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Abstract In this paper, we use the alternating direction method for isogeometric finite

elements to simulate transient problems. Namely, we focus on a parabolic

problem and use B-spline basis functions in space and an implicit time-marching

method to fully discretize the problem. We introduce intermediate time-steps

and separate our differential operator into a summation of the blocks that act

along a particular coordinate axis in the intermediate time-steps. We show

that the resulting stiffness matrix can be represented as a multiplication of

two (in 2D) or three (in 3D) multi-diagonal matrices, each one with B-spline

basis functions along the particular axis of the spatial system of coordinates. As

a result of these algebraic transformations, we get a system of linear equations

that can be factorized in a linear O(N) computational cost at every time-step of

the implicit method. We use our method to simulate the heat transfer problem.

We demonstrate theoretically and verify numerically that our implicit method is

unconditionally stable for heat transfer problems (i.e., parabolic). We conclude

our presentation with a discussion on the limitations of the method.
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1. Introduction

The alternating directions implicit method (ADI) was first introduced in [4,11,31,33]

to deal with finite-difference simulations for time-dependent problems. The method

is currently used as a solution for a wide class of problems [18, 19]. In the ADI

method for finite-difference simulations, the partial differential equations (PDE) are

first discretized in space using spatial stencil and then in time using intermediate

time-steps. For example, let us consider the heat equation in two dimensions:

du

dt
−∆u = f (1)

with either Dirichlet or Neumann boundary conditions. We now discretize it using

central differences with respect to the x and y directions:

du

dt
− ∂2u

∂x2
− ∂2u

∂y2
= f (2)

du

dt
− ui−1,j − 2ui,j + ui+1,j

h2
− ui,j−1 − 2ui,j + ui,j+1

h2
= f (3)

and the ADS method introduces an intermediate time step:

ut+0.5
i,j − uti,j

τ/2
−
ut+0.5
i−1,j − 2ut+0.5

i,j + ut+0.5
i+1,j

h2
=
uti,j−1 − 2uti,j + uti,j+1

h2
+ f t

ut+1
i,j − u

t+0.5
i,j

τ/2
−
ut+1
i,j−1 − 2ut+1

i,j + ut+1
i,j+1

h2
=
ut+0.5
i−1,j − 2ut+0.5

i,j + ut+0.5
i+1,j

h2
+ f t+0.5

(4)

where τ is the time-step size, and f t, f t+0.5 denote the forcing term in time-step t

and in the middle between steps t and t+ 1, respectively. The resulting two systems

of linear equations are tridiagonal and can be solved with a linear computational cost.

In this paper, we apply the above approach to simulations using isogeometric

analysis (IGA) [1,8]. The main idea of IGA is to apply B-splines or NURBS [32] basis

functions in finite element simulations. It has multiple applications in time-dependent

simulations, including phase-field models [9, 10], phase-separation simulations with

an application to cancer growth simulations [13,14], wind turbine aerodynamics [24],

incompressible hyper-elasticity [12], turbulent flow simulations [6], the transport of

drugs in cardiovascular applications [23], or blood flow simulations and drug transport

in artery simulations [3, 5].

An alternating direction solver (ADS) is a fast linear solver that exploits the

Kronecker product structure of the matrix that arises in some finite element simu-

lations. It was recently applied [15–17] for a fast solution for the isogeometric L2

orthogonal projection onto the finite element space of B-splines. There, the authors

solved a projection problem discretized with a tensor product basis comprised of basis

functions of the following form:

Bi1,...,id(x1, . . . , xd) = Bx1
i1

(x1) · · ·Bxd
id

(xd) (5)

where Bx1
i1

(x), . . . , Bxd
id

(x) denote one-dimensional B-spline basis functions.
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The direction-splitting schemes deliver a fast inversion method for the spatial

discretization that is obtained by grouping the one-dimensional B-splines together

along particular spatial axes, assuming that the basis functions have a tensor product

structure (as Figure 1 sketches). In this case, we can index tensor product basis

functions using pairs (in 2D) of indices of one-dimensional basis functions; e.g.,

Bi,j(x, y) = Bxi (x)Byj (y) (6)

For the purpose of visualizing the matrices and vectors in space that are spanned by

this basis, such double indices can be linearized by ordering them lexicographically.

The Gram (mass) matrix of B-spline basis on 2D domain Ω = Ωx×Ωy can be expressed

as follows:

M(i,j)(k,l) = (Bi,j , Bk,l) =

∫
Ω

Bi,jBk,l dΩ =

∫
Ω

Bxi (x)Byj (y)Bxk (x)Byl (y) dΩ

=

∫
Ω

(BiBk)(x) (BjBl)(y) dΩ =

(∫
Ωx

BiBk dx

)(∫
Ωy

BjBl dy

)
=Mx

ikM
y
jl (7)

where (·, ·) = (·, ·)L2(Ω). In other words, Gram matrixM =Mx⊗My is the Kronecker

product of two multi-diagonal matrices with the corresponding structure of a mass

matrix build from one-dimensional B-spline basis functions. Such a matrix can be

factorized in a linear computational cost (see Appendix B).

Figure 1. Tensor product structure of quadratic B-spline basis functions, with two exemplary

basis functions presented

This idea can be directly applied to speed up simulations using explicit time dis-

cretizations, since the simulation of dynamics using the explicit time-stepping scheme

can be expressed as a sequence of isogeometric L2 projections in the following manner.
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Given a time-dependent problem with spatial operator L and Dirichlet or Neumann

boundary conditions
du

dt
− Lu = f (8)

we discretize time using the explicit Euler scheme and obtain

ut+1 = ut + τ Lut + τ f (9)

where τ is the time-step size. Then, we pass to the weak formulation by multiplying

the above equation by test function v, which leads to

(ut+1, v) = (ut + τ Lut + τ f, v) (10)

where ut+1 =
∑
i,j a

t+1
i,j B

x
i;p(x)Byj;q(y) and ut =

∑
i,j a

t
i,jB

x
i;p(x)Byj;q(y). Thus, each

time-step is equivalent to computing an orthogonal L2 projection of the right-hand

side of Equation (9), which can be done in linear computational cost with respect to

the number of degrees of freedom in the system.

The method was used for performing fast simulations of dynamics with explicit

time discretization [20, 25–27, 29, 34], since the explicit time integration scheme with

isogeometric discretization is equivalent to the sequence of isogeometric L2 orthogonal

projections, which can be solved using the direction splitting of the later kind.

In this paper, we extend this methodology to dynamics simulations with im-

plicit time discretization by collecting different terms as a sequence of multi-diagonal

inversions.

The structure of the paper is as follows. In Section 2, we start from a description

of the direction splitting for the Laplace operator. Next, in Section 3, we present

the numerical results for the two-dimensional model heat transfer problem. Section 4

derives the proof of unconditional stability for our direction-splitting method. We

conclude the paper in Section 5. We provide two appendices with some Lemmas used

for proving the unconditional stability of the scheme and with the general description

of the alternating directions solver.

2. Direction splitting for Laplace operator

We express this parabolic system as a sequence of implicit time-steps, which is

du

dt
− Lu = f (11)

where, for the sake of simplifying the discussion, we assume that the coefficients are

constant, the domain is the unit is square, and the differential operator is separable;

that is, L = Lx+Ly where Lα contains spatial derivatives only with respect to α (e.g.,

Laplacian, where L = Lx +Ly = ∂2u
∂x2 + ∂2u

∂y2 ). Furthermore, we impose either uniform
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Dirichlet or zero Neumann boundary conditions. Thus, to apply the alternating

direction implicit scheme, we introduce a sequence of intermediate time-steps, which is

ut+0.5 − ut
τ/2

− Lxut+0.5 − Lyut = ft (12)

ut+1 − ut+0.5

τ/2
− Lxut+0.5 − Lyut+1 = ft+0.5 (13)

We rewrite these equations by collecting the known variables on the right-hand side

as follows:

ut+0.5 −
τ

2
Lxut+0.5 = ut +

τ

2
Lyut +

τ

2
ft,

ut+1 −
τ

2
Lyut+1 = ut+0.5 +

τ

2
Lxut+0.5 +

τ

2
ft+0.5

(14)

Now, we transform the problem into a weak form multiplying by test functions and

applying integration by parts to get the following weak forms:

(v, ut+0.5) +
τ

2

(
∂v

∂x
,
∂ut+0.5

∂x

)
= (v, ut)−

τ

2

(
∂v

∂y
,
∂ut
∂y

)
+
τ

2
(v, ft) (15)

(v, ut+1) +
τ

2

(
∂v

∂y
,
∂ut+1

∂y

)
= (v, ut+0.5)− τ

2

(
∂v

∂x
,
∂ut+0.5

∂x

)
+
τ

2
(v, ft+0.5) (16)

where the resulting boundary terms vanish due to the boundary conditions.

In the sequel, we limit the discussion to the first of the above equations; the other

can be treated in a similar fashion.

Definition 1. Let V Nx be the space of functions f ∈ L2(Ω) such that distributional

derivative ∂f/∂x is a regular distribution and ∂f/∂x ∈ L2(Ω), which is

V Nx =

{
v ∈ L2(Ω):

∂v

∂x
∈ L2(Ω)

}
(17)

and let V Dx be its subspace of functions vanishing on the boundary:

V Dx = V Nx ∩H1
0 (Ω) (18)

If we consider a problem with Neumann boundary conditions, let Vx = V Nx ; otherwise,

Vx = V Dx . Space Vy can be defined analogously.

We end up with the following variational problem: Given w ∈ H2(Ω), find u ∈ Vx
such as

b(v, u) = l(v) ∀v ∈ Vx

b(v, u) = (v, u) +
τ

2

(
∂v

∂x
,
∂u

∂x

)
l(v) = (v, w) +

τ

2

(
v,
∂2w

∂y2

)
+
τ

2
(v, f) (19)
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We have integrated the right-hand-side term back by parts to keep the continuity of

the linear form. This is necessary since, due to the definition of Vx, test function v

is not required to possess a weak derivative in the y direction. The assumption that

w ∈ H2(Ω) requires that the initial condition satisfies u(x, 0) ∈ H2(Ω) as well.

Definition 2. Let τ > 0. For u, v ∈ Vx, let

(v, u)Vx
= (v, u) +

τ

2

(
∂v

∂x
,
∂u

∂x

)
(20)

It is a scalar product that induces the following norm:

‖u‖2Vx
= ‖u‖2L2 +

τ

2

∥∥∥∥∂u∂x
∥∥∥∥2

L2

(21)

Lemma 1. Space Vx with norm ‖·‖Vx
is a Hilbert space.

Proof. Let {un} be a Cauchy sequence in Vx. By the definition of the norm of Vx,

{un} and {∂un/∂x} are Cauchy sequences in L2(Ω); so, by its completeness, there

exist L2 functions u, ux such that un → u and ∂un/∂x → ux in the sense of the L2

norm. Let φ ∈ D(Ω) be a test function in the sense of the theory of distributions. We

have (
u,
∂φ

∂x

)
= lim
n→∞

(
un,

∂φ

∂x

)
= − lim

n→∞

(
∂un
∂x

, φ

)
= −(ux, φ)

since φ ∈ L2(Ω), so ux is a distributional derivative of u and, thus, u ∈ Vx. Therefore,

Vx is complete.

Theorem 1. Bilinear form

b(v, u) = (v, u) +
τ

2

(
∂v

∂x
,
∂u

∂x

)
(22)

defined on Vx is coercive.

Proof. We have

b(u, u) = ‖u‖2L2 +
τ

2

∥∥∥∥∂u∂x
∥∥∥∥2

L2

= ‖u‖2Vx

(23)
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Theorem 2. Abstract variational problem: for a given continuous linear func-

tional l ∈ V ′x, find u ∈ Vx such that

b(u, v) = l(v) ∀v ∈ Vx (24)

is well-posed.

Proof. Bilinear form b is obviously continuous and is coercive due to Theorem 1. By

the Lax-Milgram theorem, the variational problem is well-posed.

We discretize the above abstract variational problem using a finite element

space Vh ⊂ Vx comprised of linear combinations of the tensor product of B-spline

basis functions of order p, which is

Vh = span {Ni,j}i,j Ni,j(x, y) = Bxi (x)Byj (y) (25)

where Bxi and Byj are basis B-spline functions in the x and y directions, respectively.

Let us first focus on System (15). We approximate ut+0.5 =∑
k,l a

t+0.5
k,l Bxk (x)Byl (y) and test with v = Bxi (x)Byj (y). Our previous sub-step so-

lution is also given as linear combination ut =
∑
k,l a

t
k,lB

x
k (x)Byl (y).

∑
k,l

at+0.5
k,l

[(
Bxk (x)Byl (y), Bxi (x)Byj (y)

)
+
τ

2

(
∂(Bxk (x)Byl (y))

∂x
,
∂(Bxi (x)Byj (y))

∂x

)]
=

∑
k,l

atk,l

[(
Bxk (x)Byl (y), Bxi (x)Byj (y)

)
− τ

2

(
∂(Bxk (x)Byl (y))

∂y
,
∂(Bxi (x)Byj (y))

∂y

)]
+

τ

2
(ft, B

x
i (x)Byj (y))

Using the fact that
∂Bx

k (x)
∂y =

∂By
k(y)

∂x = 0, we obtain

∑
k,l

at+0.5
k,l

[(
Bxk (x)Byl (y), Bxi (x)Byj (y)

)
+
τ

2

(
∂Bxk (x)

∂x
Byl (y),

∂Bxi (x)

∂x
Byj (y)

)]
=

∑
k,l

atk,l

[(
Bxk (x)Byl (y), Bxi (x)Byj (y)

)
− τ

2

(
Bxk (x)

∂Byl (y)

∂y
,Bxi (x)

∂Byj (y)

∂y

)]
+

τ

2
(ft, B

x
i (x)Byj (y))
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We can separate the directions and use the fact that the y terms are identical, which

can be expressed as a Kronecker product:∑
k,l

at+0.5
k,l

[
(Bxk (x), Bxi (x)) +

τ

2

(
∂Bxk (x)

∂x
,
∂Bxi (x)

∂x

)] (
Byl (y), Byj (y)

)
=

∑
k,l

atk,l

[(
Bxk (x)Byl (y), Bxi (x)Byj (y)

)
− τ

2

(
Bxk (x)

∂Byl (y)

∂y
,Bxi (x)

∂Byj (y)

∂y

)]
+

τ

2
(ft, B

x
i (x)Byj (y))

These matrices are multi-diagonal and can be factorized in a linear O(N) cost. An

identical procedure yields the following:

∑
k,l

at+1
k,l (Bxk (x), Bxi (x))

[(
Byl (y), Byj (y)

)
+
τ

2

(
∂Byk(y)

∂y
,
∂Byj (y)

∂y

)]
=

∑
k,l

at+0.5
k,l

[(
Bxk (x)Byl (y), Bxi (x)Byj (y)

)
− τ

2

(
Bxk (x)

∂Byl (y)

∂x
,Bxi (x)

∂Byj (y)

∂x

)]
+

τ

2
(ft+0.5, B

x
i (x)Byj (y))

Thus, we obtain an alternating direction implicit IGA discretization with a solu-

tion cost of O(N).

3. Numerical results for Laplace operator

We test the alternating direction implicit solver that we propose for the heat transfer

problem with zero forcing over a two-dimensional mesh of 64 × 64 elements using

quadratic B-spline basis functions. The initial state is a ball of heat concentrated in

the center of the domain given by

u(x, 0) = φ(min{1, 12 ‖x− (0.5, 0.5)‖2}) (26)

φ(s) = (1− s)2(1 + s)2 (27)

and we employ zero Neumann boundary conditions. Due to the boundary conditions

and zero forcing, the steady state solution is a constant function with a value equal

to the average of the initial state; i.e.,

lim
t→∞

u(·, t) =
1

|Ω|

∫
Ω

u(x, 0) dx =
1

45
≈ 0.02 (28)

We use time-step sizes of 10−1, 10−2, 10−3, and 10−4. We plot the L2 norm of

the solution in Figure 2. From the plots, we can conclude that the solutions always
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converge to the same final solution even if it is oscillating at the beginning for large

time-step sizes (like for 10−1).

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 0.05 0.1 0.15 0.2 0.25 0.3

time [s]

1e-4
1e-3
1e-2
1e-1

1e-4

1e-1

1e-2

1e-3

Figure 2. L2 norm of solution for heat transfer simulations with τ = 0.1, 0.01, 0.001,

and 0.0001 for mesh dimensions of 642 elements

This is illustrated in Figure 3, where we employ the largest time-step (10−1).

Although the quality of the intermediate solutions is very poor for such a large time-

step (as expected), the equilibrium solution is ultimately approximated fairly well.

We will prove the asymptotic stability of the scheme; thus, the transient local growth

of the solution is not discarded. However, these local phenomena disappear as time

progresses.

a) b) c)

Figure 3. Implicit ADS scheme with time-step 10−1: a) start of oscillations; b) oscillations;

c) final state
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Snapshots from the simulation with a time-step size of 10−4 without any oscilla-

tions are presented in Figure 4. These numerical results are obtained for a time-step

size of 10−3.

a) b) c)

d) e) f)

Figure 4. Implicit ADS scheme with time-step 10−3: a) start of simulation; b) time t = 0.003;

c) time t = 0.006; d) time t = 0.008; e) time t = 0.016; f) final state

Alternative approach for direction splitting is discussed in paper [28], where we

focus on hyperbolic wave propagation problems; however, the problem matrix is ap-

proximated as a Kronecker product of (Mx + αSx) ⊗ (My + αSY ) (with mass and

stiffness matrices) where the higher-order terms with respect to α are neglected. This

method also results in an unconditionally stable scheme and a linear computational

cost solver. However, the method presented in this paper does not approximate the

matrix – it proposes the splitting of the whole system.

4. Stability analysis for heat transfer problem

Let us consider the heat equation on 2D domain Ω = Ωx × Ωy

∂u

∂t
−∆u = f (29)
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Assuming zero Dirichlet boundary conditions, the weak formulation is given by(
∂u

∂t
, v

)
= −(∇u,∇v) + (v, f) (30)

Let Bij(x, y) = Bxi (x)Byj (y) be the standard tensor product basis. We seek a solution

of form

u(x, t) =
∑

uij(t)Bij(x)

We will analyze the spectral radius of the step operator for both the explicit Euler

method and our implicit method. The method is stable when the spectral radius is

less than 1 [21].

Let us denote

M =
[
(Bij ,Bkl)L2(Ω)

]
K =

[
(∇Bij ,∇Bkl)L2(Ω)

]
F =

[
(f,Bij)L2(Ω)

]
(31)

and

Mx =
[
(Bxi ,Bxk)L2(Ωx)

]
Kx =

[
(∂xBxi , ∂xBxk)L2(Ωx)

]
(32)

and similarly for My, Ky. These matrices are symmetric and positive definite as

Gram matrices of certain sets of linearly independent functions. Under the simple

geometrical mapping, we assume that we can express the first two equations of (31)

in terms of (32) as

M = Mx ⊗My K = Kx ⊗My + Mx ⊗Ky (33)

For simplicity, let us consider the case where forcing term f is time-independent,

and we can assume f = 0. In the implicit scheme, we have(
un+ 1

2
, v
)

+
τ

2

(
∂un+ 1

2

∂x
,
∂v

∂x

)
= (un, v)− τ

2

(
∂un
∂y

,
∂v

∂y

)
(un+1, v) +

τ

2

(
∂un+1

∂y
,
∂v

∂y

)
=
(
un+ 1

2
, v
)
− τ

2

(
∂un+ 1

2

∂x
,
∂v

∂x

) (34)

which results in the following algebraic relationships:(
M +

τ

2
Kx ⊗My

)
un+ 1

2
=
(
M− τ

2
Mx ⊗Ky

)
un(

M +
τ

2
Mx ⊗Ky

)
un+1 =

(
M− τ

2
Kx ⊗My

)
un+ 1

2

(35)

Since M = Mx ⊗My,[(
Mx +

τ

2
Kx

)
⊗My

]
un+ 1

2
=
[
Mx ⊗

(
My −

τ

2
Ky

)]
un[

Mx ⊗
(
My +

τ

2
Ky

)]
un+1 =

[(
Mx −

τ

2
Kx

)
⊗My

]
un+ 1

2

(36)
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Let us denote
S+
x = Mx +

τ

2
Kx S−x = Mx −

τ

2
Kx

S+
y = My +

τ

2
Ky S−y = My −

τ

2
Ky

(37)

Then, we can write [
S+
x ⊗My

]
un+ 1

2
=
[
Mx ⊗ S−y

]
un[

Mx ⊗ S+
y

]
un+1 =

[
S−x ⊗My

]
un+ 1

2

(38)

We can finally combine the two steps:

un+1 =
[
Mx ⊗ S+

y

]−1 [
S−x ⊗My

] [
S+
x ⊗My

]−1 [
Mx ⊗ S−y

]
un (39)

which can be simplified by using the properties of the Kronecker product:

• (A⊗B)
−1

= A−1 ⊗B−1

• (A⊗B) (C⊗D) = (AC)⊗ (BD) whenever the products make sense.

Using these, we conclude that[
Mx ⊗ S+

y

]−1 [
S−x ⊗My

] [
S+
x ⊗My

]−1 [
Mx ⊗ S−y

]
=[

M−1
x ⊗

(
S+
y

)−1
] [

S−x ⊗My

] [(
S+
x

)−1 ⊗M−1
y

] [
Mx ⊗ S−y

]
=[

M−1
x ⊗

(
S+
y

)−1
] [

S−x
(
S+
x

)−1 ⊗ I
] [

Mx ⊗ S−y
]

=[
M−1

x ⊗
(
S+
y

)−1
] [

S−x
(
S+
x

)−1
Mx ⊗ S−y

]
=[

M−1
x S−x

(
S+
x

)−1
Mx

]
⊗
[(

S+
y

)−1
S−y

]
(40)

Since the eigenvalues of A⊗B are products of eigenvalues of A and B, we only seek

to determine the eigenvalues of the above two matrices. The first matrix is similar

to S−x (S+
x )
−1

and, thus, has the same eigenvalues. Furthermore, AB and BA al-

ways have the same spectrum, so S−x (S+
x )
−1

has the same eigenvalues as (S+
x )
−1

S−x .

By Lemma 3 (see Appendix A), the eigenvalues λ of (S+
x )
−1

S−x and
(
S+
y

)−1
S−y sat-

isfy |λ| < 1, so the full matrix of the single step has a spectral radius of less than 1.

Thus, the implicit ADS scheme is unconditionally stable.

5. Conclusion

In this paper, we introduce mixed space-time discretizations based on the alternating

direction method for isogeometric discretizations. We introduce intermediate time-

steps to use the Kronecker product structure to invert in linear cost of a sequence of

semi-implicit discretizations over time. The resulting isogeometric implicit alternating

direction method is unconditionally stable for the heat transfer problem in 2D with

an arbitrary time-step size. This was verified theoretically and numerically.
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Extending the presented method to a more general context poses some challenges.

The Kronecker product structure of the matrix required by the alternating directions

solver imposes some rather considerable restrictions on the geometry of the domain

as well as the problems themselves. Although it is possible to extend our approach

to domains that can be parameterized in such a way that the Jacobian of the map

is a product of univariate functions, applying it on arbitrarily complicated domains

remains an open problem. For similar reasons, the arbitrary variable diffusivity coef-

ficient in the heat equation can break the Kronecker product structure. Nevertheless,

the proposed method (when applicable) can greatly decrease computational costs

while retaining good stability properties.
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A. Lemmas

Lemma 2. Let A, B be symmetric and positive-semidefinite. Then, AB has non-

negative eigenvalues.

Proof. Exercise 7.2.P21 in [22].

Lemma 3. Let A, B be symmetric and positive-definite. For each eigenvalue λ

of (A + B)
−1

(A−B), we have |λ| < 1.

Proof. Let λ 6= 0 be such an eigenvalue, and let x be the corresponding eigenvector.

Then,

(A + B)
−1

(A−B) x = λx (41)

and so
(A−B) x = λ (A + B) x

(1− λ)Ax = (1 + λ)Bx
(42)

Since B is positive-definite, then it is nonsingular; thus, Bx 6= 0. Thus, λ 6= 1.

Multiplying by xT on the left gives

xTAx =
1 + λ

1− λ
xTBx (43)

Since A and B are positive definite, both products are positive; thus, λ ∈ R and

1 + λ

1− λ
> 0 =⇒ λ2 < 1 ⇐⇒ |λ| < 1 (44)
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B. Linear computational cost solver

Gram matrix M =Mx ⊗My (7) is the Kronecker product of two Gram matrices of

the one-dimensional B-spline basis functions.

These one-dimensional mass matrices have entries that correspond to the inte-

grals of the multiplication of the one-dimensional B-spline basis functions. These

B-spline basis functions of an order of p have local support over p + 1 elements, so

one-dimensional mass matrices Mx, My have a banded structure.

Mx
ij = 0 ⇐⇒ |i− j| > p (45)

Mx
11 Mx

12 Mx
13 Mx

14 0 0 · · · 0

Mx
21 Mx

22 Mx
23 Mx

24 Mx
25 0 · · · 0

Mx
31 Mx

32 Mx
33 Mx

34 Mx
35 Mx

36 · · · 0
...

...
...

...
...

...
...

0 0 . . . . . . Mx
n(n−3) Mx

n(n−2) Mx
n(n−1) Mx

nn


where Mx

ij =
(
Bxi , B

x
j

)
. The same applies for My

ij .

The Kronecker product structure of the matrix allows us to perform the following

trick. Rather than solving a 2D problem, we can solve two one-dimensional problems

with multiple right-hand sides.
Mx

11 Mx
12 Mx

13 Mx
14 0 · · · 0

Mx
21 Mx

22 Mx
23 Mx

24 Mx
25 · · · 0

...
...

...
...

...
...

0 . . . 0 Mx
n(n−3) Mx

n(n−2) Mx
n(n−1) Mx

nn



y11 y21 · · · ym1

y12 y22 · · · ym1

...
...

. . .
...

y1n y2n · · · ymn

 =


b11 b21 · · · bm1

b12 b22 · · · bm2

...
...

. . .
...

b1n b2n · · · bmn



My

11 My
12 My

13 My
14 0 · · · 0

My
21 My

22 My
23 My

24 My
25 · · · 0

...
...

...
...

...
...

0 . . . 0 My
n(n−3) My

n(n−2) My
n(n−1) My

nn



x11 · · · x1n

x21 · · · x2n

...
. . .

...

xm1 · · · xmn

 =


y11 y12 · · · y1n

y21 y22 · · · y2n

...
...

. . .
...

ym1 ym2 · · · ymn


where Mx

ij =
(
Bxi , B

x
j

)
and My

ij =
(
Byi , B

y
j

)
. The dimensions of the first problem

are n × n, where n is the number of B-spline basis functions along the x-axis, and
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we have m right-hand sides, where m is the number of B-spline basis functions along

the y-axis. The computational complexity of the factorization of such a system is

O(n×m) = O(N) [30]. We have an analogous situation in the second problem; namely,

an m ×m system with n right-hand sides. This results in O(m×n) = O(N) linear

computational complexity.

This strategy delivers a solution to the isogeometric L2 orthogonal projection

problem with linear O(N) computational cost. This solution’s method improves on

the standard direct solver cost estimates for (O(N1.5) in 2D and O(N2) in 3D; see [7])

for the factorization of the global problem.
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[25]  Loś M., Paszyński M., K lusek A., Dzwinel W.: Application of fast isogeometric

L2 projection solver for tumor growth simulations, Computer Methods in Applied

Mechanics and Engineering, vol. 316, pp. 1257–1269, 2017.
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