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BASED ON FIVE-MODULI SET{
22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3

}

Abstract A high dynamic range moduli set
{
22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3

}
has

recently been introduced as an arithmetically balanced five-moduli set for the
residue number system (RNS). In order to utilize this moduli set in applications
handling signed numbers, two important components are needed: a sign detector,
and a signed reverse converter. However, having both of these components
results in high-hardware requirements, which makes RNS impractical. This
paper overcomes this problem by designing a unified unit that can perform both
signed reverse conversion as well as sign detection through the reuse of hardware.
To the authors’ knowledge, this is the first attempt to design a sign detector
for a moduli set that includes a {2n3} moduli. In order to achieve a hardware-
amenable design, we first improved the performance of the previous unsigned
reverse converter for this moduli set. Then, we extracted a sign-detection method
from the structure of the reverse converter. Finally, we made an unsigned reverse
converter-to-sign converter through the use of the extracted sign signal from
the reverse converter. The experimental results show that the proposed reverse
convertor and sign detector result in improvements of 31% and 28% in area and
delay, respectively, as compared to the previous unsigned reverse convertor with
sign output using a comparator.
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1. Introduction

Computer arithmetic plays a significant role in modern computational systems, as
designing efficient arithmetic circuits for different numbers [21, 24] is important for
modern high-performance applications. The residue number system (RNS) [4] has been
known as a tool that provides parallelism for the efficient implementation of arithmetic
operations, including addition and multiplication [15]. Despite the traditional applica-
tions of RNS (including digital signal processing [2] and cryptography [22]), it has been
used in emerging technologies such as deep learning [19] and DNA arithmetic [27].

The most fundamental part of the design of an RNS system is the moduli set
selection [20]. The rate of the parallelism as well as the complexity of the inter-modulo
operations and dynamic range are based on the moduli set. Due to this, various special
moduli sets have been introduced for RNS, which are categorized as arithmetic-friendly
(balanced) and conversion-friendly (unbalanced) moduli sets [3,7,8,10,12–14,16–18,25].
Arithmetic-friendly moduli sets are suitable for applications where the rates of internal
addition and multiplication are significantly higher than the required conversions, such
as cryptography and deep convolutional neural networks. Among the balanced moduli
sets,

{
22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3

}
[1] is one of the interesting ones due to

the use of 22n together with fully balanced moduli 2n± 1 and 2n± 3. However, the
inclusion of the 2n ± 3 moduli results in the increased complexity of inter-moduli
operations such as reverse conversion, sign detection, and magnitude comparison.
These problems limit the use of this moduli set in limited unsigned applications, while
many applications such as deep learning require working on signed numbers.

In this paper, we have designed essential components for designing a signed residue
number system based on moduli set

{
22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3

}
. First, the

previous unsigned reverse converter for this moduli set is improved in order to reduce
the hardware complexity and delay. Then, we extract a sign-detection algorithm for
this moduli set. The proposed sign-detection algorithm has been implemented using
the same reverse converter circuits, making it possible to have a unified unit that can
perform two operations; namely, sign detection and signed reverse conversion. The
experimental results show the effectiveness of the proposed signed components.

Previous work on multifunctional unit design for RNS was reported in [18].
The proposed work differs from [18] from two main aspects. First, moduli set{
22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3

}
is not considered in [17]. Second, the RNS

comparison is not included in the proposed multifunctional unit in order to reduce the
hardware area.

In the rest of the paper, related works are investigated in Section 2, the
formulas and main structure of the unsigned reverse converter of moduli set{
22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3

}
are briefly reviewed in Section 3. Section 4

presents the reverse converter. Section 5 describes the proposed sign-detection al-
gorithm and implementation. Finally, an evaluation of the experimental results is
presented in Section 6.
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2. Related works

One major barrier when using RNS is the absence of sign detection where, in contrast
to binary number systems, there is no sign bit. The sign of a number in RNS is
determined on the basis of dynamic range division and whether the number lies in
the upper or lower range. This is usually done by the use of a comparator and is
considered to be an arduous operation in RNS. Conventionally, the sign is detected
using a comparator in the output of the reverse convertor and conditional operation [26].
Recently, a new approach has been introduced to improve and enhance the efficiency
of reverse convertors with no detection where the sign can be obtained from within the
convertor so as to reduce the chip-area, delay, and power consumption. Extensive studies
have therefore been conducted on sign detection for popular moduli sets [5,6, 9, 23].
However, due to the lack of a large dynamic range, such sets are not considered
to be suitable in a number of applications that require high-speed computations
such as encryption [11]. Nowadays, researchers have focused their attention towards
finding multi-moduli sets (more than three moduli) [1]. Designing a signed reverse
convertor for such sets has numerous complexities. In [26], however, a new approach
was proposed for designing reverse convertors for a class of moduli sets of composite
form

{
2k, 2p − 1

}
known as C-class. Applying these sets result in the creation of

computational channels for the easier processing of digital signals based on RNS.

The Chinese Remainder Theorem (New CRT-I) is one of the best choices for
designing convertors for such sets, the formula of which is in the form of X = x1+2kY .
Here, by dividing the dynamic range into two parts, the upper half (which is smaller
than M/2) has an MSB that is equal to zero and is within the range of positive
numbers, whereas the lower half (which is greater than M/2) has an MSB that is
equal to one and is within the range of negative numbers. The M/2 number with
an MSB that is equal to zero has K states. The first half of these K states has an
MSB that is equal to zero and is within the range of positive numbers, and the
other half has an MSB that is equal to one and lies within the range of negative
numbers. In [26], the sign is detected by designing a detection unit that is comprised
of a number of logical gates and by analyzing the MSBs. In [18], another classification
was made of moduli sets (known as A-class) in the form of

{
2k, 2p − 1, 22n − 1

}
for

sign detection. This was done by applying changes in the previous detection unit and
by using Chinese Remainder Theorem 2 (New CRT-II) for designing reverse convertors.
A similar approach to sign detection has been used in the present study.

3. Background

The residue number system is a modular number system that can perform parallel
arithmetic operations without carry-propagation among the residue digits [4]. It can be
designed based on some pair-wise relatively prime numbers that can form a moduli set;



104 Mohsen Mojahed, Amir Sabbagh Molahosseini, Azadeh Alsadat Emrani Zarandi

i.e., {m1,m2, ...,mn}. Then, the regular weighted binary numbers can be transformed
to residue set (x1, x2, ..., xn) according to the following relationship:

xi = X mod mi = |X|mi (1)

The product of the moduli (i.e., M = m1 ×m2 × ...×mn) defines the dynamic
range (DR). The DR represents the range of integer numbers that can be represented
in an RNS (that is, [0,M) in an unsigned RNS). In order to realize the signed RNS,
the DR is categorized into two sections (as follows) [26]:

whenM is even :


[
0, M2 − 1

]
: Positive Numbers

[
M
2 ,M − 1

]
: Negative Numbers

(2)

whenM is odd :


[
0, M−12

]
: Positive Numbers

[
M+1
2 ,M − 1

]
: Negative Numbers

(3)

The RNS-represented numbers can be converted back to normal weighted re-
presentations using the reverse converter. The reverse conversion can be done using
New CRT-II [17]. For instance, RNS number (x1, x2, x3, x4) can be converted into its
equivalent weighted number X using four-moduli set {m1,m2,m3,m4} as follows [13]:

X = Z +m1m2|k1(Y − Z)|m3m4 (4)

Z = x1 +m1|k2(x2 − x1)|m2 (5)

Y = x3 +m3|k3(x4 − x3)|m4 (6)

where the required multiplicative inverses can be achieved by considering the following
relationships:

|k1m1m2|m3m4 = 1 (7)

|k2m1|m2 = 1 (8)

|k3m3|m4 = 1 (9)

The reverse converter for five-moduli set
{
22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3

}
has been designed using New CRT-II in [1] according to the two- and three-layer
structures. In the next section, the proposed sign-detection algorithm is described,
which is based on the reverse converter of [1]. Due to this, the main formulas and
architectures of [1] are briefly reviewed here. The first stage of the converter of [1]
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includes two parallel two-moduli reverse conversions. First, the second and third
moduli (i.e., {2n − 1, 2n + 1}) are combined using CRT-II as follows:

XM = |x0 + kM (2n − 1)(x1 − x0)|22n−1 (10)

Then, the last two moduli (i.e., {2n + 3, 2n − 3}) can be combined according to
the following relationship:

XN = x2 + (2n + 3)|kN (x3 − x2)|2n−3 (11)

The results of stage one (which are XM and XN ) are used to construct the
final number according to composite moduli set F = {22n, 22n − 1, 22n − 9} with
corresponding residues (xc, XM , XN ) as follows:

XF = xC + 22n|kMF (xN − xC)− kNFDN (xM − xN )|DMDN (12)

where KM , KN , KMF and KNF are multiplicative inverses that are calculated and
proven in [1]. After inserting the required multiplicative inverses, (12) can be calculated
according to the following formulas [1] for n = 3α:

XF = xC + 22nY (13)

where

Y =|22nG0 + U − 9G0 − 7ρU |DMDN (14)

=
∣∣22nG0 + 9Ḡ0 + 8ρŪ + (ρ+ 1)U +DM (DN − 8ρ− 9)∣∣DMDN
U = XN −XC , (15)

V = −(XM −XN ) (16)

Ū = DM − U (17)

G0 =
∣∣7ρU + 22n−3V ∣∣

DM
=
∣∣8ρU + ρŪ + 22n−3V ∣∣

DM
(18)

ρ =
26α − 1
26 − 1

(19)

DM = 22n − 1 (20)

DN = 22n − 9 (21)

The overall structure of the reverse converter for moduli set {22n, 2n + 1, 2n − 1,
2n + 3, 2n − 3} is depicted in Figure 1. OPU-M and OPU-N compute XM and XN
using carry-save adders (CSAs) and modulo carry-propagate adders (CPAs).
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Figure 1. Unsigned reverse converter of [26]

4. Reverse converter

In this section, we describe the reverse converter of [1] with small modifications based on
CRT-II for moduli set {22n, 2n+3, 2n−3, 2n+1, 2n−1} to enable efficient sign extraction
from the reverse converter. In the first step (Section 4.1), the reverse converter of
subset {2n + 3, 2n − 3} is obtained. In the second step (Section 4.2), the value of W is
obtained using subset {2n + 1, 2n − 1}. In the third step (Section 4.3), the value of Z
is obtained using subset {22n− 9, 22n}. Finally, in the last step (Section 4.4), the value
of X is obtained using subset {22n(22n − 9), (22n − 1)}.

4.1. Reverse converter for set N = {2n + 3,2n − 3}
To design the reverse converter of two-moduli set {2n+3, 2n−3}, the new two-channel
Chinese Remainder Theorem algorithm [1] is used as follows:

XN = x1 + (2n + 3)|kN (x2 − x1)|2n−3 (22)

Moduli 2n+3 and 2n−3 are pairwise relatively prime numbers; thus, the multiplicative
inverses are calculated as follows [1]:

|kN × (2n + 3)|2n−3 = 1→ kN = |(2n + 3)−1|2n−3 →

|kN × (2n + 3)|2n−3 = |kN × 6|2n−3 → kN = |
1
6
|2n−3 (23)
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Therefore, (23) can be computed as follows:

kN =

 (
2n−1−2)
−3 = −

(
2n−3 + 2n−5 + . . .+ 21

)
: even n

(2n−1−1)
3 =

(
2n−3 + 2n−5 + . . .+ 20

)
: odd n

(24)

Now, XN in (22) can be calculated using (24). Note that (22) can be rewritten as (25)
by separating the most significant bit (MSB) of x1 from its remaining least significant
bits (LSBs) [1]. Its implementation is shown in Figure 2 as Modular Addition 3 (Mod 3
Adder).

XN = x1 + (2n + 3)

∣∣∣∣∣∣∣kN
x2 −

x1︷ ︸︸ ︷
(3Cn + x̂1)


∣∣∣∣∣∣∣
2n−3

(25)

Mod-3 AdderMod-3 Adder
OPU-WOPU-W

nn+1

x2 x3

n

x 4x0

n+1

x1

EAC CSA TreeEAC CSA Tree

. . . .

EAC-CPAEAC-CPA

2n

OPU-MOPU-M

2n

CPA-ZCPA-Z

CSA Tree MCSA Tree M

. . . .

4n

OPU-X1OPU-X1

EAC CSA TreeEAC CSA Tree

. . . . . . . . . . .

EAC-CPAEAC-CPA

6n

Sign

Detection

Sign

Detection
Sign

X
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CSA Tree XCSA Tree X

CPA-XCPA-X

. . . .

YZ = 1

YT = 2

x
N
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--

2n
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. . . .
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Figure 2. Proposed multifunction unit structure: reverse converter and sign detector
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4.2. Reverse converter for set W = {2n + 1,2n − 1}
The main reverse conversion formula for moduli set {2n + 1, 2n − 1} is as follows [26]:

W = x3 + (2n + 1)|KW (x4 − x3)|2n−1 (26)

Therefore, when considering KW = 2n−1 and m1|Z|m2 = |m1Z|m1m2 [1], we have:

W = |x3 +KW (2n + 1)(x4 − x3)|22n−1 =
|2n−1(2n + 1)x4 + x3 − 22n−1x3 − 2n−1x3|22n−1 =
|2n−1(2n + 1)x4 + 22nx3 − 22n−1x3 − 2n−1x3|22n−1 =
|2n−1(2n + 1)x4 + 22n−1x3 − 2n−1x3|22n−1 =
|2n−1(2n + 1)x4 + 22n−1x3 + 2n−1x̄3 + (2n−1 − 1)|22n−1 (27)

4.3. Reverse converter for set Z = {(22n − 9),22n}
The combination of the reverse converter of moduli set {2n+3, 2n− 3} (i.e., composite
modulo 22n − 9) and 22n can be done as follows:

Z = XN + (22n − 9)|KZ(x0 −XN )|22n = XN + (22n − 9)R (28)

Next, multiplicative inverse KZ can be achieved as follows [1]:

|KZ × (22n − 9)|22n = 1→ kZ = |(22n − 9)−1|22n → kZ = |(−9)−1|22n (29)

Therefore,

KZ =


−(56ρ+ 1) if n = 3α

−(56ρ+ 1) if n = 3α+ 1

−(22n−1 + 56ρ+ 1) if n = 3α+ 2

(30)

where

ρ =
26α − 1
26 − 1

(31)

For example, by considering n = 3α, we have:

KZ = −(56ρ+ 1) (32)

Then, substituting (32) in (28) results in the following:

M = (x0 −XN )→ R = |KZ ×M |22n = |(−(56ρ+ 1))×M |22n
= |(−(64− 8)ρM −M)|22n = | − 64ρM + 8ρM −M |22n (33)

The negative values can be computed when considering M̄ = (22n − 1)−M , which
lead to −M = M̄ − (22n − 1).
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Therefore,
R = | − 64ρM + 8ρM −M |22n =
|64ρ(M̄ − 22n + 1) + 8ρM + (M̄ − 22n + 1)|22n
|8ρM + 64ρM̄ + M̄ + 64ρ− 22n × 64ρ+ 1− 22n|22n →
R = |8ρM + (64ρ+ 1)M̄ + (64ρ+ 1) + δ0|22n (34)

When n = 3α+ 2, we have δ0 = −22n−1M ; otherwise, it equals zero. Therefore,
|δ0|22n = | − 22n−1M |22n = |22n−1(M̄ − 22n+ 1)|22n

= |22n−1M̄ + 22n−1|22n = (M̄0

2n−1︷︸︸︷
0...0) + (1

2n−1︷︸︸︷
0...0) (35)

and results in

R = |8ρM + (22n−1 + 64ρ+ 1)M̄ + (22n−1 + 64ρ+ 1)|22n (36)

Assuming that n = 3, ρ = 1, and then:

R = |8ρ(M2n−1...M0) + (64ρ+ 1)(M̄2n−1...M̄0) + (64ρ+ 1)|22n =

|(
2n−3︷ ︸︸ ︷

M2n−4...M0

3︷︸︸︷
0...0) + (

2n−6︷ ︸︸ ︷
M̄2n−8...M̄2n−1

6︷︸︸︷
0...0) + (

2n︷ ︸︸ ︷
M̄2n−1...M̄0) + (64ρ+ 1)|22n (37)

Therefore, according to (28), we have:

Z =XN + (22n − 9)R = (
2n︷︸︸︷
0...0

2n︷ ︸︸ ︷
xN,2n−1...xN,0) + (

2n︷ ︸︸ ︷
R2n−1...R0

2n︷︸︸︷
0...0)

− (
2n−3︷︸︸︷
0...0

2n︷ ︸︸ ︷
R2n−1...R0

3︷︸︸︷
000 )− (

2n︷︸︸︷
0...0

2n︷ ︸︸ ︷
R2n−1...R0) (38)

Now, (38) can be rewritten as follows:

Z =(

2n︷ ︸︸ ︷
0... ...0

2n︷ ︸︸ ︷
xN,2n−1...xN,0) + (

2n︷ ︸︸ ︷
R2n−1...R0

2n︷ ︸︸ ︷
R̄2n−1...R̄0) + (

2n−3︷︸︸︷
1...1

2n︷ ︸︸ ︷
R̄2n−1...R̄0

3︷︸︸︷
111 )+

(

2n︷︸︸︷
1...1

2n︷︸︸︷
0...0) + 2 (39)

C represents the carry output of non-modular adder Rc +RS , which is used to
avoid the deployment of the carry-propagate adder; this carry is obtained by a specific
parallel prefix adder. Finally, we have:

Z = XN + (22n − 9)(RS +RC − 22nC) =
XN + 22nRC + 22nRS − 24nC − 23RC − 23RS + 22n+3C −RS −RC + 22nC =
XN + 22nRC + 22nRS + 23(R̄C − 22n + 1) + 23(R̄S − 22n + 1) + (R̄C − 22n + 1)+
(R̄S − 22n + 1)− (24n − 22n+3 − 22)C = XN + 22nRC + 22nRS+
23R̄C + 23R̄S + R̄C + R̄S −

(
22n+4 + 22n+1 − 24 − 2

)
−
(
24n − 22n+3 − 22n

)
C (40)
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Therefore,

Z = (

2n︷︸︸︷
0...0

2n︷ ︸︸ ︷
xN,2n−1...xN,0) + (

2n︷ ︸︸ ︷
RC,2n−1...RC,0

2n︷︸︸︷
0...0) + (

2n︷ ︸︸ ︷
RS,2n−1...RS,0

2n︷︸︸︷
0...0)−

(

2n−3︷︸︸︷
0...0

2n︷ ︸︸ ︷
RC,2n−1...RC,0

3︷︸︸︷
000 )− (

2n−3︷︸︸︷
0...0

2n︷ ︸︸ ︷
RS,2n−1...RS,0

3︷︸︸︷
000 )− (

2n︷︸︸︷
0...0

2n︷ ︸︸ ︷
RC,2n−1...RC,0)−

(

2n︷︸︸︷
0...0

2n︷ ︸︸ ︷
RS,2n−1...RS,0)− (22n+4 + 22n+1 − 24 − 2)− (24n − 22n+3 − 22)C (41)

And consequently,

Z = (

2n︷ ︸︸ ︷
0... ...0

2n︷ ︸︸ ︷
xN,2n−1...xN,0) + (

2n︷ ︸︸ ︷
RC,2n−1...RC,0

2n︷ ︸︸ ︷
R̄C,2n−1...R̄C,0)+

(

2n︷ ︸︸ ︷
RS,2n−1...RS,0

2n︷ ︸︸ ︷
R̄S,2n−1...R̄S,0) + (

2n−3︷︸︸︷
1...1

2n︷ ︸︸ ︷
R̄C,2n−1...R̄C,0

3︷︸︸︷
111 )+

(

2n−3︷︸︸︷
1...1

2n︷ ︸︸ ︷
R̄S,2n−1...R̄S,0

3︷︸︸︷
111 )− (22n+4 + 22n+1 − 4− 24 − 2)

− (24n − 22n+3 − 22)C (42)

4.4. Reverse converter for set W = {22n(22n − 9), (22n − 1)}
At the final stage, the results of the previous stages should be combined as follows:

X = Z + 22n(22n − 9)|KX × (W − Z)|22n−1 (43)

The multiplicative inverse of KX can be calculated as follows [1]:

|kX × 22n(22n − 9)|22n−1 = 1→ kX = |(22n(2n + 1))−1|2n−1 → kX = −22n−3 (44)

This can be proven as below:

|kX × (22n(22n − 9))|22n−1 =
|(−22n−3)× (22n(22n − 9))|22n−1 = (45)

|(−22n−3)× (−23)|22n−1 = |22n|22n−1 = 1

Now, the final value (i.e., X) can be obtained as follows:

X =
( 2n︷︸︸︷
0...0

4n︷ ︸︸ ︷
Z4n−1...Z0

)
+ 22n(22n − 9)|22n−3(Z −W )|22n−1 (46)

The internal modulo 22n − 1 operation can be simplified as follows:

T = |22n−3(Z −W )|22n−1 =
|22n−3((Z4n−1...Z2n)22n + (Z2n−1...Z0)− (W2n−1...W0))|22n−1 =
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|((Z2n+2Z2n+1Z2nZ4n−1 . . . . . . Z2n+3)
+ (Z2Z1Z0Z2n−1 . . . . . . Z3) + (W2 W1 W0 W2n−1 . . . W3))|22n−1 (47)

Therefore,

X = (

2n︷︸︸︷
0...0

4n︷ ︸︸ ︷
Z4n−1...Z0) + (24n − 22n+3 − 22n)T =

(

2n︷︸︸︷
0...0

2n︷ ︸︸ ︷
Z4n−1...Z0) + (

2n︷ ︸︸ ︷
T2n−1...T0

4n︷︸︸︷
0...0)− (

2n−3︷︸︸︷
0...0

2n︷ ︸︸ ︷
T2n−1...T0

2n+3︷︸︸︷
0...0)− (

2n︷︸︸︷
0...0

2n︷ ︸︸ ︷
T2n−1...T0

2n︷︸︸︷
0...0)→

= (

2n︷ ︸︸ ︷
T2n−1...T0

4n︷ ︸︸ ︷
Z4n−1...Z0) + (

2n−3︷︸︸︷
1...1

2n︷ ︸︸ ︷
T̄2n−1...T̄0

2n+3︷︸︸︷
1...1) + (

2n︷︸︸︷
1...1

2n︷ ︸︸ ︷
T̄2n−1...T̄0

2n︷︸︸︷
1...1) + 2 (48)

The reverse converter structure is presented in Figure 2. It should be noted that
the details regarding each part can be found in [1].

5. Sign detection

The residue number system has some difficult operations, such as division, overflow
detection, comparison, and sign detection that have made this residue number system
not be universally applicable. Hence, an efficient method of sign detection for moduli
set {22n, 2n + 1, 2n − 1, 2n + 3, 2n − 3} is presented in this paper. The idea of this
paper is elicited from [26], which will be discussed in the following paragraphs. In
general, the residue number system is designed for unsigned numbers, the output of the
reverse converter represents an unsigned value, and the output needs to be corrected
to use this system for signed numbers. Early in the conventional method, the sign
detection was approached by comparing the output value with half of dynamic range
M/2, which is shown in Figure 3.
In this section, our focus is on the efficient and operational design of a unit for

detecting the sign and correcting the output of the reverse converter with better
performance as compared to using the comparator and multiplexer in the output
of reverse converter. Here, after specifying the sign (if necessary), we will correct
the output so that the output of the reverse converter will display the correct two’s
complement value. In order to detect the sign, the method in [26] has been applied on
moduli set {22n, 2n+3, 2n−3, 2n+1, 2n−1} in this paper. Figure 4 shows the range of
positive and negative numbers in moduli set {22n, 2n + 3, 2n − 3, 2n + 1, 2n − 1}. As it
is shown, although the numbers within range [0, 26n−1− (10×24n−1−9×22n−1)) have
bits with zero values and the sign is positive, it is also a zero-valued bit within range
[26n−1 − (10× 24n−1 − 9× 22n−1), 26n−1). However, these numbers are yet negative in
range [26n−1, 26n− (10× 24n − 9× 22n)), and they always have bits with one value.
The principles of a reverse converter permit us to achieve an effective method of

detecting the sign by using formulas. We intend to detect the sign by utilizing formulas
and reverse converter equations.
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Figure 3. Traditional reverse converter with signed [26]
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It is noticeable that one approach to obtaining the sign is to consider a dynamic

range where X ∈ [0, M
2
) or X ∈ [M

2
,M) regarding the range of positive and negative

numbers in a residue number system. When Y2 ̸=
M2 − 1
2
, the range of numbers
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considered for Y2 are divided into two parts, which are positive or negative concerning
the range of the numbers in the residue number system. Therefore, if the bit with
a value of Y2 equals one, X is negative, and if the bit with a value of Y2 equals zero,

X is positive. However, when Y2 =
M2 − 1
2
, we need to examine Y1 in order to detect

the sign. Therefore, when Y1 ­
M1
2
, X is negative; otherwise, X is positive.

W = x3 + p3|KW (x4 − x3)|p4 (49)

Z =

Y1︷ ︸︸ ︷
x1 + p1|KZ(x2 − x1)|p2 (50)

X =

Y1︷︸︸︷
Z +

M1︷︸︸︷
p1p2 |

Y2︷ ︸︸ ︷
kX(Z −W )|p3p4 = Y1 + Y2M1 (51)

M1 = 22n(22n − 9) (52)

M2 = (22n − 1) (53)

Therefore, the following equation is presented for the sign detection of X.

sign = (Y2,2n−1 ∨ L)→ sign =

{
0 +

1 −
(54)

L = (L1 ∧ (L2 ∨ L3))) (55)

L1 = (Ȳ2,2n−1 ∧ Y2,2n−2... ∧ Y2,0) (56)

L2 = (Y1,4n−1) (57)

L3 = (Ȳ1,4n−1 ∧ Y1,4n−2 ∧ ... ∧ Y1,2n+3 ∧ (Y1,2n+2 ∨ (Ȳ1,2n+2 ∧ Y1,2n+1 ∧ ... ∧ Y1,2n−1))
(58)

Now, by specifying the sign and knowing whether the sign is negative, the output
of the reverse converter needs to be corrected. If the sign-detection circuit produces
a value of zero, this indicates that the number is positive and that the output does
not need to be corrected. However, if the sign-detection circuit produces a value of
one, this indicates that the number is negative and that there is a need for correcting
the output. If X̂ indicates the signed output, the value of X̂ is obtained based on the
following relationship:

X̂ = X −M (59)

M = 22n(22n − 1)(22n − 9) = 22n(24n − 10× 22n + 9) = 26n − (10× 24n − 9× 22n)
(60)

The two’s complement of M is represented as 6n bits.

26n −M = 26n − (26n − (10× 24n − 9× 22n)) =
10× 24n − 9× 22n = 22n(10× 22n − 9) (61)
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Now, for correcting the output of the reverse converter (provided that the number
is negative), X should be added to (10 × 22n − 9). Hence, the sign detection and
correcting the value of X is applicable (if necessary) by using the hardware presented
in Figure 5.

CPA-X CSA

CPA

Multiplexer

C S C S

0 1

9210
2
−=

n

k

Sign X

Sign

Figure 5. Sign detection and correction circuit

•Numerical examples
We provide an example to examine the operation of the proposed circuit. Suppose

we intend to obtain the sign of an RNS number based on moduli set {22n, 2n +3, 2n −
3, 2n + 1, 2n − 1}. For n = 3, the regarded moduli set takes a value of {64, 11, 5, 7, 9}
and the dynamic range equals 221760. Suppose that we must change weightless
residual number (32, 0, 0, 0, 0) (which is equivalent to a number with a value of 110880)
into a binary weighted status. Therefore, the obtained values within a range of 0
to 110879 indicate the positive numbers, and the values within a range of 110880
to 221759 indicate the negative numbers. The 110880 value is located in the lower
half of the dynamic range; thus, it is a negative number. Therefore, we must receive
110880–221760 = −110880 as the output of the reverse converter.
Consequently, the proposed structure of the two’s complement produces the

negative number of −110880, which is equivalent to 151264 instead of 110880 (for
mentioned moduli sets k = 2n = 6 and p = 2n = 6, and n is odd).

X = 110880 RNS−−−→ (32, 0, 0, 0, 0)

Therefore, XN has the following values:

XN = 0

W = 0 = (000000)
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Z = Y1 = 1760 = (011011100000)

X = Z + 22n(22n − 9)

Y2︷ ︸︸ ︷
|22n−3(Z −W )|22n−1 = 1760 + 3520|

Y2︷ ︸︸ ︷
14080|63 → Y2 = 31

M1
2
= 1760

M2 − 1
2
= 31

Given that Y2 = 31, the sign of X is dependent on Y1 , and while Y1 ­
M1
2
exists, the

sign is negative; otherwise, the sign is positive. Hence, the following will be performed

for investigating Y1 ­
M1
2
:

L1 = (Ȳ2,2n−1 ∧ Y2,2n−2... ∧ Y2,0) = 1

L2 = (Y1,P+K−1) = 0

L3 = (Ȳ1,P+K−1 ∧ Y1,P+K−2 ∧ ... ∧ Y1,K+3

∧ (Y1,K+2 ∨ (Ȳ1,K+2 ∧ Y1,K+1 ∧ ... ∧ Y1,K−1)) = 1

L = (L1 ∧ (L2 ∨ L3))) = 1

Sign = (Y2,2n−1 ∨ L)→ Sign = (0 ∨ 1) = 1

If the sign is negative, we need to correct the output of the reverse converter and
display the correct one. Since there is a need for output correction, the outcome of X
is added to the value of K = (10× 22n − 9); if the output sign is equal to the value of
one (i.e., the number is negative) and according to Figure 5, the corrected value is
inserted at the output of the multiplexer.

X = 100100111011100000

It can be concluded from the above equations that the value of the sign equals one.
Therefore, the number is negative, the output must be corrected, and the corrected
value is placed at the output of the multiplexer.

X = 110880, M = 221760→ X̂ = X −M = 110880− 221760 = −110880

X̂ = −110880 = −(011011000100100000)
2′s Complement−−−−−−−−−−−→ (100100111011100000) = 151264

Accordingly, both the original value (110880) and the corrected value (151264) are
placed at the input of the multiplexer; since the sign circuit equals one, the input of
a multiplexer is placed at the output.
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6. Performance evaluation
We compared the proposed design with the hardware architecture of [1] using both
theoretical and experimental analysis as shown in Tables 1 and 2. In a theoretical
comparison, we evaluate the time delay and the area of each design based on its basic
components, which include the full adder (FA), half adder (HA), multiplexer (MUX),
and simple gates (G).

Table 1
Hardware complexity comparison

Component Delay Area
W N/A (it is not on the critical

delay path)
(2n+ 2)AFA + (2n− 2)AHA +
(4n− 1)AG

XN (3n+ ⌈log 2n⌉+ 2)DFA (2n2 + 2n+ 2)AF.A + (n)AHA
CPA – M Generate (2n)DFA (2n)AFA
OPU-M (1)DG (4n− 5)AG
CSA Tree M (3)DFA (6n)AFA
Carry Generation (3 + 2⌈logn⌉)DG (2n+1 + 2n + 2n− 3)AG
OPU-Z (1)DG (8n)AG
CSA Tree Z (4)DFA (20n)AFA
CPA - Z (4n)DFA (4n)AFA
OPU-X1 (1)DG (2n)AG
EAC CSA Tree (1)DFA (2n)AFA
EAC CPA (4n)DFA (4n)AFA
Sign Detection (⌈log 4n+ 1⌉)DG (4n+ 3)AG
Total Sign (13n + ⌈log 2n⌉ + 10)DFA +

(⌈log 4n+1⌉+2⌈logn⌉+6)DG
(2n2 + 42n + 2)AFA + (3n −
2)AHA + (2n+1 + 2n + 24n −
6)AG

OPU-X2 (1)DG (4n)AG
CSA Tree X (2)DFA (12n)AFA
CPA-X (6n)DFA (6n)AFA
Total Reverse And
Sign

(19n + ⌈log 2n⌉ + 12)DFA +
(⌈log 6n⌉+ 2⌈logn⌉+ 9)DG

(2n2 + 60n + 2)AFA + (3n −
2)AHA + (2n+1 + 2n + 30n −
4)AG

Therefore, the time delay and area of each section are considered to be DFA,
DHA, DMUX , DG, AFA, AHA, AMUX , and AG, respectively. The time delay and
the level of logic gate XOR are considered 2DG and 3AG, respectively. It should be
noted that logarithmic terms refer to the number of levels or to the expression of
CSA trees. Since some parts of the designed circuits are identical to the presented
original reference in [1] and contain no particular variations, they are regarded with the
values of original reference in terms of a hardware analysis. As shown in Figure 2,
the rotational operation, shift, and the one’s complement are performed in the internal
structure of the OPU. The area of n-bit CSA is equal to n full adders, and its time
delay is equal to one full adder; meanwhile, the area and delay of n-bit CPA is equal
to n full adders.
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Table 2
Experimental result comparison

Bits n 3 4 5

Proposed signed reverse co-
nverter and sign detector

Power 12.2674 17.0864 25.2444
Area 18958 24395 34424
Delay 20.31 25.55 31.98

Proposed reverse converter
and sign detector

Power 6.1881 8.5580 18.2859
Area 10953 14523 24039
Delay 14.61 18.06 26.15

Proposed reverse converter
Power 9.5837 13.2400 21.3554
Area 15035 21371 31121
Delay 19.31 24.53 30.98

[26] with sign output using
comparator

Power 11.0941 16.4309 27.3186
Area 16724 22353 32545
Delay 21.61 27.24 32.91

Reverse converter of [26]
Power 9.3667 15.7674 26.4297
Area 14150 20676 30449
Delay 21.49 27.16 32.83

Since the main objective of this paper is to propose an approach to extract the
sign from the inside of the reverse converter, we use the comparator and reverse
converter of [1] to extract the sign and compare it with the extracted sign in the
proposed approach. It should be noted that, in [1], two two-stage and three-stage
reverse converters are designed in a way that are approximately equivalent in terms of
time delay, power, and level. We thus make the comparison with the two-stage reverse
converter in [1]. All in all, the area and time delay for the reference reverse converter
are as follows:

ASign Regular = AReverse Converter +AComparator +ACPA +AMUX2×1 =

AReverse Converter = ((3(6n)− 2)AAND + (6n− 1)AOR + (6n− 1)AXNOR)+
(6n)AFA + (6n)AMUX2×1
AReverse Converter = (8n2 + 18n+ 4)AFA + (7n− 2)AHA + (4n)AMUX + (4n− 1)AG
DSign Regular = DReverse Converter +DCPA +DMUX2×1 =

DReverse Converter + (6n)DFA +DMUX2×1
DReverse Converter = (11n+ 3⌈log n⌉+ 4)DFA +DMUX2×1

The level and time delay in the sign detection in the proposed approach equals the
following:

ASign Proposed = AXN +AW +AY1 +AY2 +ASign Detecton
DSign Proposed = DXN +DW +DY1 +DY2 +DSign Detecton

There is also DSign Detecton = DY1+DY2 ; however, given that the value of DY1 overlaps
the computation of Y2 and that its time delay is trivial compared to the computation
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of Y2, we neglect it. Therefore, the area and time delay for the proposed reverse
converter can be calculated as follows:

ASign Proposed = (2n2 + 42n+ 2)AFA + (3n− 2)AHA + (2n+1 + 2n + 24n− 6)AG
DSign Proposed = (13n+ ⌈log 2n⌉+ 10)DFA + (⌈log 4n+ 1⌉+ 2⌈log n⌉+ 6)DG

For our experimental evaluation, we used Synopsys Design Compiler software to
achieve the estimated delay, area, and power-consumption using 180-nm technology.
These results are presented in Table 2. In addition, the power-delay-product (PDP)
evaluation is performed in Figure 6. It can be seen that the proposed multifunction
architecture (i.e., the signed reverse converter plus sign detector) has better circu-
it parameters than a conventional reverse converter with a sign output that uses
a comparator to detect the sign and then correct the output.

Figure 6. PDP Evaluation

7. Conclusion

This paper presents a signed reverse converter for moduli set {22n, 2n + 3, 2n − 3,
2n + 1, 2n − 1} with the extraction of the sign from the reverse converter and then use
it to correct the sign of the reverse converter output. In addition, we also presented the
first sign-detection unit for moduli set

{
22n, 2n + 3, 2n − 3, 2n + 1, 2n − 1

}
. The propo-

sed circuits have inserted the sign-handling mechanism to this five-moduli RNS, making
it practical for real applications. However, other important features such as scaling and
magnitude comparison are needed in RNS systems. The integration of the RNS magni-
tude comparison and scaling circuits for moduli set

{
22n, 2n + 3, 2n − 3, 2n + 1, 2n − 1

}



Multifunctional unit for reverse conversion and sign detection. . . 119

to a multifunctional unit is an open problem that requires further research. Having
a complete multifunctional unit that can perform all of the difficult RNS operations
(including reverse conversion, sign detection, scaling, and magnitude comparison) can
push the RNS forward to modern applications like deep learning.
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