints, natural calamities,

etc. The significance of positioning the robots based on some given patterns may

be useful for various tasks, such as bridge building, forming adjustable buttresses to

support collapsing buildings, rescue operations on disaster sites, satellite recoveries in

inhospitable areas, or tumor excision [24]. Also, distributed motion-planning algorithms

for robotic systems are potentially useful in environments that are inhospitable to

humans or are hard to control and observe (e.g., outer space, under water, forests, and

battlefields).

1.1. Background and problem definition

In the Circle Formation problem [8, 9, 15, 18–20, 28–30], the robots must form

a circle over a region. The robots are not given any knowledge about the circle

through any coordinates. To form a circle, we need two things: 1) a center, and

2) a radius. Nevertheless, neither of these are indicated to the robots beforehand.

Initially, the robots are at distinct locations; they each have a different coordinate

system. These robots are assumed to be autonomous (i.e., there is no central authority

to control them), homogeneous (i.e., they carry out the same protocol), anonymous

(i.e., they have no unique identifiers), or identical (i.e., they are indistinguishable

by their appearance) [16, 17]. In the continuous setting, the robots are assumed to

be able to execute accurate movements in arbitrary directions and by arbitrarily

small amounts. Hence, the robots can maneuver to avoid collisions (even in densely

crowded situations). Certain models also permit the robots to move along curved

trajectories; in particular, along the circumference of a circle [18]. For robots with

weak mechanical capabilities, it may not be possible to precisely execute such intricate

movements. This motivates us to consider the problem in a grid-based terrain where

the robots’ movements are restricted to following grid lines and only by a particular

unit distance with each step. Grid-type floor layouts can be easily implemented in

real-life robot navigation systems by using magnets or optical guidance [2]. Clearly,

the shape of a circle will not be the same as in the continuous domain in a grid-based

domain. If the circle moves over a grid point, we will place a robot there; otherwise,

Circle formation by asynchronous opaque robots on infinite grid 83

we place it at the nearest grid point. As we mentioned before, these robots act without

a central control; they work by a sequence of Look-Compute-Move cycles. In the

Look phase, a robot registers all of the other robots’ positions in its local coordinate

system. After this, each robot computes the next position according to a deterministic

algorithm (i.e., the Compute phase). In the Move phase, it will either move to the

desired location along a straight line or make a null move. At each cycle, a robot

can move to one of its four adjacent grid points. Now, depending on the activation

schedule and timing assumptions of the Look-Compute-Move cycles, there are

three models that have mainly been studied in the literature: an asynchronous model

(Async), a fully synchronous model (Fsync), and a semi-synchronous model (Ssync).

In the Fsync model, there is a global clock on which every robot agrees. The robots

operate during a synchronous atomic round; all of the robots that are active in a round

terminate their cycles by the subsequent round. The Ssync model is the same as the

Fsync model; however, a subset of the robots activates during each round here. In the

Async model, there is no notion of a global clock; each robot has its own clock and

operates accordingly.

The robots operate under the luminous model or ‘robots with lights’ model intro-

duced by Peleg [25]. In this model, the robots communicate with each other through

lights and can assume a set number of predefined colors. These lights serve as both

a form of persistent memory and as a form of communication. Other than this, the

robots have oblivious memory ; i.e., they do not remember any past computations nor

have any other communication systems. The robots have obstructed visibility ; i.e.,

a robot’s view can be obstructed by other robots. If three robots are collinear, then

the outside robots can only see a single robot (whereas the middle one can see two

robots).

1.2. Earlier works

While fundamental problems in autonomous mobile robots like Gathering [4, 7, 11,

14,26], Arbitrary Pattern Formation [5, 6, 21], and Mutual Visibility [1, 27]

have been studied in grid environments, the Circle Formation problem has only

been studied on a continuous Euclidean plane. In the Circle Formation problem,

robots must place themselves over a circumference of a circle. If the robots are placed

in such a way on the circumference of the circle where they are equidistant from

each other, then the problem is defined as Uniform Circle Formation. The

Circle Formation problem was first discussed by Sugihara and Suzuki [28]; they

proposed a simple heuristic distributed algorithm. However, their algorithm formed an

approximation of a circle (mainly, a Reuleaux triangle, which is a hybrid shape between

a triangle and a circle). Tanaka [30] later improved this algorithm by generating

a better approximation of a circle. Later on, Suzuki and Yamasihita [29] achieved

a uniform circle formation for non-oblivious robots (those that remember all of their

past actions). Défago and Konogaya [8] provided an Ssync algorithm by which a group

of oblivious robots eventually converge toward a uniform circle. In [9], Défago and

84 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

Souissi presented an Ssync non-uniform self-organized circle formation algorithm.

However, they assumed that the robots agree on the chirality of the system and do not

have obstructed visibilities. Until now, the results have assumed the scheduler to be

Ssync. In the Async model, several results have assumed implicit agreements among

the robots. Flocchini et al. [15] provided a simple algorithm for Uniform Circle

Formation where the robots have the same orientation or chirality. Later on, the

results were improved by a general result from Fujinaga et al. [20]. They assumed

that the local coordinate system of all of the robots is right-handed. Imposing no

assumptions on the local coordinates of the robots, the Uniform Circle Formation

algorithm was devised in [18]. However, they assumed that the robots could move along

circular arcs as well as straight-line segments. Finally, without any extra assumptions,

a solution was provided for n ≠ 4 robots in [19], and a solution for the special case

of n = 4 appeared in [22]. Using one bit of internal memory in [3], the authors

studied the Constrained Circle Formation problem. The Constrained Circle

Formation problem demands that, in addition, the maximum distance that a robot

moves to solve a problem should be minimized. In [12], the authors solved the problem

for fat robots (those with a finite extent) under limited visibility but considering

an agreement over a global coordinate system. An Ssync algorithm for transparent

robots that perform rigid movements and agree on one axis was provided in [23].

In [10], the authors also considered the problem of circle formation, but their model

of computation is different than ours. They considered a circle formation around an

unknown target with limited sensing and communication capabilities using holonomic

robots (a holonomic system is when the number of controllable degrees of freedom is

equal to the total degrees of freedom). They assumed that there is a global coordinate

system on which all of the robots agree. Also, they assumed that an inactive robot

can sense its vicinity. The closest solution to our problem was studied in [13]; however,

they considered the problem under an Fsync scheduler.

1.3. Our contribution

The Circle Formation problem has been quite extensively studied in the continuous

domain. In a continuous domain, a robot can move in any direction (sometimes in

a curve) with arbitrary precision. The problem has never been studied in a discrete

setting. We have devised a deterministic distributed algorithm that can solve the

Circle Formation problem over a grid-based environment. The infinite grid is

the most realistic model for a practical purpose. Here, the robots can only move in

four directions with unit lengths. Also, the infinite grid is a natural discretization

of a Euclidean plane. This simple model of movement along grid lines from one

grid point to another can be easier to implement for robots with weak mechanical

capabilities, as they may not be able to execute accurate movements in arbitrary

directions or by arbitrarily small amounts. Although the simple model of movement

may be easier to physically execute, the restrictions imposed on the movements of the

robots pose the main difficulty of the algorithmic problem. We have assumed that all

Circle formation by asynchronous opaque robots on infinite grid 85

of the robots agree on the positive y-axis. Other than this, the robots do not have

any other agreement among their local coordinate systems. The robots are controlled

by an asynchronous adversarial scheduler. Although robots have unlimited visibility,

they are opaque (i.e., they can block each others’ views). They are not given any

coordinates nor any knowledge about the total number of robots. Robots are equipped

with lights by which they can communicate with other robots. These lights can also

be used as memory (by which, a robot can only recall its previous state). Other than

this, robots have oblivious memory. We have solved two problems in this grid-based

environment: Line Formation and Circle Formation. From any arbitrary initial

configuration, our algorithm solves Line Formation using three colors and Circle

Formation using seven colors.

2. Model and definitions

Two robots are always on a circle, as we can take the line between them as a diameter.

Now, three robots may or may not be on the circle. Suppose that all of them are

collinear. If the middle robot makes a movement in this situation, then there is a circle

that passes through all of them. So, we consider the number of robots to be at least 3.

Now, we present the model and some basic definitions that will help us understand

the protocols.

Robots. We consider a set of n ≥ 3 homogeneous, autonomous, anonymous,

and identical robots R = {r1, r2, . . . , rn} deployed on a two-dimensional infinite grid

where each is initially positioned on distinct grid points. The robots are assumed to

be dimensionless and modeled as points on the plane. The robots have an agreement

over the positive direction of the y-axis; i.e., all of the robots have an agreement over

up and down. They do not have a common origin nor any agreement over the x-axis.

Actually, the robots do not have access to any global coordinate system other than

the agreement over the positive direction of the y-axis. Total number of robots n is

not known to them.

Look-Compute-Move cycles. An active robot r operates according to the

so-called Look-Compute-Move cycle (LCM for short). In the Look phase, a robot

registers the positions of all of the other robots in its own local coordinate system. After

this, the robot computes the next position and a color according to a deterministic

algorithm; i.e., the Compute phase. In the Move phase, it will either move a unit

length to the desired location along a straight line or make a null move.

Scheduler. We assume that the robots are controlled by an asynchronous

adversarial scheduler. This implies that the amount of time spent in the Look,

Compute, Move, and inactive states by different robots is finite but unbounded and

unpredictable. As a result, the robots do not have a common notion of time, and the

configuration that is perceived by a robot during the Look phase may significantly

change before it actually makes a move.

Movement. As the robots are deployed on an infinite grid, a robot can only

move to its four adjacent grid points. The movements are not rigid ; i.e., in any

86 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

Look-Compute-Move cycle, a robot can only move from one grid point to another.

In discrete domains, a robot’s movements are assumed to be atomic. This implies that

the robots are always seen on grid points, not on edges.

Visibility. The visibility range of the robots is unlimited but can be obstructed

by the presence of other robots. Robot ri can see another robot rj if and only if there

are no robots on straight line segment rirj .

Lights. Each robot is equipped with an externally visible light, which can assume

a O(1) number of predefined colors. The robots explicitly communicate with each

other using these lights. The lights are not erased at the end of a cycle; otherwise,

the robots are oblivious. The colors used in our algorithm are {Off , Line, Moving1,

Corner, Moving2, Moving3, Done}.
Geometric definitions. Given a configuration of robots at time t, the smallest

enclosing rectangle is defined as the smallest axis-aligned rectangle that contains all of

the robots. We denote the smallest enclosing rectangle by ABCD, where AB is the

lowest boundary and CD the top boundary. We define the length of a line segment to

be the number of grid points between the terminal robots (including the grid points

where the terminal robots reside). Similarly, we define the length of a line. In our case,

the length of a line segment and the length of a line that contains that line segment is

the same. H denotes the height of the configuration, and L1 and LH are the horizontal

lines that contain AB and CD, respectively. Note that we can think of configuration

ABCD as a union of horizontal line segments. We define L1,L2, . . . , and LH to be

the horizontal lines that contain the robots of the configuration in increasing order

(Fig. 1).

L1

L2

L3

L4

L5

L6

L7

A B

D C

Figure 1. Illustrations for geometric definitions given in Section 2

So, L1 and LH are the horizontal lines that contain the robots of AB and CD,

respectively. We define Lleast (̸= L1) as the horizontal line such that there are no

horizontal lines that contain robots between L1 and Lleast. Also, we define L(r) to
be the horizontal line that contains r. A robot r on a grid line segment L will be

called non-terminal on L if it lies between two robots on L; otherwise, it will be called

terminal on L. In an infinite grid, the distance between two points is defined by the ℓ1
norm. The distance in the ℓ1 norm is sometimes called the Manhattan distance.

Circle formation by asynchronous opaque robots on infinite grid 87

3. Algorithm

A circle is defined with a center and a radius. The easiest way to get this information

is to take a line segment as a diameter and define the middle point of the line segment

as the center. So, we first need to arrange the robots in such a way as to form a line.

This phase is called Line Formation. After the completion of this phase, the main

challenge will be to place the robots on the circumference of the circle. This phase is

defined as Circle Formation. Our algorithm works in these two phases. In Line

Formation, the robots from any arbitrary initial configuration will create a line

segment, and in the last phase (Circle Formation), the robots will set up a circle

from the line segment. The difficulty arises from the restriction on the movements

and the opaqueness of the robots. Note that, in the grid type environment, a robot

can only move one step at a time (according to each robot’s own clock) to its four

adjacent grid points. Apparently, if there are no adjacent grid points, a robot cannot

move. Additionally, a robot’s perceived view can be significantly different from the

actual global picture due to its obstructed visibility.

3.1. Line formation

In this phase, we will put down all of the robots from the initial configuration to a line

segment. We have assumed that the robots have an agreement over the positive y-axis;

i.e., they have an accord over up and down. The main idea behind this phase is that

the robots from the upper portion of the configuration will sequentially move to the

lowest portion of the configuration. Finally, the configuration will transform into a line

segment. A pseudo-code description of the procedure is presented in Algorithm 1. The

lights used in this phase are {Off , Line, Moving1}.
Now, we characterize the initial configurations depending on the presence of the

robots on the boundary of the smallest enclosing rectangle. Note that L1 always has

at least one robot on it (Fig. 2). The robots on line L1 can identify that they are at

the lowest level of height.

a) b) c)

Figure 2. Initial configuration always has at least one robot on L1

The crucial part of this phase is to define the movements of the robots. Note

that L1 contains the lower boundary line segment of the smallest enclosing rectangle.

88 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

Any robot on L1 can identify that it is on the lower portion of the smallest enclosing

rectangle. Identifying this, the robots on L1 will alter their lights to Line. If a robot

cannot see a robot with color Line, it cannot gauge its height relative to L1. These

robots will remain inactive. Upon waking up, if a robot perceives a robot with color

Line, then it will measure its height relative to L1. Clearly, L2 is the adjacent of L1.

Algorithm 1: Line Formation

1 Procedure LineFormation()
2 r ← myself
3 while LineFormation() = False do
4 if r.color = Off then
5 if r is on L1 then
6 r.color ← Line
7 else if r is on L2 then
8 if r is a terminal robot then
9 if FindEmptyPoint() = True then

10 r.color ←Moving1

11 else if r is on Lleast and L2 is empty then
12 if r is a terminal robot then
13 if FindEmptyPoint() = True then
14 r.color ←Moving1

15 else if r.color = Moving1 then
16 if r is on L1 then
17 r.color ← Line
18 else if r is on L2 then
19 if r is a terminal robot then
20 if FindEmptyPoint() = True then
21 r.color ←Moving1
22 Move toward the empty point on L1

23 else
24 r.color ← Off

25 else if r is on Lleast and L2 is empty then
26 if r is a terminal robot then
27 if FindEmptyPoint() = True then
28 r.color ←Moving1
29 Move toward L2

30 else
31 r.color ← Off

32 else if r is on Li+1 and Li is non-empty with i ≥ 2 then
33 r.color ← Off

For a terminal robot r on L2, we define Vr to be the visible portion of the lower

boundary of the smallest enclosing rectangle that r can see and Sr to be the portion

of L1 where r will move. If L2 contains a single robot, then Vr with two extra grid

points (one on each side of Vr) will be the region Sr where r will move (Figs. 3a, 3b).

Now, suppose that L2 contains more than one robot. Then, for a terminal robot r, we

Circle formation by asynchronous opaque robots on infinite grid 89

define L(r)⊥ to be the perpendicular line of L2 at r. Let rL1 be the intersection point

L(r)⊥ ∩ Vr on L1. Suppose that r and r′ are the terminal robots on L2; then, Sr is

the region that starts at rL1 and ends at the opposite direction of r′, with one extra

grid point at the end of Vr (Fig. 3c). Now, if L2 contains no robots, then the terminal

robots of Lleast will move to L2.

a)

r

L1

L2

L3

b)

r

r1

r2

c)

r′r

Figure 3. Illustrations of desired empty points on L1: a) shaded region Sr is place where r
will place itself; b) robot r’s view is blocked by r1, and its Sr is different than global; c) Sr

and Sr′ are corresponding regions in respect to robots r and r′

Now, if a robot r on L2 finds an empty point on L1, then the movements of r can

cause collisions. So, we will now state some conditions under which a robot will move.

The conditions are described as function FindEmptyPoint(), which is defined below.

FindEmptyPoint(). First of all, the robots of L1 will not execute this function. The

function takes a terminal robot r of a horizontal line that can perceive a robot with

color Line as an input and returns “True” if the following conditions are satisfied.

Condition 1. If r is on L2, then:

1. First of all, it checks line L1 such that all of the robots on it have color Line.

2. Now, it scans Sr as shown in Figure 3 to find an empty grid point. If r finds more

than one grid point, then the empty point that has the least distance from r will

be chosen as the destination. Here, the distance is being measured under the ℓ1
norm (i.e., Manhattan distance).

3. Even if it finds an empty grid point on L1, a move toward it can lead to a collision.

To avoid this, it must make sure that there are no robots with light Moving1

within Manhattan distance 2 in the direction in which it intends to move (Fig. 4).

Condition 2. If r is not on L2, then:

1. L(r) = Lleast.

Brief discussion. First of all, the robots on L1 will not move in this phase. Initially, all

of the robots have lights that are set to Off . Note that, if a robot r in the configuration

can perceive a robot with color Line after waking up, then it can distinguish the

90 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

height of L(r) from L1. Otherwise, these robots will remain inactive. The robots

on L1 will alter their lights to Line. Now, the terminal robots on L(r) summon

function FindEmptyPoint(); if the result is “True,” then those robots are qualified

for movement. Note that function FindEmptyPoint() treats the robots on L2 and

the robots on Lleast differently. If L2 contains no robots, a terminal robot r on Lleast

will move toward L2. However, it will not move immediately. First, it will alter its

light to Moving1; then, it will redo the same computations in the next LCM cycle. If

the function returns “False,” the robot will set its light to Off . If a terminal robot r

is on L2, r will first check whether there is a robot with color Moving1 in the direction

that it wants to move. However, it will not move immediately. First, it will alter its

light to Moving1; then, it will redo the same computations in the next LCM cycle.

If the function returns “False,” the robot will set its light to Off . Now, the crucial

thing of this phase is to make the movements collision-less. To tackle this situation, we

used two steps: (1) only those robots on line L2 are allowed to move toward L1, and

(2) a terminal robot on L(r) will move only if L2 is empty and L(r) = Lleast. Note

that we always have two empty points on L1. As we can have two terminal robots on

a line at most, we will never have a problem with finding empty points.

a)

r1

L1

L2

L3
r2

b)

r1

L1

L2

L3
r2

a

Figure 4. Illustration for function FindEmptyPoint(): a) r1 and r2 find that L2 is empty.
So, they will change their color and move to L2. Suppose that r1 moves first and r2 has
a pending move due to asynchrony; b) r1 finds an empty point a. But, r2 is within Manhattan

distance 2 in which direction r1 wants to move. So, r1 will not move

Now, if L2 is empty, then the terminal robots on Lleast will move toward L2.

Now, if L2 is non-empty, then the terminal robots on L2 find the desired empty point

and move to L1. However, we can still have a collision due to asynchrony. In Figure 4,

we have depicted this scenario. Robots r1 and r2 are terminal robots on L3. As L2 is

empty, FindEmptyPoint() is true for both r1 and r2. Suppose that r1 moves first

and r2 has a pending move due to asynchrony. Now, r1 is a terminal robot on L2, and

FindEmptyPoint() is true for r1. Let the desired empty point be a, as a is closest

to the position of r1. Now, the asynchronous scheduler can make the movements of

Circle formation by asynchronous opaque robots on infinite grid 91

r1 and r2 simultaneously. So, r1 and r2 will collide with each other. However, this

will never happen, as robot r2 has color Moving1, it is within Manhattan distance 2

from r1, and it is in the direction in which r1 intends to move. So, r1 will not move.

Note that L1 has at least two empty points on it. So, a terminal robot r on L2

will always find empty points on L1. Therefore, our main concern is about collision.

We must make sure that there will be no collisions during the movements.

Lemma 1. There exists a time t such that a robot r on L(r) will reach line L1.

Proof. Depending on the horizontal position of a robot r, we can characterize the

behavior of the robot. We can primarily have three cases:

• Case 1. L(r) = L1 (i.e., r is on lowest horizontal line);

• Case 2. L(r) = L2 (i.e., r is on line adjacent to L1);

• Case 3. L(r) = Lleast (i.e., r is on least top line that has robot on it).

We will give correctness for each of the cases below:

• Case 1. Nothing to prove, as r is already at the desired location.

• Case 2. Only the terminal robots of L2 will move. Suppose that r is the only

robot on L2. Now, if FindEmptyPoint() returns “True,” then r will move to

the desired point in Sr. For robot r, FindEmptyPoint() can return “False” for

two reasons. One where there is a robot – say, r′ – on L3 within Manhattan

distance 2 with color Moving1, and the other when one of the robots on L1

has not altered its color to Line. For the second case, there will clearly be a

time t′ when FindEmptyPoint() will return “True” for r. For the first case,

if r′ is in the direction that r wants to move, then FindEmptyPoint() will

return “False” for r and r will alter its light to Off . Now, we can have two

issues regarding this situation. If r′ has no pending move, then it will alter its

light to Off in the next LCM cycle. Note that r′ will remain inactive, as L2

is non-empty. Eventually, there will be a time when r will become active and

FindEmptyPoint() will return “True” for r. Now, if r′ has a pending move,

then it will move to L2. Note that FindEmptyPoint() can now return “False”

for one reason for the robot r′; this is when one of the robots on L1 has not

altered its color to Line. So, r′ will eventually move to L2. Clearly, there will

be a time t′′ when robot r will move to L1. Now, consider the case when there

is more than one robot on L2. Note that, in this case, there cannot be a robot

with light Moving1 on L3. Now, if r is a terminal robot on L2, then it will recall

function FindEmptyPoint(). If FindEmptyPoint() returns “True,” then r

will move to Sr. Note that FindEmptyPoint() returns “False” for only these

two reasons.

• Case 3. If r is a lone robot on Lleast, then it will eventually reach L2. Suppose

that there is more than one robot on Lleast. Let the terminal robots be r and r′.

If only one of them moves toward L2, then the other robot will stay put. Suppose

that both of them execute the Look-Compute-Move cycle synchronously.

Then, both r and r′ will alter their colors to Moving1 if FindEmptyPoint()

92 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

returns “True.” If they execute all of the future Look-Compute-Move cycles

synchronously, then both will eventually move to L2. Suppose that, due to

asynchrony, one of the robots makes a move first and the other has a pending

move toward L2 (a similar scenario is depicted in Figure 4). In this figure, robots

r1 and r2 are terminal robots on Lleast (= L3). FindEmptyPoint() returns

“True” for both of them. So, they alter their colors to Moving1. In the next

LCM cycle, they will again call function FindEmptyPoint(). Now, we can have

two possible future events due to asynchrony: one in which FindEmptyPoint()

returns “True” for r1 and r2 has not recalled the function yet, and another in

which FindEmptyPoint() returns “True” for both r1 and r2 simultaneously. In

the former case, r2 will alter its light to Off , as L2 is now non-empty (r1 is now

on L2). In the latter case, both will move to L2. So, in the first case, r2 will

remain inactive until r1 moves to L1.

It is easy to see that a robot can always check whether a line formation has

completed or not.

Lemma 2. A robot r can always detect whether a line formation has completed or not.

Theorem 1. Algorithm 1 Line Formation will transform any initial configuration

into a line.

Proof. From Lemma 1 and 2, we can conclude that there will be a time t when we

have all of the robots on a line.

3.2. Circle formation

When Algorithm 1 terminates for all of the robots in the configuration, we have

a configuration where all of the robots are on line L1 and have color Line. For our

circle to form, we have a line whose middle point that we will consider to be the center

and whose length will be treated as the diameter. Remember that we have defined

the length |L| of a line L to be the number of grid points between the terminal robots

(including the grid points where the terminal robots reside). In Figure 5a, the length

of the line is 11. Furthermore, the distance between two robots defined to be the

number of grid points between them, including the grid points on which they reside.

So, the distance between a robot and itself is one. A pseudo-code description of the

procedure is presented in Algorithm 2. The lights used in this phase are {Corner,

Moving2, Moving3, Done}.
The robots that are at the corners of L1 can identify themselves. After the

identification, the corner robots will alter their lights to Corner. Note that the corner

robots will not move in this phase. Now, we will define a coordinate system on this

line (Fig. 5). All of the robots have a given coordinate (l, d), where l denotes length

|L1| and d denotes the distance from the nearest corner. We define rd to be robot r

at distance d from the nearest corner. Clearly, a robot r on L1 does not have any

information about l or d. To obtain this information, a robot has to move upward or

Circle formation by asynchronous opaque robots on infinite grid 93

downward to see the line. Now, if robot r sees a corner robot on L1, then it will move

upward (i.e., on L2). Eventually, all of the other robots will move upward. Note that

robot r can now see the corner robots of L1 and have full knowledge about l and d.

Now, circle C will have diameter l, and the center is at the middle point of l. Note

that the center may not have coordinates with integer. We denote L(r)⊥ to be the

line that is perpendicular to L1 at r. c′d denotes the intersection between circle C and

line L(rd)⊥. Now, c′d may not be a grid point. We define cd = ⌈c′d⌉. Note that cd is

a grid point. We define middle to be the y-coordinates of the middle points of L1.

Note that we can express these by one coordinate whether or not |L1| has one or two

middle points. If l is odd, then the middle robot – say, r(l+1)/2 (middle = (l + 1)/2) –

is at the center of circle C. If l is even, then we have two middle robots – say, rl/2 and

rl/2+1 (middle = l/2) – and the center of circle C is at the middle of rl/2 and rl/2+1. In

Figure 5b, l = 11 is odd and (l + 1)/2 = 6. So, middle robot r6 is at (11, 6). Without

a loss of generality, let us suppose that l is odd. All of the r robots on L2 will move

to the horizontal line – say, Lc(l+1)/2
passing through point c(l+1)/2. However, they

will move sequentially. After reaching line Lc(l+1)/2
, robot r(l+1)/2 is now on the circle.

Now, the robots at (l, (l + 1)/2 − i) will move toward point c(l+1)/2−i if the robots

at (l, (l + 1)/2− i+ 1) have completed their movements where 1 ≤ i ≤ (l + 1)/2− 2

(Fig. 6). Hence, all of the robots will eventually be on circle C.
a)

L1

b)

L1

L2

(11, 2)

(11, 3)
(11, 4)

(11, 5)
(11, 6)

(11, 1) (11, 1)(11, 5)
(11, 4)

(11, 3)
(11, 2)

Figure 5. Prescribed coordinate system: a) corner robots alter their colors to Corner; b) after
movements of non-corner robots, robots can have knowledge of their coordinates

a)

L1

L(r1)⊥

L(r2)⊥
L(r3)⊥
L(r4)⊥
L(r5)⊥

L(r2)⊥
L(r1)⊥

L(r3)⊥
L(r4)⊥

r1 r4

b)

L1

r1 r4

Figure 6. Illustration of movements of robots: a) red dots are points where non-corner robots
will place them; b) scenario where r4 has completed its movement; as there are no robots in

between r1 and r4, r1 will start its movement

94 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

Brief discussion. The terminal robots of L1 will alter their lights to Corner. If it sees

a robot with color Corner, a robot r on L1 will move to line L2 with color Moving2

(Fig. 6a). Upon reaching its destination, r can identify its position on line L1. When

all of the robots have reached L2, the robots will move to horizontal line Lc(l+1)/2
.

A robot at line Lj will move to line Lj+1 if there are no robots between L1 and Lj .

Eventually, the robots will arrive at horizontal line Lc(l+1)/2
(Fig. 6b). If there is

a robot r(l+1)/2 in the configuration, then it has clearly arrived at the desired location

on the circle and it will alter its light to Done. The robots at (l, (l+1)/2− i) will move

to point c(l+1)/2−i if the robots at (l, (l+1)/2− i+1) have color Done. Now, position

(l, (l + 1)/2 − i + 1) may not contain a robot; however, that will not be a problem.

Then, the robot will check for the nearest position (l, ρ) (Fig. 6b) that contains a robot

and can evaluate the task, where ρ is the least distance from the middle point of L1

such that it contains a robot. Eventually, all of the robots will place themselves on

circle C.
Algorithm 2: Circle Formation

1 Procedure CircleFormation()
2 r ← myself.
3 crd is the desired position of robot rd of coordinate (l, d).
4 Lcmiddle is the horizontal line passing through point cmiddle.
5 if r.color = Line then
6 if r is a corner robot then
7 r.color ← Corner
8 else if r is a non-corner robot of L1 and sees a robot with color Corner then
9 r.color ←Moving2

10 Move upward along L(r)⊥
11 else if r.color = Moving2 then
12 if L(r) ̸= L1 then
13 if L(r) is adjacent to L1 i.e., r is on L2 then
14 if There are only corner robots on L1 then
15 Move upward along L(r)⊥ toward the line Lcmiddle

16 else
17 if There are no robots between L(r) and L1 then
18 if r is on line Lcmiddle then
19 if r is at (l,middle) then
20 r.color ← Done
21 else if r sees a robot with color Done at (l, ρ) then
22 r.color ←Moving3
23 Move to crd
24 else if There are no robots with color Done or Moving3 in

the vicinity of r then
25 r.color ←Moving3
26 Move to crd
27 else
28 Move toward line Lcmiddle

29 else if r.color = Moving3 then
30 if r is at crd then
31 r.color ← Done
32 else
33 Move to crd

Circle formation by asynchronous opaque robots on infinite grid 95

Theorem 2. Algorithm 2 Circle Formation will create a circle C from line L1.

Proof. The algorithm works in two folds: (1) first, it will move all of the non-corner

robots of L1 to the horizontal line Lcmiddle
passing through point cmiddle; and (2) it

will place the robots of Lcmiddle
on circle C one by one. Note that only the second

phase starts when all of the robots are on horizontal line Lcmiddle
. So, we can treat

each case separately.

• Case 1. Suppose that all of the robots are on line L1. Now, a robot r cannot

gauge the position of itself nor the length of the line. If it is a corner robot, it will

change its color to Corner. Suppose that r is a non-corner robot – if it sees a

robot with color Corner, then it will move to line L2 with color Moving2. Now,

it can gauge the length of L1 and the position of it on L1. Now, robot r will only

move if there are no non-corner robots on L1. It will move toward horizontal line

Lcmiddle
. Note that the movements occur sequentially. The robots move from

one horizontal line Lj to horizontal line Lj+1 when there are no robots between

L1 and Lj . Eventually, all of the robots will reach line Lcmiddle
. Certainly, there

will be no collisions. Now, we must show that a robot r can always evaluate line

Lcmiddle
. Note that the robots are moving upward. So, if r has completed its

move and there are robots that have not completed their moves, then r may not

see the corner. However, this is not the case in our algorithm, as r will only move

if there are no robots in between L(r) and L1.

• Case 2. Suppose that all of the robots are on line Lcmiddle
. Now, if r is a middle

robot, then it will alter its light to Done. Suppose that r is not a middle robot

and is of coordinates (l, d). Now, if it sees a robot with color Done at position

(l, ρ), then it will alter its light to Moving3 and will move toward point crd . It

may happen that there are no robots with color Done nor Moving3. This means

that r is at position (l, ρ). Then, it will alter its light to Moving3 and will move

toward crd′ , where d′ = ρ. Hence, all of the robots will eventually have color

Done. Clearly, there are no collisions. Now, we must show that a robot r of

coordinates (l, d) can always evaluate point crd . For this, r needs the length of

line L1. Now, position crmiddle−i
is closer than position crmiddle−i+1

to line L1.

So, when robot rmiddle−i+1 has completed its move, robot rmiddle−i will move

to point crmiddle−i+1
. Now, robot rmiddle−i can see the corner robots and will

eventually move to point crmiddle−i
, where 1 ≤ i ≤ middle− 2.

Circle formation. Note that Algorithm 2 creates a semi-circle configuration from any

initial configuration. By merely modifying this algorithm, we can easily solve the

circle formation problem. First, a non-corner robot on L1 will check whether it can

see at least one robot with color Corner. Now, if it can see exactly one robot with

color Corner and there are no robots in the configuration with color Moving2, then

it will move upward (in Figure 7a, r1 and r2 move upward). Now, if it can see exactly

one robot with color Corner and there are robots in the configuration with color

Moving2 (Fig. 7b), then it will move downward if the closest Moving2 robot is in the

96 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

up direction and vice versa (in Figure 7a, r3 and r4 move downward). Now, if there are

two of the closest Moving2-colored robots or a non-corner robot can see both robots

with color Corner, then it will move in either the up or down direction arbitrarily.

Note that L1 cuts the configuration into two halves – an upper half, and a lower

half. The robots in both halves will execute Algorithm 2, and we will eventually have

a circle (Fig. 7d).

a)

L1r1 r2

b)

L1

r1 r2

r3 r4

c)

L1

d)

L1

Figure 7. Illustration of movements of robots for circle formation: a) r1 and r2 see exactly
one corner robot; as there are no robots with color Moving2, they move upward; b) r3 and r4
move downward; as closest Moving2 colored robots are in up direction, they move downward;

c) robots in both halves will execute Algorithm 2; d) completion of circle formation

Circle formation by asynchronous opaque robots on infinite grid 97

4. Conclusion

Our algorithm solves the problem of line formation and circle formation deterministi-

cally from any initial configuration. This paper investigates the Circle Formation

problem for a set of oblivious asynchronous opaque robots on an infinite grid. Although

the robots have unlimited visibility, the view of a robot can be blocked by another

robot. The main difficulty of working in a grid environment is the movements of

the robots. A robot can only move to one of its four adjacent grid points. Now, if

these adjacent points are non-empty, then the robot cannot move, as moving to these

points would create a collision. On the contrary, this situation will never appear in the

continuous domain. Also, a robot moves one unit of length at each step in a straight

line in a grid environment, whereas a robot can move in any direction by any amount

with infinite precision in a continuous environment. These restrictions on movements

increase the difficulty of the problem. In this discrete setting, we have shown that,

from any given initial configuration, our algorithm solves the Circle Formation

problem deterministically using seven colors. Also, a subroutine of our algorithm

deterministically solves the Line Formation problem using three colors.

Several directions for future research may be explored. For instance, a more

realistic model would be to consider fat robots (i.e., those with a finite extent). In

a continuous environment, this problem has been studied. Another realistic model

would be to work under limited visibility. The immediate next step would be to

optimize the number of movements of the robots and try to use fewer colors. Another

line of research could be to consider no agreements over the coordinate system.

Acknowledgements

The first author is supported by CSIR, Govt. of India. We thank the anonymous review-

ers for their valuable comments, which helped us improve the quality and presentation

of this paper.

References

[1] Adhikary R., Bose K., Kundu M.K., Sau B.: Mutual Visibility by Asynchronous

Robots on Infinite Grid. In: Algorithms for Sensor Systems – 14th International

Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGO-

SENSORS 2018, Helsinki, Finland, August 23–24, 2018, Revised Selected Papers,

Lecture Notes in Computer Science, vol. 11410, pp. 83–101, Springer, 2018.

[2] Barberá H.M., Quiñonero J.P.C., Zamora-Izquierdo M.A., Skarmeta A.G.: I-Fork:

a flexible AGV system using topological and grid maps. In: Robotics and Au-

tomation, 2003. Proceedings. ICRA’03. IEEE International Conference on, vol. 2,

pp. 2147–2152, IEEE, 2003.

[3] Bhagat S., Mukhopadhyaya K.: Optimum circle formation by autonomous robots.

In: Advanced Computing and Systems for Security, pp. 153–165, Springer, 2018.

98 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

[4] Bose K., Adhikary R., Chaudhuri S.G., Sau B.: Crash tolerant gathering on grid

by asynchronous oblivious robots. In: arXiv preprint arXiv:1709.00877, 2017.

[5] Bose K., Adhikary R., Kundu M.K., Sau B.: Arbitrary pattern formation on

infinite grid by asynchronous oblivious robots. In: WALCOM: Algorithms and

Computation – 13th International Conference, WALCOM 2019, Guwahati, India,

February 27 – March 2, 2019, Proceedings, Lecture Notes in Computer Science,

vol. 11355, pp. 354–366, Springer, 2019.

[6] Bose K., Adhikary R., Kundu M.K., Sau B.: Arbitrary pattern formation on

infinite grid by asynchronous oblivious robots, Theoretical Computer Science,

vol. 815, pp. 213–227, 2020.

[7] D’Angelo G., Di Stefano G., Klasing R., Navarra A.: Gathering of robots on

anonymous grids and trees without multiplicity detection, Theoretical Computer

Science, vol. 610, pp. 158–168, 2016.

[8] Défago X., Konagaya A.: Circle formation for oblivious anonymous mobile robots

with no common sense of orientation. In: Proceedings of the second ACM interna-

tional workshop on Principles of mobile computing, pp. 97–104. 2002.

[9] Défago X., Souissi S.: Non-uniform circle formation algorithm for oblivious

mobile robots with convergence toward uniformity, Theoretical Computer Science,

vol. 396(1–3), pp. 97–112, 2008.

[10] Deshpande A.M., Kumar R., Radmanesh M., Veerabhadrappa N., Kumar M.,

Minai A.A.: Self-Organized Circle Formation around an Unknown Target by

a Multi-Robot Swarm using a Local Communication Strategy. In: 2018 Annual

American Control Conference (ACC), pp. 4409–4413, IEEE, 2018.

[11] Di Stefano G., Navarra A.: Gathering of oblivious robots on infinite grids with

minimum traveled distance, Information and Computation, vol. 254, pp. 377–391,

2017.

[12] Dutta A., Chaudhuri S.G., Datta S., Mukhopadhyaya K.: Circle Formation

by Asynchronous Fat Robots with Limited Visibility. In: Ramanujam R., Ra-

maswamy S. (eds.), Distributed Computing and Internet Technology – 8th Inter-

national Conference, ICDCIT 2012, Bhubaneswar, India, February 2–4, 2012.

Proceedings, Lecture Notes in Computer Science, vol. 7154, pp. 83–93, Springer,

2012.

[13] Feletti C., Mereghetti C., Palano B.: Uniform circle formation for swarms of

opaque robots with lights. In: International Symposium on Stabilizing, Safety,

and Security of Distributed Systems, pp. 317–332, Springer, 2018.

[14] Fischer M., Jung D., Meyer auf der Heide F.: Gathering Anonymous, Oblivi-

ous Robots on a Grid. In: Algorithms for Sensor Systems – 13th International

Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGO-

SENSORS 2017, Vienna, Austria, September 7–8, 2017, Revised Selected Papers,

pp. 168–181. 2017.

Circle formation by asynchronous opaque robots on infinite grid 99

[15] Flocchini P., Prencipe G., Santoro N.: Self-deployment Algorithms for Mobile

Sensors on a Ring. In: International Symposium on Algorithms and Experiments

for Sensor Systems, Wireless Networks and Distributed Robotics, pp. 59–70,

Springer, 2006.

[16] Flocchini P., Prencipe G., Santoro N.: Distributed Computing by Oblivious Mobile

Robots. Synthesis Lectures on Distributed Computing Theory, Morgan & Claypool

Publishers, 2012.

[17] Flocchini P., Prencipe G., Santoro N.: Distributed Computing by Mobile Entities,

Current Research in Moving and Computing, vol. 11340, 2019.

[18] Flocchini P., Prencipe G., Santoro N., Viglietta G.: Distributed Computing by

Mobile Robots: Solving the Uniform Circle Formation Problem. In: International

Conference on Principles of Distributed Systems, pp. 217–232, Springer, 2014.

[19] Flocchini P., Prencipe G., Santoro N., Viglietta G.: Distributed computing

by mobile robots: uniform circle formation, Distributed Computing, vol. 30(6),

pp. 413–457, 2017.

[20] Fujinaga N., Yamauchi Y., Kijima S., Yamashita M.: Asynchronous pattern

formation by anonymous oblivious mobile robots. In: International Symposium

on Distributed Computing, pp. 312–325, Springer, 2012.

[21] Lukovszki T., Meyer auf der Heide F.: Fast Collisionless Pattern Formation by

Anonymous, Position-Aware Robots. In: International Conference on Principles

of Distributed Systems, pp. 248–262, Springer, 2014.

[22] Mamino M., Viglietta G.: Square Formation by Asynchronous Oblivious Robots.

In: arXiv preprint arXiv:1605.06093, 2016.

[23] Mondal M., Chaudhuri S.G.: Uniform circle formation by mobile robots. In:

Proceedings of the Workshop Program of the 19th International Conference on

Distributed Computing and Networking, pp. 1–2, 2018.

[24] Pamecha A., Ebert-Uphoff I., Chirikjian G.S.: Useful metrics for modular robot

motion planning, IEEE Transactions on Robotics and Automation, vol. 13(4),

pp. 531–545, 1997.

[25] Peleg D.: Distributed Coordination Algorithms for Mobile Robot Swarms: New

Directions and Challenges. In: International Workshop on Distributed Computing,

pp. 1–12, Springer, 2005.

[26] Poudel P., Sharma G.: Universally Optimal Gathering Under Limited Visibility.

In: Stabilization, Safety, and Security of Distributed Systems – 19th International

Symposium, SSS 2017, Boston, MA, USA, November 5–8, 2017, Proceedings,

pp. 323–340, 2017.

[27] Poudel P., Sharma G., Aljohani A.: Sublinear-time mutual visibility for fat oblivi-

ous robots. In: Proceedings of the 20th International Conference on Distributed

Computing and Networking, ICDCN 2019, Bangalore, India, January 04–07, 2019,

pp. 238–247, ACM, 2019.

100 Ranendu Adhikary, Manash Kumar Kundu, Buddhadeb Sau

[28] Sugihara K., Suzuki I.: Distributed motion coordination of multiple mobile robots.

In: Proceedings of 5th IEEE International Symposium on Intelligent Control 1990,

pp. 138–143, IEEE, 1990.

[29] Suzuki I., Yamashita M.: Distributed anonymous mobile robots: Formation of

geometric patterns, SIAM Journal on Computing, vol. 28(4), pp. 1347–1363, 1999.

[30] Tanaka O.: Forming a circle by distributed anonymous mobile robots, Bachelor

thesis, Department of Electrical Engineering, Hiroshima University, Japan, 1992.

Affiliations

Ranendu Adhikary
Jadavpur University, Department of Mathematics, Kolkata, West Bengal – 700032, India,
ranenduadhikary.rs@jadavpuruniversity.in, ORCID ID: https://orcid.org/0000-0002-9473-2645

Manash Kumar Kundu
Gayeshpur Government Polytechnic, Department of Science and Humanities, Kalyani, West
Bengal – 741234, India, manashkrkundu.rs@jadavpuruniversity.in,
ORCID ID: https://orcid.org/0000-0003-4179-8293

Buddhadeb Sau
Jadavpur University, Department of Mathematics, Kolkata, West Bengal – 700032, India,
buddhadeb.sau@jadavpuruniversity.in

Received: 31.05.2020

Revised: 09.09.2020

Accepted: 22.09.2020

https://orcid.org/0000-0002-9473-2645
ranenduadhikary.rs@jadavpuruniversity.in
https://orcid.org/0000-0002-9473-2645
https://orcid.org/0000-0003-4179-8293
manashkrkundu.rs@jadavpuruniversity.in
https://orcid.org/0000-0003-4179-8293
buddhadeb.sau@jadavpuruniversity.in

	Introduction
	Background and problem definition
	Earlier works
	Our contribution

	Model and definitions
	Algorithm
	Line formation
	Circle formation

	Conclusion

