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Abstract Three-dimensional isogeometric analysis (IGA-FEM) is a modern method

for simulation. The idea is to utilize B-splines or NURBS basis functions for

both computational domain descriptions and engineering computations. Re-

fined isogeometric analysis (rIGA) employs a mixture of patches of elements

with B-spline basis functions and C0 separators between them. This enables

a reduction in the computational cost of direct solvers. Both IGA and rIGA

come with challenging sparse matrix structures that are expensive to generate.

In this paper, we show a hybrid parallelization method using hybrid-memory

parallel machines. The two-level parallelization includes the partitioning of

the computational mesh into sub-domains on the first level (MPI) and loop

parallelization on the second level (OpenMP). We show that the hybrid paral-

lelization of the integration reduces the contribution of this phase significantly.

We compare the multi-frontal solver and alternating direction solver, including

the integration and the factorization phases.
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1. Introduction

The isogeometric analysis (IGA-FEM) introduced by Cottrel et. al. [16] is a new

modern technique for the integration of geometrical modeling within CAD systems

with engineering computations performed in computer-aided engineering (CAE) sys-

tems. The IGA method utilizes B-splines or their rationalized version (NURBS [31])

for both the descriptions of the problem geometry and the engineering simulations.

Isogeometric analysis has multiple applications in shear deformable shell theory [10],

phase field modeling [18], phase-separation simulations [21], wind turbine aerody-

namics [23], incompressible hyper-elasticity [19], turbulent flow simulations [14], and

biomechanics [13, 22]. An alternative approach is to utilize the T-spline basis func-

tions [8, 9]; however, we focus on B-splines and NURBS in this paper.

Refined isogeometric analysis (rIGA) [20] is a new method for solving numerical

problems. It enriches the standard IGA basis functions. Namely, it adds C0 separators

between selected patches of elements. Experiments show that this results in the best

sparsity pattern of a matrix structure, which in turn speeds up the direct solvers.

In this paper, we present a hybrid parallelization of an algorithm for the gen-

eration of element matrices for the rIGA method [20]. This work is an extension of

the distributed memory rIGA described in [30, 33]. We have parallelized the inte-

gration routines of the three-dimensional rIGA code. We are aware of other parallel

FEM packages – some of which supporting adaptive computations for IGA (including

PETIGA [17], a part of PETSc) [4–6]. PETIGA supports the MPI-enabled version

of the quadratures algorithm – namely, the Gauss Legendre and Gauss Lobatto rules.

The hybrid parallelization can be applied to speed up sequential IGA solvers [15],

distributed memory IGA solvers [37], or shared-memory IGA solvers [35]. The hy-

brid parallelization can be applied for both IGA and rIGA codes. Additionally, when

performing the stabilization of isogeometric finite element method codes by using the

residual minimization method (iGRM) [24, 25], we deal with a saddle point prob-

lem formulation (Equation 1), with the Gram matrix G constrained by the problem

matrix B. Both matrices have to be factorized; the presented methodology can also

be applied there. Thus, reducing the factorization costs for iGRM matrices is our

motivation here. [
G B

BT 0

] ∣∣∣∣ru
∣∣∣∣ =

∣∣∣∣ l0
∣∣∣∣ (1)

There are some alternative sequential algorithms for the fast integration of IGA-

-FEM [7,12]. However, all of them employ integration with some number of quadra-

ture points per the elements at some point; thus, the methodology presented here can

also be applied for these alternative integration schemes. Moreover, these alternative

schemes require some regular structures of the integrated functions on the left-hand

and right-hand sides. Our methodology can be applied for arbitrary forcing functions,

even such for which the alternative fast integrations are not possible to perform.
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2. Model problem

In Figure 1, we present the basis functions that are utilized in the exemplary one-

dimensional IGA-FEM and rIGA-FEM setup. The idea of the rIGA method [20] is the

following: it introduces C0 separators between patches of elements. These increase the

sparsity of the global matrix by reducing the overlap between the element matrices.

The two borderline cases are the following: 1) if the C0 separators are present between

each pair of elements, we end up with Lagrange polynomials (standard FEM) where

the matrix is largest but sparsest; and 2) if the C0 separators are removed, the matrix

is the smallest yet the densest. The rIGA matrices are a compromise between the

sparsity and dimension of the global matrix, which, in conjunction with the direct

solvers, provide the optimal computational cost [20]. In our computations in Section 4,

we use 3D rIGA with the optimal placement of C0 separators, which we learned

from [20].

Figure 1. Comparison of basis functions and global matrices utilized

in exemplary one-dimensional IGA, rIGA, and FEM setup

Let us focus on three-dimensional computation over the regular three-dimensional

patch of elements. The basis functions are defined as the tensor products of one-

dimensional basis functions.

Let us consider a stationary elliptic problem in Sobolev space:

H1
0 (Ω) = {u ∈ L2(Ω) : Dαu ∈ L2Ω, |α| ≤ 1, tru = 0 on ∂Ω} (2)

we introduce the classical weak formulation of the Poisson problem in H1
0 (Ω). We

seek u ∈ H1
0 (Ω): ∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx, ∀v ∈ H1
0 (Ω) (3)

We may also express the above problem with abstract notation:

b(u, v) = l(v) : b(u, v) =

∫
Ω

∇u · ∇v dx, l(v) =

∫
Ω

fv dx (4)
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We project the weak problem into finite dimensional subspace Vh ⊂ H1
0 (Ω):∫

Ω

∇uh · ∇vh dx =

∫
Ω

fvh dx, ∀vh ∈ Vh ⊂ H1
0 (Ω) (5)

We utilize B-spline basis functions with C0 separators to discretize the problem above.

When using a multi-frontal solver for IGA-FEM or rIGA-FEM, we must con-

struct a relatively large sparse linear system. A frontal solver is a variant of Gaussian

elimination that can avoid most operations that involve zero terms. A multi-frontal

solver is an improvement on a frontal solver that enables parallel computing. An

alternating direction solver works with an IGA-FEM or rIGA-FEM setup that pos-

sesses a Kronecker product structure. Instead of a large sparse linear system, we can

solve three subsequent 1D small sparse linear systems (in 3D).

3. Parallel OpenMP implementation

The standard algorithm for integration and aggregation in all of the three mentioned

cases (FEM, IGA-FEM, and rIGA-FEM) is identical. In general, the generation of

the matrices for finite element method computations involves nested loops (starting

from the elements) and Gauss integration points through the test basis functions and

to the trial basis functions. Our parallelization of the integration process is based

on the decomposition of loops concerning the local basis functions and Gaussian

quadrature points. Below, we present the OpenMP pseudo-code algorithm that is

responsible for the integration of the element matrices in all of the mentioned FEM,

IGA, and rIGA setups for both the multi-frontal and alternating direction solvers.

For optimal parallel performance, we aggregated multiple loops into a single one.

3.1. Multi-frontal

For use with the multi-frontal solver, we compute the global mass matrix and the

global right-hand-side vector in the following subroutine. All of the computations

are performed in the hybrid memory model with MPI domain decomposition and

OpenMP loop parallelization. We do compute the local element matrices in a fully

independent parallel mode. We aggregate the dimensional variables into small ma-

trices. After the parallel part of the computations, all values are moved to a shared

global sparse matrix in a critical synchronized part where only one thread can enter.

subroutine i n t e g r a t e

use omp lib

! e lement arrays

real (kind = 8) , dimension ( : , : , : , : , : , : ) , allocatable : : e l a r r

real (kind = 8) , dimension ( : , : , : , : , : , : ) , allocatable : : e l r h s

allocate ( e l a r r ( 0 : px , 0 : py , 0 : pz , 0 : px , 0 : py , 0 : pz ) )
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allocate ( e l r h s ( 0 : px , 0 : py , 0 : pz ) )

! lne lem [ x , y , z ] , mine [ x , y , z ] , maxe [ x , y , z ] − range o f e lements &

! a s s o c i a t e d wi th b a s i s f u n c t i o n s a s s i g n e d to t h i s MPI pro ces s

t o t a l s i z e = lnelemx ∗ lnelemy ∗ lne lemz

! common p a r a l l e l l oop over a l l e lements

!$OMP PARALLEL DO &

!$OMP DEFAULT (SHARED) &

!$OMP PRIVATE( ex , ey , ez , ix , e , e l a r r , e l r h s , kx , ky , kz , k , J ) &

!$OMP PRIVATE(W, ax , ay , az , a , ax1 , ay1 , az1 , a1 , r e s v a l u e )

do a l l = 1 , t o t a l s i z e

! map a l l to e lement c o e f f i c i e n t s − ex , ey , ez

ez = modulo( al l −1, lne lemz )

ix = ( al l−ez )/ lne lemz+1

ey = modulo( ix −1, lnelemy )

ex = ( ix−ey )/ lnelemy+1

! f i x d i s t r i b u t e d par t

! mine − range o f e lements a s s o c i a t e d wi th b a s i s f u n c t i o n s &

! a s s i g n e d to t h i s pr oce s s

ex = ex + minex

ey = ey + miney

ez = ez + minez

e = (/ ex , ey , ez /)

! r e s e t l o c a l e lement arrays

e l a r r = 0 . d0

e l r h s = 0 . d0

! Jacobian

J = Jx ( ex )∗ Jy ( ey )∗ Jz ( ez )

! ng [ x , y , z ] − number o f quadrature p o i n t s

! loop over quadrature p o i n t s

do kx = 1 , ngx

do ky = 1 , ngy

do kz = 1 , ngz

k = (/ kx , ky , kz /)

! w e i g t h s

W = Wx( kx )∗Wy( ky )∗Wz( kz )∗J

! l oop over d egr ees o f freedom

! loop over t e s t f u n c t i o n s over element

do ax = 0 , px

do ay = 0 , py

do az = 0 , pz

a = (/ ax , ay , az /)
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! compute v a l u e f o r RHS

! NN[ x , y , z ] − v a l u e s o f ( p+1) nonzero b a s i s f u n c t i o n s &

! at p o i n t s o f Gauss quadrature

r e s v a l u e = J ∗ W ∗ NNx( ax , kx , ex )∗ &

NNy( ay , ky , ey )∗ &

NNz( az , kz , ez )∗ &

RHS fun ( e , a , k )

! en ter computed v a l u e to l o c a l array

e l r h s ( ax , ay , az ) = e l r h s ( ax , ay , az ) + r e s v a l u e

! l oop over t r i a l f u n c t i o n s over element

do ax1 = 0 , px

do ay1 = 0 , py

do az1 = 0 , pz

a1 = (/ ax1 , ay1 , az1 /)

! compute v a l u e f o r Mass Matrix

! NN[ x , y , z ] − v a l u e s o f ( p+1) nonzero b a s i s f u n c t i o n s &

! at p o i n t s o f Gauss quadrature

r e s v a l u e = W ∗ NNx( ax , kx , ex )∗ &

NNy( ay , ky , ey )∗ &

NNz( az , kz , ez )∗ &

NNx( ax1 , kx , ex )∗ &

NNy( ay1 , ky , ey )∗ &

NNz( az1 , kz , ez )

! en ter computed v a l u e to l o c a l array

e l a r r ( ax , ay , az , ax1 , ay1 , az1 ) = &

e l a r r ( ax , ay , az , ax1 , ay1 , az1 ) + r e s v a l u e

enddo

enddo

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$OMP CRITICAL

! en ter l o c a l e lement matrix i n t o g l o b a l sparse matrix here

! on ly one thread can ent er − we are us ing shared g l o b a l matrix

do ax = 0 , px

do ay = 0 , py

do az = 0 , pz

a = (/ ax , ay , az /)

ca l l e n t e r l o c a l r h s 2 g l o b a l ( e l l r h s , a , e , rhs )
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do ax1 = 0 , px

do ay1 = 0 , py

do az1 = 0 , pz

a1 = (/ ax1 , ay1 , az1 /)

ca l l e n t e r l o c a l m t r x 2 g l o b a l ( e l a r r , a , a1 , e ,

Mass mtrx )

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$OMP END PARALLEL DO

end subroutine i n t e g r a t e

3.2. Alternating directions

For use with the alternating direction solver, we first compute a set of three different

mass matrices along px, py, and pz. Since the communication costs would become

dominant, we use only OpenMP loop parallelization and repeat the computations on

each MPI process. We utilize a thread safe sparse matrix data structure.

subroutine i n tegrate Mass Matr ix

use omp lib

! lne lem [ x , y , z ] , mine [ x , y , z ] , maxe [ x , y , z ] − range o f e lements &

! a s s o c i a t e d wi th b a s i s f u n c t i o n s a s s i g n e d to t h i s MPI pro ces s

! ng [ x , y , z ] − number o f quadrature p o i n t s

t o t a l s i z e = ( nelem ) ∗ ( ng ) ∗ (p + 1)∗ ( p + 1)

! common p a r a l l e l l oop over elements , &

! shape f u n c t i o n s , and quadrature p o i n t s

!$OMP PARALLEL DO &

!$OMP DEFAULT(SHARED) &

!$OMP PRIVATE( c , d , e , i , tmp , v a l )

do a l l = 1 , t o t a l s i z e

! l oop over shape f u n c t i o n s over e lements ( p1+1 f u n c t i o n s )

d = modulo( a l l − 1 , p + 1)

tmp = ( a l l − d) / (p + 1)

! l oop over shape f u n c t i o n s over e lements ( p1+1 f u n c t i o n s )

c = modulo(tmp , p + 1)

tmp = (tmp − c ) / (p + 1)

! l oop over Gauss p o i n t s
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i = modulo(tmp , ng ) + 1

! l oop over e lements

e = (tmp − i + 1) / ( ng ) + 1

! NN[ x , y , z ] − v a l u e s o f ( p+1) nonzero b a s i s f u n c t i o n s &

! at p o i n t s o f Gauss quadrature

! W( i ) we igh t f o r Gauss p o i n t i

! J ( e ) j a c o b i a n f o r e lement e

! compute v a l u e

va l = NN( c , i , e ) ∗ NN(d , i , e ) ∗ J ( e ) ∗ W( i )

ca l l add to spa r s e ( sprsmtrx , c , d , e , va l )

enddo

!$OMP END PARALLEL DO

end subroutine i n tegrate Mass Matr ix

We compute the vector of the right-hand-side vectors in the following subroutine.

All of the computations are performed in the hybrid memory model with MPI domain

decomposition and OpenMP loop parallelization. We do compute the local element

matrices in a fully independent parallel mode. We aggregate the dimensional variables

into small matrices. After the parallel part of the computations, all of the values are

moved to the shared global sparse matrix in a critical synchronized part where only

one thread can enter.

subroutine integrate RHS

use omp lib

! e lement

real (kind = 8) , dimension ( : , : , : , : , : , : ) , allocatable : : e l r h s

allocate ( e l r h s ( 0 : px , 0 : py , 0 : pz ) )

! lne lem [ x , y , z ] , mine [ x , y , z ] , maxe [ x , y , z ] − range o f e lements &

! a s s o c i a t e d wi th b a s i s f u n c t i o n s a s s i g n e d to t h i s MPI pro ces s

t o t a l s i z e = lnelemx ∗ lnelemy ∗ lne lemz

! common p a r a l l e l l oop over a l l e lements

!$OMP PARALLEL DO &

!$OMP DEFAULT(SHARED) &

!$OMP PRIVATE(tmp , ex , ey , ez , e , kx , ky , kz , k , J}&
!$OMP PRIVATE(W, ax , ay , az , a , r e s v a l u e , e l a r r )

do a l l =1, t o t a l s i z e

! map a l l to e lement c o e f f i c i e n t s − ex , ey , ez

ez=modulo( al l −1, lne lemz )

ix =(al l−ez )/ lne lemz+1

ey=modulo( ix −1, lnelemy )

ex=(ix−ey )/ lnelemy+1
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! f i x d i s t r i b u t e d par t

! mine − range o f e lements a s s o c i a t e d wi th b a s i s f u n c t i o n s &

! a s s i g n e d to t h i s pr oces s

ex = ex + minex

ey = ey + miney

ez = ez + minez

e = (/ ex , ey , ez /)

! r e s e t l o c a l e lement array

e l r h s = 0 . d0

! Jacobian

J = Jx ( ex )∗ Jy ( ey )∗ Jz ( ez )

! ng [ x , y , z ] − number o f quadrature p o i n t s

! loop over quadrature p o i n t s

do kx = 1 , ngx

do ky = 1 , ngy

do kz = 1 , ngz

k = (/ kx , ky , kz /)

! w e i g t h s

W = Wx( kx )∗Wy( ky )∗Wz( kz )∗J

! l oop over t r i a l f u n c t i o n s over element

do ax = 0 , px

do ay = 0 , py

do az = 0 , pz

a = (/ ax , ay , az /)

! compute v a l u e f o r RHS

! NN[ x , y , z ] − v a l u e s o f ( p+1) nonzero b a s i s f u n c t i o n s &

! at p o i n t s o f Gauss quadrature

r e s v a l u e = J ∗ W ∗ NNx( ax , kx , ex )∗ &

NNy( ay , ky , ey )∗ &

NNz( az , kz , ez )∗ &

RHS fun ( e , a , k )

! en ter computed v a l u e to l o c a l array

e l r h s ( ax , ay , az ) = e l r h s ( ax , ay , az ) + r e s v a l u e

enddo

enddo

enddo

enddo

enddo

enddo

! en ter l o c a l e lement matrix i n t o g l o b a l matrix here

! on ly one thread can en ter − we are us ing shared g l o b a l matrix

!$OMP CRITICAL

do ax = 0 , px
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do ay = 0 , py

do az = 0 , pz

a = (/ ax , ay , az /)

ca l l e n t e r l o c a l r h s 2 g l o b a l ( e l l r h s , a , e , rhs )

enddo

enddo

enddo

!$OMP END CRITICAL

enddo

!$OMP END PARALLEL DO

end subroutine integrate RHS

4. Scalability of parallel integration

In this section, we present the scalability of the parallel integration using a single Linux

cluster node. Namely, the numerical experiments were performed on the shared-

memory node with four Intel R XeonR CPU E7-4860 processors, each possessing

10 physical cores (for a total of 40 cores). We utilize quadratic, cubic, and quartic

B-splines (p = {2, 3, 4}) over a patch of 40× 40× 40 finite elements. In Figures 2–6,

we present strong scalability – with a fixed problem size and a variable number of

processors.
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Figure 2. Execution time in seconds of parallel integration algorithm according to increasing

number of cores. 3D hexahedral element: a) p = 2; b) p = 3; c) p = 4
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Figure 3. Parallel efficiency of parallel integration algorithm. 3D hexahedral element.

Multi-frontal solver: a) p = 2; b) p = 3; c) p = 4
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Figure 4. Parallel efficiency of parallel integration algorithm. 3D hexahedral element.

Alternating direction solver: a) p = 2; b) p = 3
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Figure 5. Parallel speedup of parallel integration algorithm. 3D hexahedral element.

Multi-frontal solver: a) p = 2; b) p = 3; c) p = 4

1

4

6

8

10

12

14

1 4 8 12 16 20 24

S
pe

ed
up

Cores

p=2, Ne=40

a)

1

4

8

12

16

20

1 4 8 12 16 20 24

S
pe

ed
up

Cores

p=3, Ne=40

b)

Figure 6. Parallel speedup of parallel integration algorithm. 3D hexahedral element.

Alternating direction solver: a) p = 2; b) p = 3

In Figure 2, we show the measured execution time. In Figures 5 and 6, we present

speedup s =
Tsingle

Tnproc
. Figures 3 and 4 depict efficiency e = speedup

nproc · 100%. From the

presented experiments, it is implied that our OpenMP integration scales well for up

to 15 cores for the quadratic B-splines and 20 cores for the cubics; for the quartics,

the efficiency grows to 25 cores. A higher number of cores results in an efficiency that

is below 60%. Both the MUMPS and ADS cases deal with the same computational

problems. Distributed memory MPI-based integration presents linear scalability –

the same as that which is presented in [36].
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5. Comparison of integration and solution phases

for hybrid computations

The generation of a system of linear equations is followed by the factorization phase.

Depending on the structure of the matrix and the employed time-integration scheme,

we may end up with a matrix that possesses the Kronecker product structure [24,25];

then, the parallel alternating direction solver can be used (like the one described

in [26]). Alternatively, if the matrix possesses a more complicated sparsity structure,

a frontal or multi-frontal direct solver is required (like MUMPS). In this section, we

compare the parallel integration time with the solution performed by the MUMPS par-

allel direct solver [1–3] for both the IGA and rIGA phases. For the other (the parallel

alternating direction solver), the factorization time is negligible with the integration

time [26]. We have executed our experiments on the Prometheus [32] Linux cluster

from ACK Cyfronet [11]. In Figure 9, we report the execution time of the parallel

MUMPS executed for both the IGA and rIGA cases for a patch of 64 × 64 × 64

elements with quadratic and cubic B-splines as well as for a patch of 40 × 40 × 40

elements for quartic B-splines.

Using PAPI [34], we measured both the time and FLOPS (floating point op-

eration count) for the different parts of solving IGA-FEM problems with different

mesh sizes and polynomial orders (namely, for the integration and direct solver parts).

These computations were performed by using serial versions of the algorithms. A com-

parison of the proportions for the different mesh sizes and polynomial orders in cost

for the multi-frontal and alternating direction approaches are presented in Figures 7

(FLOPS) and 8 (time). In Figure 7, we present the proportion of the integration

of FLOPS to the total computational cost with the MUMPS and ADS solvers, re-

spectively (namely, to determine what part of the total FLOPS. In Figure 8, we

present the proportion of the integration time to the total computational cost with

the MUMPS and ADS solvers, respectively (namely, to determine part of the total

time the integration takes).
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Figure 7. Proportion of integration of FLOPS to total computational cost with: a) MUMPS;

b) ADS solvers, respectively
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Figure 8. Proportion of integration time to total computational cost with: a) MUMPS;

b) ADS solvers, respectively
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Figure 9. Scalability of parallel MUMPS solver for cubic B-splines for IGA and rIGA

computations: a) p = 2; b) p = 3; c) p = 4

First, let us consider the sequential integration and sequential MUMPS solver.

The sequential integration takes around 5 seconds for the quadratic B-splines, 50

seconds for the cubic B-splines, and 250 seconds for the quartic B-splines for a patch

of 40 × 40 × 40. The solution phase with the MUMPS solver takes 1,000 seconds

for the quadratic B-splines over a patch of 64 × 64 × 64 elements (so, the sequential

integration would take 5 · 4 = 20 seconds on the same-sized patch). For the cubics, this

takes 6,000 seconds over the same-sized patch (so, the sequential integration would

take 50 · 4 = 200 seconds on the same-sized patch), and for the quartics, it takes
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1,000 seconds on the smaller 40× 40× 40 patch (and the sequential integration takes

250 seconds here). The sequential integration phase is 2% of the total execution time

for the quadratic B-splines, 3% of the total execution time for the cubics, and 25%

of the total execution time for the quartics. Thus, for higher-order B-splines, the

integration is a significant part of the solution even when we use expensive direct

solvers.

Next, we investigate the use of a parallel MUMPS solver with centralized input.

In this case, the integration is performed on a single Linux cluster node, and the matrix

is distributed internally by the MUMPS solver. The parallel MUMPS solver takes

50 seconds for the quadratic B-splines, 200 seconds for the cubics, and 200 seconds for

the quartics when using 16 processors (nodes) – see Figure 9. Performed on the host

processor when submitting the matrix to MUMPS, the parallel integration reduces

this time down to 1 second for the quadratic B-splines (2% of the total execution

time), 5% for the cubics (10% of the total execution time), and 20 seconds for the

quartics (30% of the total execution time) using 12 cores. The OpenMP parallelization

does not suffice to significantly reduce the integration cost.

Finally, we assume the use of the parallel MUMPS solver with distributed entries.

When we apply the domain decomposition paradigm [27,29], the parallel integration

is affected by both the reduction of the number of elements per single processor and

the utilization of multiple cores. The resulting hybrid scalability (with increasing

numbers of compute nodes and cores per node) of the integration is presented in

Figure 10.
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Figure 10. Scalability of hybrid integration for rIGA solver: a) p = 2; b) p = 3; c) p = 4

We conclude that the hybrid parallelization of the rIGA computations with the

MUMPS solver reduces the integration below 1% of the solver time. The execution
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time goes down to 40 seconds for the solver call and to less than 0.1 seconds for the

integration phase for the quadratic B-splines. It also goes down to 150 seconds for

the solver and to less than 1 second for the integration for the cubics as well as down

to 200 seconds for the solver and to less than 1 second for the integration for the

quartics.

6. Trace theory description of solver algorithm

In this section, we present a dependency graph that results from a trace theory analysis

for the alternating direction solver, while for the multi-frontal solver, the trace theory

decomposition is presented in Section 6.3 of [28]. As mentioned before, one of the

versions of the hybrid memory parallel direct solver that can be used for rIGA is the

alternating direction solver (ADS) [26,36]. This will happen if the matrix that results

from the time integration scheme has a Kronecker product structure like the one

in [24,25]. In this chapter, we provide an algorithm and its parallel model for a hybrid

memory cluster – namely, a cube of processors. In Figure 11, we present a trace

theory-based graph of the tasks as well as the dependencies between them.

Initialization First cycle

RHS Gather LHS Factorization

Second cycle
... 

... 

Solve Scatter Reorder Gather

... 

... 

... 

  

Figure 11. Activity and communication for cluster of 8 = 2×2×2 nodes with two processors

each. Inscriptions above arrows indicate stages, and inscriptions below describe phases.

Nodes are marked with rectangles, while circles represent processors. Active and passive

processors are represented with colors and white, respectively
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The algorithm can be presented in the following steps. Each substep is described

in detail below.

1. Initialization

2. First cycle. Gather each row of processors into OY Z face of the processors.

Solve NyNz 1D problems with right-hand side of size Nx. Scatter results and

reorder right-hand side.

3. Second cycle. Gather each row of processors into OXZ face of the processors.

Solve NxNz 1D problem with right-hand side of size Ny. Scatter results and

reorder right-hand side.

4. Third cycle. Gather each row of processors into OXY face of the processors.

Solve NxNy 1D problem with right-hand side of size Nz. Scatter results and

reorder right-hand side.

6.1. Initialization

The initialization consists of dividing a grid into pieces and mapping them onto pro-

cessors that will integrate them. Due to the lack of dependence between the individual

right-hand sides of the equations, hybrid memory parallel integration that utilizes all

of the available processors could be used. This uses both MPI (distributed memory)

and OpenMP (shared memory).

6.2. Each of three cycles

Each of the three cycles corresponds to a division along one of the directions and

consists of six phases:

1. Gather – collecting the results from each row of processors on one of the cube

walls. This stage can be imagined as placing the processor cube with one of the

walls in front of the observer. In this way, the observer sees only one processor

from each row (the one to which the values are transferred). At this stage,

only the visible wall of processors will work. This is performed using MPI to

increase the amount of data available on one node and to enable left-hand-site

calculations.

2. LHS – generation of left-hand side. Each wall processor performs the same calcu-

lations, as it is faster than performing calculations on different nodes in parallel

and sending out the results. The parallelization of the work on one node is per-

formed by using OpenMP. All of the processors of a given node must exit before

the factorization stage begins.

3. Factorization – LU or Cholesky decomposition. Again, redundant calculations

are better than using parallelism (this is mainly due to the large amount of

time needed to send the results). The parallelization of the work on one node is

also performed by using OpenMP. Similar to the previous phase, each processor

within the node must complete its work before it starts to solve the system of

equations with multiple right-hand-side vectors.
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4. Solve – repeatedly applying the factorized left-hand-side vectors to the subse-

quent right-hand-side vectors (within one node). Again, the parallelism of the

work on one node here is performed by using OpenMP. It is very important for

all processors to finish before sending the data.

5. Scatter – the distribution of the results to all cube processors. We use MPI to

send the data and enable the reorder.

6. Reorder – changing the splitting direction.

The gather and scatter phases were implemented by using MPI, while the LHS, solve,

and factorization phases were based on OpenMP.

7. Conclusions

In the case of sequential rIGA computations with a direct solver, the integration phase

becomes a significant factor of the solution time; namely, around 25% on moderately

sized grids. In this paper, we presented the scalability of parallel rIGA integration

as compared to the scalability of the the parallel MUMPS direct solver. The ob-

tained results in the shared memory show good strong scalability for up to 15 cores

for quadratic B-splines, up to 20 cores for cubics, and up to 20 cores for quartics.

The parallel integrator has been obtained through OpenMP parallelization of the se-

quential 3D rIGA code. The application of the domain decomposition paradigm and

OpenMP parallel implementation reduces the integration cost below 1% of the total

execution time. This method can be applied for iGRM simulations – separately for

the creation of Gramm and problem matrices.

Acknowledgements

The research presented in this paper was partially supported by National Science Cen-

ter, Poland – Grant No. 2017/26/M/ST1/00281.

References

[1] Amestoy P.R., Duff I.S., L’Excellent J.Y.: Multifrontal parallel distributed sym-

metric and unsymmetric solvers. Computer Methods in Applied Mechanics and

Engineering, vol. 184, pp. 501–520, 2000.

[2] Amestoy P.R., Duff I.S., L’Excellent J.Y., Koster J.: A Fully Asynchronous Mul-

tifrontal Solver Using Distributed Dynamic Scheduling. SIAM Journal of Matrix

Analysis and Applications, vol. 23(1), pp. 15–41, 2001.

[3] Amestoy P.R., Guermouche A., L’Excellent J.Y., Pralet S.: Hybrid schedul-

ing for the parallel solution of linear systems. Parallel Computing, vol. 32,

pp. 136–156, 2006.



Comparison of multi-frontal and alternating direction parallel hybrid memory. . . 437

[4] Balay S., Abhyankar S., Adams M.F., Brown J., Brune P., Buschelman K.,

Dalcin L., Dener A., Eijkhout V., Gropp W.D., Karpeyev D., Kaushik D.,

Knepley M.G., May D.A., McInnes L.C., Mills R.T., Munson T., Rupp K.,

Sanan P., Smith B.F., Zampini S., Zhang H., Zhang H.: PETSc Web page,

2019. https://www.mcs.anl.gov/petsc.

[5] Balay S., Abhyankar S., Adams M.F., Brown J., Brune P., Buschelman K.,

Dalcin L., Dener A., Eijkhout V., Gropp W.D., Karpeyev D., Kaushik D.,

Knepley M.G., May D.A., McInnes L.C., Mills R.T., Munson T., Rupp K.,

Sanan P., Smith B., Zampini S., Zhang H., Zhang H.: PETSc Users Manual,

2020. https://www.mcs.anl.gov/petsc.

[6] Balay S., Gropp W.D., McInnes L.C., Smith B.F.: Efficient Management of

Parallelism in Object Oriented Numerical Software Libraries. In: Arge E.,

Bruaset A.M., Langtangen H.P. (eds.), Modern Software Tools for Scientific Com-

puting, pp. 163–202, Springer Science+Business Media, New York, 1997.
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