
Computer Science • 23(2) 2022 https://doi.org/10.7494/csci.2022.23.2.3776

Noorollah Karimtabar
Mohammad Javad Shayegan Fard

FINDING FREQUENT ITEMS:
NOVEL METHOD FOR IMPROVING
APRIORI ALGORITHM

Abstract In this paper, we use an intelligent method for improving the Apriori algorithm

in order to extract frequent itemsets. PAA (the proposed Apriori algorithm)

pursues two goals: first, it is not necessary to take only one data item at each

step – in fact, all possible combinations of items can be generated at each step;

and second, we can scan only some transactions instead of scanning all of the

transactions to obtain a frequent itemset. For performance evaluation, we con-

ducted three experiments with the traditional Apriori, BitTableFI, TDM-MFI,

and MDC-Apriori algorithms. The results exhibited that the algorithm exe-

cution time was significantly reduced due to the significant reduction in the

number of transaction scans to obtain the itemset. As in the first experiment,

the time that was spent to generate frequent items underwent a reduction of

52% as compared to the algorithm in the first experiment. In the second ex-

periment, the amount of time that was spent was equal to 65%, while in the

third experiment, it was equal to 46%.

Keywords Apriori algorithm, frequent itemset, intelligent method

Citation Computer Science 23(2) 2022: 161–177

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

161

https://doi.org/10.7494/csci.2022.23.2.3776
https://creativecommons.org/licenses/by/4.0/

162 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

1. Introduction

A large amount of data has been collected in various areas such as health, sports,

banking, business, environmental protection, security, politics, and many others. Such

data is often used for analysis and discovering useful information. Typically, datasets

grow exponentially when they take on a large number of complex features. Generally,

these datasets have a relatively low information density in the context of association

rule mining. Robust, simple, and computationally efficient tools are required to ex-

tract information from such datasets. Data mining is defined as the extraction of

knowledge from a very large-sized database. Data mining is also called knowledge

discovery in databases (KDD) [9].

Association rule mining is the most convenient method or association knowledge

discovery. The associations between data values in a transaction database are compli-

cated, and most of them are implicit. Association rule mining (a component of data

mining) is a research field that has been proposed proposed earlier [15].

For example, individuals who are buying diapers are likely to buy baby powder

as well. Association rule mining is used to find relationships among certain items [9].

A typical association rule that can result from such a study might be “90 per-

cent of all customers who buy diapers also buy powder”. The aim of association rule

mining is to make associations among sets of items in transaction databases or other

data repositories [1]. Currently, Apriori algorithms play a significant role in identi-

fying frequent itemsets and deriving rule sets out of them, which enumerate all of

the frequent itemsets. Apriori algorithms require minimum support and a minimum

number of thresholds to find frequent patterns from a transactional database.

1.1. Classic Apriori algorithm

The classic Apriori algorithm (CAA) includes two key processes: a connecting step,

and a pruning step [14].

The connecting step is as follows: to get Lk (frequent k-itemset), connect Lk−1

with itself. Set this candidate as Ck, and assume L1 and L2 are the item sets of Lk−1.

Li[j] is the jth item of Li. Assume that the affairs and items of the itemset are in

alphabetical order. Execute the Lk−1 ∞ Lk−1 connection in which the elements of

Lk−1, L1, and L1 are connectable if they have the same first (k − 2)th items; that is,

the elements of Lk−1, L1, and L1 are connectable if (L1[1] = L2[1]) ∧ (L1[2] = L2[2]) ∧
. (L1[k−2] = L2[k−2]) ∧ (L1[k−1] = L2[k−1]). The requirement of (L1[k−1] <L2[k−1])

simply assures no repetition. After connecting L1 and L2, the resulting itemset is L1[1]

L1[2] . . . L1[k−1] L2[k−1].

The pruning step is as follows: Ck encompasses k-itemsets (which are either

frequent or not), but Lk is a subset of Ck and includes those members that are

all k-frequent-itemsets. Scan the database and clear the counters of each candidate

itemset of Ck to assure Lk. However, Ck might be very large and, thus, consume

a huge amount of the calculation. To decrease Ck, the following method would be

Finding frequent items: novel method for improving Apriori algorithm 163

considered using the Apriori proprieties; any infrequent itemsets with k1 items are not

a subset of the frequent itemsets with k items. Consequently, if the (k − 1) subset of

a candidate itemset with k items is not in Lk−1, the candidate itemset is not frequent

and can be deleted in Ck [14].

The CAA pseudo-code for discovering frequent itemsets for mining is given below

(Algorithm 1) [9]:

Algorithm 1 CAA

1: k = 1

2: Generate frequent itemsets of length 1

3: Repeat until no new frequent itemsets are identified

4: Generate length (k + 1) candidate

5: Itemsets from length-k frequent itemsets

6: Prune candidate itemsets that contain length-k subsets that are infrequent

7: Count support of each candidate by scanning DB

8: Eliminate candidates that are infrequent, leaving only those that are frequent

The time complexity of the CAA algorithm is equal to O(2d), where d stands for

the total number of unique items in the transaction dataset [9]. Suppose that there

is a test dataset (TD) that contains six transactions (as is shown in Table 1).

Table 1
Transaction database TD

TID Itemset(A, B, C, D, E)

1 A, C, D, E

2 B, C, E

3 A, B, C, E

4 B, E

5 A, B, C, E

6 D

*TID = Transaction Identification

Here, we set the minimum support as 0.6 that supports 3. It is possible to find

a frequent itemset for TD using CAA. This process is demonstrated in Figure 1.

CAA achieves good performance when a dataset is sparse and the itemsets have short

lengths. Nonetheless, this method suffers from the nontrivial costs that are caused

by generating huge numbers of candidate itemsets and extra scans over the datasets

for the support computation [2]. For instance, if there are 104 frequent 1-itemsets,

it may need to generate more than 107 candidates into 2-lengths, which in turn will

be tested and accumulated. Furthermore, it will have to generate 21,000 candidate

itemsets to detect a frequent pattern of a size of 1000 (e.g., V1, V2, ..., V1000); this

yields a costly wasting of time in candidate generation as it checks for many more

164 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

sets from the candidate itemsets – moreover, it scans the database many times when

searching for candidate itemsets [5].

Figure 1. Operation process of CAA

1.2. Motivation

The Apriori algorithm is very slow and inefficient when a large number of transactions

limits a computer’s memory capacity, as it must scan a database many times to find

candidate itemsets. In this paper, an algorithm is proposed to improve CAA by using

an intelligent method along with a matrix data structure. In the proposed Apriori

algorithm (PAA), creating a new matrix prevents the creation of unnecessary itemsets

and reduces the number of transaction scans to create frequent itemsets.

2. Related works

L. Sun [13] proposed an improved Apriori algorithm that builds a 0–1 transaction ma-

trix by scanning a transaction database for obtaining its weighted support confidence.

The items and transactions are weighted to reflect the importance of the transaction

database.

In work by Benhamouda N.C. et al. [6], the problem of designing a different

private frequent itemset-mining algorithm that can simultaneously provide high levels

of data utility and data privacy was studied truncating large transactions may causes

Finding frequent items: novel method for improving Apriori algorithm 165

decline the performance and data loss. The solution is that the long transactions

are split but not truncated. The small-weighted technique is proposed to divide long

transactions into sub-transactions.

N.C. Benhamouda et al. [3] developed a new recursive algorithm based on Apriori

that aims to substantially reduce runtimes in order to increase its efficiency while

preserving its effectiveness. This algorithm is based on the “divide and conquer”

technique, which consists of partitioning a whole database into small ones and then

applying Meta-Apriori if the database is huge or Apriori if it is of a reasonable size. By

merging the achieved results, the outcomes for the whole database will be obtained.

In [4], a dynamic programming approach is utilized to facilitate fast candidate-

itemset generation, reduce the number of database scans, and eliminate duplicate

candidate itemsets.

H.V. Duong et al. [8] proposed an equivalence relationship by using the closure

of an itemset to partition a solution set into disjoint equivalence classes as well as

a new efficient representation of the rules in each class based on a lattice of the closed

itemsets and their generators. They developed a new algorithm (called MAR-MINSC)

to rapidly mine all of the constrained rules from the lattice instead of mining them

directly from the database.

The properties and application requirements that are associated with the intel-

ligence data in cyberspace were scrutinized by Zhang Jie et al. [10]. In this study,

a new improved algorithm is recommended whose functioning is based on the Apriori

algorithm. Frequent itemsets and non-frequent itemsets are indeed extracted here

through setting double thresholds. Meanwhile, there was a reduction in the quantity

of non-frequent itemsets; afterward, confidence, threshold judgment, and non-frequent

itemsets were employed. Moreover, they conducted the mining of positive and nega-

tive association rules. Correspondingly, they recognized the integration of a massive

amount of information data in cyberspace. By inducing and filtering the integrated

information data, they excavated the association rules while attaining the useful in-

formation. Lastly, they identified the impacts of “assistant decision-making”.

What follows is a brief overview of the three algorithms that were used in com-

parison with PAA. In the first algorithm (which is called BitTableFI), a particular

data structure (named BitTable, which contains a set of integers whose bits repre-

sent an item) was used horizontally and vertically to compress a database for quick

candidate-itemset generation and support count. In order to compress the candidate

itemsets and the database, BitTable was utilized in BitTableFI for candidate-itemset

compression. As such, if candidate itemset C contains item i, bit i of the BitTable

element will be marked as one; if not, it will be marked as zero. It is of note that

BitTable will be utilized vertically for database compression [7].

The second algorithm to be compared with PAA is TDM-MFI. A directed graph

is utilized in this algorithm in order to store the information that is associated with

the frequent itemsets of transaction databases. This approach provides the trifurcate-

linked list storage structure of the directed itemsets’ graph. With the directed item-

166 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

sets’ graph, the mining process of the maximal frequent itemsets ultimately converts

into the process of traversing the directed itemsets’ graph. Primarily, the first node

will be chosen as the starting node of the whole traversing process. This is where the

adjacent node is visible. Subsequently, it is possible to see its adjacent node when

starting from the mentioned node. Such a visiting procedure ensues in anticipation

of the latest adjacent node or a supporting number that will be smaller than the min-

imum support degree that is being attained. Along these lines, a maximal frequent

itemset is mined and stored into the set of the maximal frequent itemsets.

Finally, the path recurrently returns to the upper layer for visiting the other

nodes. If the subsequent extracted frequent itemsets are a subset of the previous

maximal frequent itemsets, they are not stored. This feature prevents the algorithm

from repeating the process. By redoing such an operation, the whole traversing

process will not be ended until each of the nodes of the directed itemset graph is

chosen as a starting node [11].

The third algorithm to be compared with PAA is MDC-Apriori. This algorithm

builds a 0-1 transaction matrix through scanning the database one time while estab-

lishing the AE arrays in order to weigh each column in the matrix and calculate the

completely-weighted support for the frequent itemsets. Both the minimum support

and the strategy of the double correlation are employed to prune the frequent itemsets

as well as the negative itemsets. As a final point, the profit constraint extensional

association rules will be mined and the strategy degree of the correlation specified

using the correlation coefficient [12].

Despite the variety of works to improve the Apriori algorithm, one of the major

concerns is the slowness of the algorithm due to repeated scans of the entire dataset.

In the algorithm that is proposed in this paper (PAA), an intelligent method is used

to prevent an entire dataset search.

3. Research approach

A new intelligent method is presented in this paper that is based on the dynamic pro-

gramming strategy of minimizing the number of searches in a dataset. The proposed

algorithm is compared with the CAA algorithm as well as three others; namely, the

BitTableFI, TDM-MFI, and MDC-Apriori algorithms. These algorithms were briefly

described in the previous section. The three algorithms encompass data that varies in

terms of a record’s numbers and variables while providing us with the appropriate con-

ditions for running the experiment and establishing the required comparisons. These

experiments were performed on the Mushroom, Congressional Voting, and Car Eval-

uation datasets; all of these datasets were attained from the UCI Machine-Learning

Repository. The attribute (item) types of these datasets were categorical. This pa-

per considers a different value of each expanded data instance as a transaction. For

example, the Car Evaluation dataset consists of 6 items, and each item has 3 or 4 val-

ues; however, the formed dataset contains 21 columns. The details of each of these

datasets are depicted in Table 2.

Finding frequent items: novel method for improving Apriori algorithm 167

Table 2
Dataset characteristics

Dataset name Number of items Number of records

Mushroom 120 8416

Congressional Voting 17 435

Car Evaluation 19 1728

4. Proposed Apriori algorithm (PAA)

In this section, the transaction-storage table is described, followed by an explanation

of how the frequent itemsets are generated (with an example). Finally, the numbers

of searched records are compared.

4.1. Transaction storage table

Since the Apriori algorithm is a breadth-first algorithm, the entire dataset must be

scanned from left to right and top to bottom in order to find the support of an item

(based on Tab. 1). To avoid scanning the entire dataset to find support, a change in

the transaction storage table (the changed TD) is made. In the first step, each column

represents an item and each row represents a purchase. For example, consider the

TD dataset (Tab. 1). Based on this dataset, the number of columns will be five, and

the number of rows will be six. To calculate the support for each item, the number of

occurrences is counted in each item’s column. Also, the TID transactions that contain

these items are stored (Tab. 3).

Table 3
Changed TD

TID Item A Item B Item C Item D Item E

T100 A – C D E

T200 – B C – E

T300 A B C – E

T400 – B – – E

T500 A B C – E

T600 – – – D –

Support 3 4 4 2 5

TID-Support

T100

T300

T500

T200

T300

T400

T500

T100

T200

T300

T500

T100

T600

T100

T200

T300

T400

T500

For instance, there is an Item A in each of the T100, T300, and T500 transactions.

In the 1-itemset (Tab. 3), these TIDs are stored in the last row of each column (item).

168 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

For the other k-itemsets (k > 1), a column is added for each itemset according to

Figure 2, and the TIDs that contain this item are stored.

As can be observed in Table 3, the set of transactions that contain this item is

stored for each item.

4.2. Generating frequent itemsets

In CAA, the dual itemsets are created first; then, some items are pruned based on

the value of the minimum support (minsup). In the next step, an item is added

to the itemsets; this process continues until it finally reaches one or more frequent

itemsets. However, we strive to act intelligently in PAA (besides, there is no need to

add the items one at a time). This indicates that there will be multiple items instead

of dual items in the C2 step. For this purpose, we first sort each column of the table

by the value of the support for this column (from large to small – Table 4). After

sorting, the column whose support value is less than the minsup is removed; then,

a frequent 1-itemset (L1) is created.

Table 4
Frequent 1-itemset (L1)

TID Item E Item B Item C Item A

T100 E – C A

T200 E B C –

T300 E B C A

T400 E B – –

T500 E B C A

T600 – – – –

Support 5 4 4 3

TID-Support

T100

T200

T300

T400

T500

T200

T300

T400

T500

T100

T200

T300

T500

T100

T300

T500

As can be seen from Table 4, Items C and B have the same support value. Since

Items B and C are in the same position, we combine all of the items (namely B, C,

and E) instead of just combining B with E. In other words, multiple items can be

combined in each step instead of one item – provided that the added items have an

equal value of support. Subsequently, EBC is combined with A, and EBCA is created.

The next step is to generate the frequent 2-itemsets from L1. To receive the value

of support for each itemset, the itemset is searched among the TIDs that are stored

in this item instead of searching in the total dataset records. Between two items, the

transactions of the item that has the minimum number of stored TIDs are considered,

and the itemset search to count the value of the support is performed only between

Finding frequent items: novel method for improving Apriori algorithm 169

these transactions. For example, considering the first item in Figure 2 (E, B) based

on the original Apriori (CAA), we scan all six transactions to find itemset (E, B).

However, we split itemset (E, B) into E and B in PAA and receive the minimum

support between them by using L1. Here, B has the smallest minimum support.

Next, itemset E, B is searched in the transactions that are contained in Item B

(these TIDs were stored in Table 4). Therefore, we only search for itemset E, B

in transactions T200, T300, T400, and T500. This method results in the fact that

the number of steps for running the algorithm are significantly reduced, as are the

number of scanned transactions for creating the itemsets. The steps for performing

the operation are displayed in Figure 2.

Figure 2. Operation process of CAA

According to Figure 2, all of the dual combinations are created in the 2-itemsets,

and the duplicate itemsets are removed. Then, the value of the support is

obtained, and the pruning is done (those rows that had less support than the minsup

are in gray). In the 3-itemsets, there is only one itemset whose support value is 3;

therefore, this item is a frequent itemset. In fact, PAA is an intelligent approach that

discovers all of the frequent itemsets.

The PAA pseudo-code for discovering the frequent itemsets for mining is given

below (Algorithm 2):

170 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

Algorithm 2 PAA pseudo-code

1: start

2: Define minimum support and ki
3: Create 1-itemset = Create new table where each column represents item and each row

represents transaction

4: For i = 1 in range (Number of items):

5: Obtain support value for this item

6: Store transactions that contain this item

7: Prune 1-itemset

8: Sort 1-itemset based on value of support

9: Combine items from 1-itemset that have same support value

10: While ki-itemset ̸= ϕ

11: Obtain all compounds with ki number

12: For i = 0 in range (length [compounds]):

13: Obtain support value for each itemset from TIDs

14: Prune ki-itemset

15: Store transactions

To express this more clearly, the PAA is described by means of a flow chart in

Figure 3; then, the PAA pseudo-code will be presented.

Figure 3. Flowchart of proposed approach

The time-complexity analysis of an Apriori algorithm is affected by the minsup,

the number of items, and the number of transactions: if the minsup value is low,

Finding frequent items: novel method for improving Apriori algorithm 171

the number of itemsets in each step will increase; if this value is high, the number

of itemsets in each step will decrease (and the program’s run speed will increase).

Likewise, the number of items and the number of transactions affect the execution

time of the algorithm. In PAA, creating the 1-itemset (Line 5) is of time order O(NM),

where M is the number of items, and N is the number of transactions. The pruning

time (Line 6) is equal to the number of times the support value is checked for each

item; this is the same as the number of items, so it is equal to O(M). The time order

that is related to the 1-itemset sort that comes with the columnar displacements

(Line 7) is equal to O(M2). The combination of the items (Line 8) in the worst case

(if the items do not have the same support value) is equal to O(M). The ninth step

is to create the frequent itemsets (Line 9). In the worst case, none of the items may

have the same value of support; in this case, the total number of compounds that

are made in each step is O(M2). In addition, the number of steps is equal to the

number of items (M). The time that is required to obtain the support value for each

compound is N; therefore, the total time order of Line 6 is O(NM3).

4.3. Comparing numbers of searched records

In CAA, all of the dataset records must be repeatedly scanned in order to obtain

every frequent k-itemset (Lk). In the example given in Section 1.1, 30 records were

compared to obtain the L1s (number of items * number of dataset records). To obtain

the L2s, the number of searched records was 36; for the L3s, the number was equal to

9 records. The total number of scanned records equaled 75. To obtain every frequent

k-itemset (Lk) in PAA, it is not necessary to scan an entire dataset at every step.

Instead, we need to scan the first step (L1) of the entire dataset (which will not

happen in the following steps). It should also be noted that the number of records

that were searched for obtaining the L1s was equal to 30. In the subsequent step, to

obtain the L2s and L3s, 21 and 3 records were to be searched, respectively (in the

third step, there was only one 3-itemset member – including EBC). Its two-membered

subsets included EB, EC, and BC. Of these subsets, we selected a two-member set

whose minsup had been kept to a minimum, and we performed a search on its TIDs

(here, the BC was selected, and the search was performed on the T200, T300, and T500

transactions). Finally, the total number of records that were searched in this example

with PAA was found to be equal to 54. Table 5 shows a comparison between CAA

and PAA in terms of the number of scanned transactions.

Table 5
Number of scanned transactions

k-itemset CAA PAA

1-itemset 30 30

2-itemset 36 21

3-itemset 9 3

Total 75 54

172 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

By storing the number of records for each item, the PAA algorithm stops the en-

tire dataset from being scanned at each step. This innovative method minimizes the

number of references to each record. Moreover, it decreases the algorithm’s execution

time when generating a frequent itemset.

4.4. Evaluation of memory usage

Table 6 exhibits the amount of memory that was used for each dataset that had

different minimum supports.

Table 6
Memory usage

Mushroom Congressional Voting Car Evaluation

Min-sup

Memory

usage

(byte)

Min-sup

Memory

usage

(byte)

Min-sup

Memory

usage

(byte)

0.06 131.829 0.15 43.419 0.02 13.140

0.08 72.540 0.20 25.028 0.03 3.984

0.10 59.371 0.25 18.696 0.04 3.984

0.12 47.914 0.30 5.672 0.05 3.984

0.14 38.612 0.35 2.748 0.06 3.984

0.16 26.112 0.40 1.760 0.07 3.680

0.18 18.732 0.45 972 0.08 3.680

0.20 14.020 0.5 432 0.09 836

5. Experimental result

In the current study, three experiments were implemented to evaluate the perfor-

mance of the proposed algorithm. Each experiment used different datasets (which

varied widely in terms of the numbers of records and items) and provided us with

the appropriate conditions for running the experiment and establishing the required

comparisons. The density of the datasets (the number of non-empty entries divided

by the total number of entries) was also quite varied. The three experiments were

conducted to prove the efficiency of this algorithm as follows.

5.1. Results of Experiment 1

In Experiment 1, PAA was compared with the BitTableFI algorithm. The dataset

that was used in this experiment was Mushroom, which contained 8416 records and

120 items. This simulation was implemented in C++ and compiled with Microsoft

Visual C++ on a personal Intel computer with 2.4 GHz CPU and 1 GB memory and

running in the Windows XP operating environment. Table 7 and Figure 4 illustrate

the results that are related to Experiment 1.

Finding frequent items: novel method for improving Apriori algorithm 173

Table 7
Time-consuming comparison of CAA, MDC-Apriori algorithm, and PAA

Min-sup
CAA

[s]

BitTableFI

[s]

PAA

[s]

Time-reduction rate

of PAA relative

to BitTableFI [%]

0.04 550 91.4 5.06 95

0.06 251 31.4 4.42 88

0.08 161 18.76 3.83 82

0.1 142 11.34 3.14 75

0.12 95 5.23 3.01 48

0.14 49.72 3.41 2.82 23

0.16 21.4 3.32 2.72 24

0.18 18.93 3.12 2.49 24

0.20 14.32 2.91 1.91 34

Figure 4. Comparison among different values of minimum support and time consumption

for CAA, BitTableFI algorithm, and PAA

As can be seen in Table 7, the execution time of the PAA algorithm was less

than BitTableFI and CAA with different minsups.

5.2. Results of Experiment 2

In Experiment 2, PAA was compared with the TDM-MFI algorithm. The dataset that

was used in this experiment was Congressional Voting, which contained 435 records

and 17 items. This experiment was run on a PC with P4-3 GHz and 1 GB of main

174 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

memory. The programs were written in C++. Table 8 and Figure 5 show the results

of Experiment 2.

Table 8
Time-consuming comparison of CAA, TDM-MFI algorithm, and PAA

Min-sup
CAA

[s]

TDM-MFI

[s]

PAA

[s]

Time-reduction rate

of PAA relative

to TDM-MFI [%]

0.2 14.2 0.74 0.54 27

0.3 4.1 0.59 0.16 73

0.4 1.9 0.52 0.08 85

0.5 0.5 0.12 0.02 84

Figure 5. Comparison among different values of minimum support and time consumption

for CAA, TDM-MFI algorithm, and PAA

Based on the results that are shown in Table 7, the implementation of the PAS

with a different dataset still yielded better results than the algorithm that was com-

pared in this experiment.

5.3. Results of Experiment 3

In Experiment 3, PAA was compared with the MDC-Apriori algorithm. The dataset

that was used in this experiment was Car Evaluation, which contained 1728 records

and 19 items. This experiment was run on a PC with Core i5, 2.67 GHz CPU, and

2 GB of memory. The programs were written in Java. Table 9 and Figure 6 represent

the results that are related to Experiment 3.

Finding frequent items: novel method for improving Apriori algorithm 175

Table 9
Time-consuming comparison of CAA, MDC-Apriori algorithm, and PAA

Min-sup
CAA

[s]

MDC-Apriori

[s]

PAA

[s]

Time-reduction rate

of PAA relative to

MDC-Apriori [%]

0.02 71.4 4.8 3.80 21

0.04 28.62 2.5 1.28 49

0.06 27.34 2.3 1.30 43

0.08 15.31 1.1 0.86 22

0.10 4.93 0.93 0.26 72

0.12 3.7 0.7 0.22 69

Figure 6. Comparison among different values of minimum support

and time consumption for CAA, MDC-Apriori algorithm, and PAA

With a rise in minimum support, there will be a decline in the number of frequent

itemsets; this greatly reduces the algorithm’s running time. The experimental results

acknowledge that, when compared with the classical Apriori, BitTableFI, TDM-MFI,

and MDC-Apriori algorithms, the execution times of PAA are greatly reduced. In

Table 10, the average PAA runtime reduction is shown as compared to the other three

experiments.
Table 10

Time-consuming comparison of CAA, MDC-Apriori algorithm, and PAA

Proposed

algorithm

Average reduction in

execution time [%]

BitTableFI 52

TDM-MFI 65

MDC-Apriori 46

176 Noorollah Karimtabar, Mohammad Javad Shayegan Fard

Therefore, the execution time of the PAA algorithm was significantly reduced

when compared to the other algorithms.

6. Conclusions

A major challenge in data mining is to apply the Apriori algorithm for detecting

frequent items. Bearing this in mind, this research has introduced a method for

improving the performance of the Apriori algorithm in which those items that are

similar to the values of their supports are merged while storing the TID transac-

tions of each item. Afterwards, the search operation was performed to create the

next itemset in only the saved transactions. This significantly minimized the number

of scans in the dataset, and the entire duplicate items were iltimately discovered. In

order to quantitatively and qualitatively evaluate the performance of the proposed im-

proved Apriori algorithm, three experiments were implemented with the BitTableFI,

TDM-MFI, and MDC-APRIORI algorithms. It was observed that the average run-

times of the PAA algorithm were reduced by 52%, 65%, and 46%, respectively, when

compared to the three mentioned algorithms. With such reduced runtimes, the pro-

posed Apriori algorithm can be very useful for large datasets. In the future, there

can be a further enhancement in the performance by merging this algorithm using

the BitTable method.

References

[1] Agrawal R., Imieliński T., Swami A.: Mining association rules between sets of

items in large databases. In: ACM-SIGMOD International Conference Manage-

ment of Data, pp. 207–216, 1993.

[2] Ai D., Pan H., Li X., Gao Y., He D.: Association rule mining algorithms on high-

dimensional datasets, Artificial Life and Robotics, vol. 23, pp. 420–427, 2018.

doi: 10.1007/s10015-018-0437-y.

[3] Benhamouda N.C., Drias H., Hirèche C.: Meta-Apriori: A New Algorithm

for Frequent Pattern Detection. In: N.T. Nguyen, B. Trawiński, H. Fujita,

T.P. Hong (eds.), ACIIDS 2016: Intelligent Information and Database Systems,

pp. 277–285, Springer, Berlin–Heidelberg, 2016.

[4] Bhalodiya D., Patel K.M., Patel C.: An efficient way to find frequent pattern

with dynamic programming approach. In: 2013 Nirma University International

Conference on Engineering (NUiCONE), pp. 1–5, 2013. doi: 10.1109/NUiCONE.

2013.6780102.

[5] Bhandari A., Gupta A., Das D.: Improvised Apriori algorithm using frequent pat-

tern tree for real time applications in data mining. In: International Conference

on Information and Communication Technologies, 2014.

[6] Cheng X., Su S., Xu S., Li Z.: DP-Apriori: A differentially private frequent

itemset mining algorithm based on transaction splitting, Computers & Security,

vol. 50, pp. 74–90, 2015. doi: 10.1016/j.cose.2014.12.005.

https://doi.org/10.1007/s10015-018-0437-y
https://doi.org/10.1109/NUiCONE.2013.6780102
https://doi.org/10.1109/NUiCONE.2013.6780102
https://doi.org/10.1109/NUiCONE.2013.6780102
https://doi.org/10.1109/NUiCONE.2013.6780102
https://doi.org/10.1016/j.cose.2014.12.005
https://doi.org/10.1016/j.cose.2014.12.005
https://doi.org/10.1016/j.cose.2014.12.005

Finding frequent items: novel method for improving Apriori algorithm 177

[7] Dong J., Han M.: BitTableFI: An efficient mining frequent itemsets algorithm,

Knowledge-Based Systems, vol. 20, pp. 329–335, 2007. doi: 10.1016/j.knosys.2006.

08.005.

[8] Duong H.V., Truong T.C.: An efficient method for mining association rules based

on minimum single constraint, Vietnam Journal of Computer Science, vol. 2,

pp. 67–83, 2015. doi: 10.1007/s40595-014-0032-7.

[9] Han J., Kamber M.: Data Mining Concepts and Techniquesr, Morgan Kaufmann

Publishers, 2006.

[10] Jie Z., Gang W.: Intelligence Data Mining Based on Improved Apriori Algorithm,

Journal of Computers, vol. 14(1), pp. 52–62, 2019. doi: 10.17706/jcp.14.1.52-62.

[11] Liu X., Zhai K., Pedrycz W.: An improved association rules mining method,

Expert Systems with Applications, vol. 39(1), pp. 1362–1374, 2012. doi: 10.1016/

j.eswa.2011.08.018.

[12] Liu Y., Li Y., Yang J., Ren Y., Sun G., Li Q.: An Improved Apriori Algo-

rithm Based on Matrix and Double Correlation Profit Constraint. In: Q. Zhou,

Y. Gan, W. Jing, X. Song, Y. Wang, Z. Lu (eds.), ICPCSEE 2018: Data Science.

Communications in Computer and Information Science, vol. 901, pp. 359–370,

Springer, Singapore, 2018. doi: 10.1007/978-981-13-2203-7 27.

[13] Sun L.: An improved Apriori algorithm based on support weight matrix for data

mining in transaction database, Journal of Ambient Intelligence and Humanized

Computing, vol. 11, pp. 495–501, 2020. doi: 10.1007/s12652-019-01222-4.

[14] Yabing J.: Research of an Improved Apriori Algorithm in Data Mining Asso-

ciation Rules, Journal of Computer and Communication Engineering, vol. 2(1),

pp. 25–27, 2013.

[15] Yu H., Wen J., Wang H., Jun L.: An Improved Apriori Algorithm Based On the

Boolean Matrix and Hadoop, Procedia Engineering, vol. 15, pp. 1827–1831, 2011.

doi: 10.1016/j.proeng.2011.08.340.

Affiliations

Noorollah Karimtabar
The University of Isfahan, Faculty of Computer Engineering, Isfahan, Iran;
karimtabar@eng.ui.ac.ir

Mohammad Javad Shayegan Fard
The University of Science and Culture, Department of Computer Engineering, Tehran, Iran;
Shayegan@usc.ac.ir

Received: 29.04.2020

Revised: 01.06.2021

Accepted: 09.07.2021

https://doi.org/10.1016/j.knosys.2006.08.005
https://doi.org/10.1016/j.knosys.2006.08.005
https://doi.org/10.1016/j.knosys.2006.08.005
https://doi.org/10.1007/s40595-014-0032-7
https://doi.org/10.1007/s40595-014-0032-7
https://doi.org/10.1007/s40595-014-0032-7
https://doi.org/10.17706/jcp.14.1.52-62
https://doi.org/10.17706/jcp.14.1.52-62
https://doi.org/10.1016/j.eswa.2011.08.018
https://doi.org/10.1016/j.eswa.2011.08.018
https://doi.org/10.1016/j.eswa.2011.08.018
https://doi.org/10.1007/978-981-13-2203-7_27
https://doi.org/10.1007/s12652-019-01222-4
https://doi.org/10.1007/s12652-019-01222-4
https://doi.org/10.1007/s12652-019-01222-4
https://doi.org/https://doi.org/10.1016/j.proeng.2011.08.340
https://doi.org/https://doi.org/10.1016/j.proeng.2011.08.340
https://doi.org/10.1016/j.proeng.2011.08.340
karimtabar@eng.ui.ac.ir
Shayegan@usc.ac.ir

	Introduction
	Classic Apriori algorithm
	Motivation

	Related works
	Research approach
	Proposed Apriori algorithm (PAA)
	Transaction storage table
	Generating frequent itemsets
	Comparing numbers of searched records
	Evaluation of memory usage

	Experimental result
	Results of Experiment 1
	Results of Experiment 2
	Results of Experiment 3

	Conclusions

