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Abstract Deep neural networks (DNN) currently play a most vital role in automatic

speech recognition (ASR). The convolution neural network (CNN) and recur-

rent neural network (RNN) are advanced versions of DNN. They are right to

deal with the spatial and temporal properties of a speech signal, and both

properties have a higher impact on accuracy. With its raw speech signal, CNN

shows its superiority over precomputed acoustic features. Recently, a novel

first convolution layer named SincNet was proposed to increase interpretability

and system performance. In this work, we propose to combine SincNet-CNN

with a light-gated recurrent unit (LiGRU) to help reduce the computational

load and increase interpretability with a high accuracy. Different configura-

tions of the hybrid model are extensively examined to achieve this goal. All

of the experiments were conducted using the Kaldi and Pytorch-Kaldi toolkit

with the Hindi speech dataset. The proposed model reports an 8.0% word error

rate (WER).
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1. Introduction

The ASR field has witnessed rapid improvement over the last few years. DNN has

become the most prominent approach, almost replacing the Gaussian mixture model-

hidden Markov model (GMM-HMM) approach [8, 17, 49]. Deep-learning technolo-

gies are responsible for making speech technologies commercially available at one’s

doorstep [15,55], like Google Voice and Alexa. The deep-learning paradigm is contin-

uously evolving and comes with new techniques and more-robust architectures every

year. A wide variety of advanced architectures have been proposed, such as CNN [1],

RNN [13], and the time-delay neural network (TDNN) [37]. Each one has its advan-

tages and disadvantages. Despite these advancements, there is still a massive gap in

performance.

CNN is an advanced version of DNN that holds several advantages over it. It

can efficiently capture the local spatial correlation through local connectivity, which is

hard to achieve via DNN [39]. CNNs are also able to deal with small shifts in frequency

due to speaker variation or speaking style [2, 45]. Due to the sparse connectivity of

the hidden neurons in each layer, CNN tremendously reduces the number of learnable

parameters when compared to DNN. Recent research in speech recognition reports

excellent performance with raw waveforms [20,52,57]. With standard features, CNN

deals with fewer data points (which risk the loss of crucial information). Conversely,

a raw waveform provides a richer and lossless input signal representation to a CNN.

According to [40], standard CNN filters are not good enough to learn common acoustic

features due to the lack of constraint on the neural parameter. These issues have been

effectively dealt with by the recently proposed SincNet-CNN architecture [43], which

uses prior knowledge in an efficient and interpretable manner. It uses sinc functions

to explore the more meaningful filters. In SincNet-CNN, only the low and high cutoff

frequencies of band-pass filters are directly learned from raw data, defining a very

compact front-end filter bank with clear meanings [43]. According to [24], CNN does

not perform well under noisy conditions. CNNs are also not able to handle variable-

length inputs.

On the other side, RNNs are the most suitable choice for context-sensitive data

(like speech), and the function of memory provided by the feedback loops offers higher

accuracy. RNN can exploit long-term feedback dependencies across speech frames,

which makes RNN less affected by temporal distortion [24]. This property makes

them more suitable for speech recognition than other architectures, helping them to

achieve high accuracy. Even though RNNs have a preferred position over different

DNN architectures, they are still limited to the vanishing and exploding gradient

problem [4]. To tackle this issue, the long-short term memory (LSTM) [19] model

was proposed to control the flow of information. The LSTM model was widely applied

in speech-recognition tasks with improved performance gain; however, it faces some

issues when applied to low-resource languages [24]. In 2014, a gated recurrent unit

(GRU) was proposed [7] with a simple architecture based on two gating units. These

two gating mechanisms simplify the sophisticated LSTM cell design. Recently, LiGRU
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was proposed by Ravanelli and Bengio [41], which further disentangles the GRU design

by removing the reset gate. This one-gated RNN model with the ReLu activation

function showed high accuracy and low computational load, making it more popular

among all RNN models [41].

In this paper, we aim to design a deep hybrid architecture by combining SincNet-

CNN and LiGRU layers to take advantage of each model’s merits. CNN is suitable for

extracting position invariant features, and RNN is the best choice for sequence mod-

eling [54]. CNN was shown to perform well on specific sequence processing problems

at a considerably cheaper computational cost than RNN. The combined architecture

of CNN-RNN is able to achieve both low computational cost and high accuracy [6].

The incorporation of a CNN stacked with LiGRU leads to a reduced WER for Hindi

ASR. By using LiGRU rather than LSTM, we achieve a lower WER with reduced

training time. In this work, we present a systematic comparison of the CNN, RNN,

and Hybrid CNN-RNN acoustic models based on different acoustic features, hidden

layers, activation functions, and hidden neurons. This paper also compares the com-

putational efficiency of various acoustic models. The proposed architecture uses CNN

capabilities to extract position-invariant features and the LiGRU model to model the

long-term dependency. The performance of the proposed architecture was measured

on the Hindi dataset. To the best of our knowledge, this work is the first attempt to

explore this architectural variation in speech recognition.

The remaining part of the paper is organized as follows: Section 2 compares the

previous work with the proposed work. Section 3 explains the system component used

in this work. Section 4 discusses the proposed model. Section 5 gives the experimental

setup and corpus details. Section 6 covers the experimental part of the paper, and

Section 7 is the conclusion of the proposed system.

2. Prior work and contributions in Hindi ASR

The availability of a large amount of training data is the major obstacle for training

the ASR system for most of the Indian languages, including Hindi. Hindi is the

third-most-spoken language worldwide, with 637 million1 speakers. However, Hindi is

treated as limited-resource language due to the unavailability of a benchmarked large

speech corpus and other resources. A limited vocabulary Hindi dataset of a duration

of three hours is a well-known available resource for research. To our best knowledge,

there has been no systematic comparison of Hindi ASR under the same training and

testing conditions. For this purpose, we choose only those articles that were trained

over the same Hindi dataset [5, 9–12, 26] (see Table 1). The majority of these have

been done using GMM-HMM [5, 9–12] acoustic modeling and optimized integrated

feature sets [9,10,12]. The impact of deep-learning techniques has not been properly

investigated for the Hindi dataset. Recently, some works reported [35] that the CNN-

-LSTM, CNN-BLSTM model works well for the Hindi language. In [35,36], the author

1https://www.ethnologue.com/language/hin

https://www.ethnologue.com/language/hin
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trained Hindi ASR using 48 hours of a Hindi dataset from a different source. For better

understanding the role of deep-learning techniques over Hindi ASR, we include only

those works based on the Hindi dataset [46].

Table 1
Comparison with previous work (PER – Phoneme Error Rate; Acc. – Accuracy)

System Feature Acoustic Language Parameter [%]

Extraction Model Model measure

Biswas et al. (2014) [5] WERBC HMM n-gram PER 81.48

Dua et al. (2018) [10] Q-PSO optimized GMM-HMM n-gram Acc. 80.40

MF-GFCC

Dua et al. (2019) [11] MFCC GMM-HMM RNN LM Acc. 84.40

Kumar et al. (2020) [26] MFCC TDNN n-gram Acc. 84.10

Dua et al. (2019) [12] DE-optimized GMM-HMM n-gram Acc. 86.90

GFCC

Dua et al. (2018) [9] PSO optimized GMM-HMM n-gram Acc. 87.96

MF-GFCC

Proposed work Raw features SincNet-CNN n-gram Acc. 92.0

-LiGRU

3. System components

3.1. Convolutional Neural Network (CNN)

CNN [44] is another deep-learning architecture. CNN can efficiently capture the

structural locality from the feature space [28]. CNN can also deal with a small shift

in feature space due to the sparse connectivity of the hidden neurons in each layer.

The CNN architecture is a combination of three sub-layers; namely, the convolu-

tion layer, the pooling layer, and the fully-connected (FC) layer. CNN-based acoustic

modeling consists of alternating convolution and pooling layers, followed by FC lay-

ers. The speech data is organized in feature maps and feeds into the CNN architecture.

The feature map term is borrowed from image processing, in which each pixel denotes

the horizontal and vertical coordinates of a two-dimensional surface. In speech recog-

nition, a feature map can be thought of as a spectrogram (two-dimensional) with

a size of #times * #freqs (i.e., 11*40, where 11 is the context-window size, and 40 is

the feature dimension) for static features. For dynamic features (∆ +∆∆), the input

feature map can be viewed as three different two-dimensional feature maps.

Convolution is the primary building block of the CNN architecture, in which

a small window (filter or kernel) runs over the input feature map from the top-left

corner to the bottom-right corner step by step. At each stage, the covered area by

a small window (i.e., receptive field) performs a dot product with a filter and produces

one output. All of the outputs generated by this process form a new feature map.

Convolution output can be defined as follows:

fm(l) = σ(k(l) · fm(l−1) + b(l)) (1)
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where fm(l) and fm(l−1) denote the feature maps, and k(l) denotes the kernel (filter)

size. The convolution operation (*) is applied between the kernel and the feature

map. The bias is denoted as b(l). Finally, the activation function (elu, sigmoid, ReLu,

etc.) will be applied to generate a new feature map.

After the convolution operation, pooling operation is applied to the newly gen-

erated feature map to reduce the feature map dimensionality. This dimensionality

reduction is achieved by the pooling function, which eliminates the irrelevant infor-

mation and keeps the useful information. The pooling efficiently deals with a slight

shift in the input pattern along with the frequency axis. Passricha and Aggarwal [36]

investigate the performance of various pooling strategies like max-pooling, stochastic

pooling, Lp pooling, mixed pooling, average pooling, etc. for the speech-recognition

task. The output of the pooling layer feeds as an input to the second convolutional

layer and so on. The last layers of the CNN are FC layers without any sparse con-

nectivity. In the FC layers, the last one serves as the loss layer that computes the

posterior probabilities of different classes.

The sparse connectivity of CNNs tremendously reduces the number of learnable

parameters as compared to DNNs. The number of parameters in one convolutional

layer can be computed as follows:

#params(l) = k(l) · fm(l)
s · fm(l−1)

s (2)

where k(l) denotes the filter size of layer l, and fms denotes the feature map size of layer l.

3.2. SincNet architecture

The numbers of time-domain convolutions are performed between the input raw

speech signal and the finite impulse response (FIR) filters in the first convolution

layer [30]. This process can be described as follows:

o[n] = i[n] · k[n] =

X−1∑
x=0

i[x].k[n− x] (3)

where i[n] is the part of the speech signal, k[n] is the kernel (filter) of length X, and

o[n] is the output of the convolution. In this operation, all of the elements of k[n] are

learnable parameters. In SincNet, k[n] is replaced by function g[n], which depends

on only two learnable parameters.

o[n] = i[n] · g[n, θ] (4)

In Sincnet, function g is implemented as a rectangular bandpass filter. In the fre-

quency domain, the magnitude of rectangular bandpass filters can be defined as follows:

G[f, f1, f2] = rect

(
f

2f2

)
− rect

(
f

2f1

)
(5)

where rectw(.) is the rectangular function with width w centered in 0.
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The SincNet function used to get impulse response g(n) in the time domain can

be described as follows:

g[n, f1, f2] = 2f2sinc(2πf2n) − 2f1sinc(2πf1n) (6)

where f1 and f2 are the low- and high-frequency cutoffs of the rectangular bandpass

filter. Here, f1 and f2 are the only two learnable parameters randomly initialized

within a range of [0, fs2 ], where fs is the sampling frequency of the input signal. The

Sinc function is described as sinc(x) = sinc(x)
x . Furthermore, this g is smoothed by

the Hamming window [40].

In this way, SincNet helps us discover more meaningful and interpretable filters

for CNNs. The SincNet based convolution operation is performed in the first layer,

then multiple CNN or FC layers can be stacked before being fed into the softmax

classifier. Unfortunately, SincNet was investigated by only a few works [29,30,34,43].

In this work, we proposed the hybrid architecture with SincNet-CNN and a recurrent

neural network.

3.3. Recurrent Neural Network (RNN)

An RNN is a type of neural network that was proposed by Elman [13]. An RNN’s

loop-like structure allows it to remember previously processed information at future

time instances. The hidden nodes in RNNs are self-connected and inter-connected to

provide a full information exchange. Shuster and Paliwal [48] proposed a bidirectional

RNN, which is an extension of a simple RNN (see Fig. 1).

y1 yny2

y1 y1

h y1 y1

x1 x2 xn

w1w1w1

w2 w2w2
w2

w4

w5 w5 w5
w5

w4

w3 w3 w3

w4

Output layer

Input layer

Forward layer

Backward layer

Figure 1. Bi-directional RNN

Bidirectional RNNs can process both past and future information. Speech is

continuous data, and any model that has access to both past and future information

can effectively predict the current information. An RNN’s capability to process past

and future information makes it a more suitable choice for speech recognition. RNN

output can be calculated by the following equation:

ht = tanh(W [ht−1, xt] + bh) (7)
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The back-propagation through time (BPTT) training algorithm is used to train RNNs.

These RNNs suffered from the vanishing/exploding gradient problem [47]. This issue

was rectified by other RNN variants (like LSTM and GRU).

3.4. Gated Recurrent Neural Networks

3.4.1. Long Short-Term Memory (LSTM)

LSTM was proposed by [19] to overcome the limitations of the traditional RNN model.

It is a distinct type of RNN model (see Fig. 2) with a memory cell and gating units.

The memory cell helps remember the information over a long span of time, and the

gating units help to control the information flow within the network [16]. The basic

structure of the LSTM model contains three gates; namely, the input gates, output

gate, and forget gate.

ø
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Sum over all inputs

Multiplication

Weighted connections

𝛔
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Figure 2. Basic building block of LSTM unit

By using these gates, the vanishing/exploding gradient problem is resolved, as

they allow for an information flow in a more stable fashion over a lengthy span of

time [56].

ft = σ(Wf [ht−1, xt] + bf ) (8)

it = σ(Wi[ht−1, xt] + bi) (9)

ot = σ(Wo[ht−1, xt] + bo) (10)

c̃t = tanh(Wc[ht−1, xt] + bc) (11)

ct = ft � ct−1 + it � c̃t (12)

ht = ot � tanh(ct) (13)
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3.4.2. Gated Recurrent Unit (GRU)

The GRU architecture simplifies the LSTM architecture by using only two gates (see

Fig. 3). Due to the fewer gates, it has fewer parameters as compared to LSTM,

which further helps it achieve great performance and fast convergence [53]. GRU was

proposed by [7] in 2014. GRU removed the hidden cell state and combined the input

gate and the forget gate into a single gate (update gate z) from the LSTM architecture.

GRU is based on update gate z and reset gate r. The connection relationship can be

understood by the following equations:

zt = σ(Wz[ht−1, xt] + bz) (14)

rt = σ(Wr[ht−1, xt] + br) (15)

h̃t = tanh(Wh[rt � ht−1, xt] + bh) (16)

ht = (1 − zt) � ht−1 + zt � h̃t (17)

xt

ht-1

𝛔

𝛔

ø

ht

rt

zt
1-

ĥt

Figure 3. Basic building block of GRU unit

3.4.3. Light Gated Recurrent Unit (LiGRU)

Li-GRU is an extension of the GRU architecture that was proposed by Ravanelli [41]

in 2018. In LiGRU, the architecture only works with update gate z, as it removed

reset gate r from the GRU architecture. According to [41], the reset gate plays

a vital role when dealing with the discontinuities that occur in the sequence. This

situation rarely occurs in the case of speech, as history will always be helpful. The

removal of reset gate rt leads to the modification of Equation 16:

h̃t = tanh(Wh[xt, ht−1] + bh) (18)

As proposed by [41], the standard tanh activation function is also replaced by the

ReLu activation function for better results.

h̃t = ReLu(Wh[xt, ht−1] + bh) (19)
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4. Proposed architecture

The recent work shifted to evolve a more interpretable neural network [32,34,43] by di-

rectly processing the raw speech waveform. Standard features like MFCC, MFSC, and

FBANK consume fewer data points (e.g., 4,000 per second at a sampling frequency

of 16 kHz) compared to the raw speech signal (16,000 per second at a sampling fre-

quency of 16 kHz). Due to the richer and lossless input signal representation, raw

speech input to the neural network model has become more popular [23, 33]. The

standard features are based on human perception with no guarantee of producing

optimal features [43]. In more recent work, CNNs were fed by raw speech wave-

forms [21, 23, 33, 52, 57]. The First CNN layer with a raw speech waveform has to

deal with the high dimensionality of the data as well as the vanishing gradient issue

(generally in a very deep architecture) [43]. Due to the lack of interpretability of the

filterbank learned in the first convolution layer, Ravanelli and Bengio proposed a new

convolution layer (SincNet) [40]. SincNet uses prior speech-processing knowledge to

produce interpretable filters in the first convolution layer. Recently, a few other filters

were also proposed for SincNet to enhance the system’s accuracy [29,32].

Si
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Li-GRU
layers
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Layers

linear
layers

CNN layers

Conv-2

Max 
pooling

Max 
pooling
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Figure 4. Proposed architecture

The proposed hybrid architecture incorporates the CNN, LiGRU, and DNN

models. Figure 4 illustrates the hybrid architecture (and in Table 2 the configu-

ration details are given). In the first convolution layer, we applied the raw speech

signal as an input to obtain the output feature map. All of the convolution layers

have 256 feature maps in this work. The dimensionality of the resultant feature map

was further reduced by applying the max pooling layer. The pooling layer helps to

keep the useful information and eliminate the insignificant details. The output of the

pooling layer was fed as an input to the second convolution layer. After the third

CNN layer, a linear layer was introduced to reduce the dimensionality without losing

any information. LiGRU can encodes the sequence history in its internal state, which

gives the potential to predict the next phoneme by using previously observed features.

We used three LiGRU layers, with 550 units per layer. On top of the LiGRU layers,
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we put FC layers of a size of 5 with 1,024 units in each layer. We used FC layers to

determine the posterior probabilities of different classes, as DNNs are the most suit-

able for class-based discrimination [17]. The batch-size was 8, with an initial learning

rate of 0.0004. The learning rate was tuned on the development set for 24 epochs.

Table 2
Configurations for proposed architecture

Layers #Layers Feature Map Size Filter Size #Neurons

Convolutional 3 256,256,256 128 samples,5,5 –

Pooling 2 256,256 3,2 –

Li-GRU 3 – – 550

Fully Connected 5 – – 1,024

After each epoch, the learning rate was reduced by a factor of two If the frame

accuracy on the development set went below a certain threshold. All other configu-

ration details can be found in Table 2. We used a Kaldi decoder with the beam set

to 13 and the lattice beam set to 8. Interestingly, this deep architecture has 11 layers

(3 SincNet-CNN, 3 LiGRU, and 5 MLP) with fewer parameters (≈ 10.6M), which

is approximately half in size of the five-layer LSTM model. This property makes

the proposed architecture very computationally efficient when compared to the other

RNN models.

5. Corpus details & experimental setup

5.1. Corpus details

We used a well-annotated and phonetically rich dataset [46] that was developed by

TIFR, Mumbai (see Table 3).

Table 3
Hindi Speech Corpus Details

SN Dataset #Sentences Duration
Duration after five-fold

speed perturbation

1 Training 800 2.1 Hours 10.5 Hours

2 Development 100 10 Min. 50 Min.

3 Testing 100 10 Min. –

The total duration of this dataset is 2.5 hours, which is treated as a low resource

to train the DNN acoustic models. To cope with this issue, we apply a five-fold speed

perturbation on the original train and development set. This dataset was recorded in a

quiet room with two microphones at a 16 kHz sampling frequency. For the recording,

100 male/female speakers of various age groups were utilized. The pronunciation dic-

tionary was made by using 68 phones. Each speaker was used to record ten sentences,
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out of which two sentences remained the same for all speakers. We used 80% of this

dataset for training, 10% for development, and the remaining for testing purposes.

5.2. Experimental setup

The GMM-HMM baseline system was first built to produce an alignment for the pro-

posed neural network training. The 39-dimension MFCC features were used to train

the GMM-HMM system. These features were extracted by using a 25-ms Hamming

window with a 10-ms frameshift. The baseline GMM-HMM system was built by using

the Kaldi [38] toolkit with the TIMIT recipe. All of the neural network models in

this work were trained using the Pytorch-Kaldi [42] toolkit. The feed-forward connec-

tions in the DNNs were initialized as described in [14]. The orthogonal matrices [27]

were used to initialize the recurrent weights. To gain better generalization capabil-

ities and performance improvement, we applied the dropout technique [18, 50] with

the same mask across all time steps (as suggested by Moon et al. [31]). To address the

internal covariate shift problem and speed-up the training time, we used the batch

normalization [22] technique. Batch normalization also helps to improve the system’s

performance [18].

All of the training sentences were stored in ascending order according to their

lengths. We used a mini-batch size of eight sentences starting from short utterances,

and this minibatch size was progressively increased by the training algorithm. The

Kaldi recipe was used for decoding and rescoring. The adaptive moment estimation

[25] algorithm was used for optimization, which ran for 24 epochs. After each epoch,

the system performance was measured on a development set. If the performance

falls below a certain threshold (th = 0.001), the learning rate was updated as half the

current value. An initial learning rate of 0.0004, a dropout factor of 0.2, and the ReLu

activation function were chosen for all baseline experiments.

The texts from the various sources were collected to train the language model.

These sources were the Emili corpus, magazines, newspapers, web text, and newslet-

ters. For the Hindi language, 32,000 words were collected to train the language

model. The SRI language modeling (SRILM) toolkit [51] was used to train the lan-

guage model on the available text data of the Hindi language. The language model

used in all experiments is the Kneser-Nay smoothed tri-gram language model.

6. Results & discussion

6.1. Experiments with different combinations of acoustic feature-set
and activation functions

Table 4 shows the performance of Hindi ASR with various neural network-based

acoustic modeling using a different combination of acoustic feature sets. TIMIT

configurations of the PyTorch-Kaldi toolkit were used to train the acoustic models.

Table 4 reports the WER achieved by the acoustic models. Except for CNN, all of
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the neural network architectures in this experiment contain 5 hidden layers with 550

hidden neurons in each layer with the ReLu activation function.

Table 4
Performance evaluation on different feature-set with different acoustic models

Acoustic Models Features Language Model WER [%]

MFCC 20.4

RNN FBANK 3G 19.9

MFCC+FBANK 17.4

MFCC+FBANK+fMLLR 16.8

MFCC 19.2

LSTM FBANK 3G 18.6

MFCC+FBANK 16.1

MFCC+FBANK+fMLLR 15.9

MFCC 17.5

GRU FBANK 3G 16.9

MFCC+FBANK 14.9

MFCC+FBANK+fMLLR 14.2

MFCC 16.9

Li-GRU FBANK 3G 16.2

MFCC+FBANK 13.6

MFCC+FBANK+fMLLR 12.7

FBANK 14.6

CNN MFSC 3G 14.8

Raw 14.4

SincNet 13.9

For all of the RNN variants, we used the concatenated feature sets of MFCC,

FBANK, and fMLLR. All of the features were extracted by Kaldi and concatenated

by the Pytorch-Kaldi toolkit. These features with five frameshifts were used as input

for the five-layer RNN models. In the training of the recurrent models, we truncated

the long sentences with values of more than 1,000 to mitigate the out-of-memory is-

sue. The RNN with ReLu activation function does not include any gating mechanism.

LSTM performs slightly better (≈ 1%) than the ReLu-RNN model. The GRU model

shows a ≈ 1% improvement over the LSTM model. The baseline CNN system uses

40-dimensional FBANK features and an 11-frame context window. Three convolu-

tional layers with 256 feature maps and filter sizes of 9 · 9, 3 · 3, and 3 · 3 were chosen,

and Max-Pooling was applied to reduce the dimension. We used MFSC, raw, and

SincNet features as input for CNN as well. The best WER (12.7%) was achieved via

the Li-GRU acoustic model. The Li-GRU architecture is based on a single gating

mechanism. The combination of the MFCC, FBANK, and fMLLR feature sets gives

the lowest WER in all of the neural network architectures.

In this experiment, we also investigated the role of activation functions like sig-

moid, tanh, relu, leaky-relu, and elu on the accuracy of the Hindi ASR system. We
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found that the elu activation function gives the best WER (11.9%). All of the other

configurations remained the same throughout all of the experiments. Overall, a 20%

relative reduction in the WER was measured when using elu as compared to the sig-

moid activation function for Hindi speech recognition (see Table 5). This work can be

explored to investigate the other hyperparameters of the convolutional neural network.

Table 5
Performance evaluation of Hindi ASR using different activation functions

Models Features # Layers sigmoid tanh relu leaky-relu elu

DNN FBANK 7 25.8 24.6 23.9 23.3 22.8

LSTM MFCC+FBANK+fMLLR 5 17.9 16.3 15.9 15.4 14.9

GRU MFCC+FBANK+fMLLR 5 17.2 15.8 14.2 13.8 13.4

Li-GRU MFCC+FBANK+fMLLR 5 14.9 13.5 12.7 12.3 11.9

CNN

FBANK 3 17.4 15.9 14.6 14.2 13.8

MFSC 3 17.6 16.2 14.8 14.5 14.1

RAW 3 17.2 15.7 14.4 14.1 13.6

SincNet 3 16.8 15.4 13.9 13.7 13.4

In Table 6, the numbers of the parameters and training times are compared

among the different acoustic models. The average training time per epoch was com-

puted for comparison. For the same configuration, the LiGRU model’s parameter

size is just half of that in the LSTM model. For the Hindi dataset, an approx. 27%

reduction was recorded by the LiGRU acoustic model as compared to the LSTM

model. In the previous section, we already observed the impact of the LiGRU model

on system accuracy. Due to its lower parameter size, less training time, and high

accuracy, LiGRU becomes the most suitable choice for further investigation.

Table 6
Training time and parameter size comparison

Models #Layers #Neurons #Parameters Training times

DNN 7 1,024 6.7 M 380 s.

RNN 5 550 5.5 M 500 s.

LSTM 5 550 20.1 M 1,369 s.

GRU 5 550 15.2 M 1,207 s.

LiGRU 5 550 10.4 M 997 s.

6.2. SincNet-CNN with raw speech

In the case of raw speech as input to the first CNN layer, the input dimension is one,

as the raw features are composed of a window of the temporal speech signal. Each

speech sentence was split into chunks of 300 ms with 10 ms overlaps (i.e., the input

size to the network is 0.300 · 16,000 = 48,000 at a sampling frequency of 16 kHz). This

input is fed into the Sincnet filters. In this work, we use 256 SincNet filters (each with
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a length of 128) that are shifted by 10 samples. By this, each filter produces an output

sequence of a size of
⌊
(inputvectorsize−filterlength)

stride

⌋
+ 1 (i.e.,

⌊
(48,00−128)

10

⌋
+ 1 = 468).

Table 7
Network hyper-parameters for raw speech input

Parameters Unit Value

Input window size ms 300

Kernel width of the first CNN layer samples 128

Kernel width of other CNN layers frames 4–5

Max-pooling kernel width frames 2–3

No. of hidden layers in gated RNN units 3

No. of hidden units in each RNN layer units 550

No. of hidden layers in MLP units 5

No. of hidden units in each MLP layer units 1,024

The hyper-parameters of the CNN network with the raw speech waveform as

input are given in Table 7. After the first convolution layer, the output dimension

was reduced by applying max-pooling with a filter size of 3. The pooling layer reduces

the output dimension by a factor of 3 (i.e., 468/3 = 156). The second convolution layer

takes 156 input samples from each of the 256 filters and produces 156 − 5 + 1 = 152

samples. The overall output dimension of the second convolution layer will become

256 ·152/2 = 19, 456. We used a non-overlapping stride of a size of 1 in all convolution

layers except for the first CNN layer.

Table 8
Configurations used for SincNet-CNN architecture

# Type Input Stream #Filters Size Stride #Param.

1 SincNet-Conv. 1 256 128 10 512

Max-Pooling – – 3 1 –

2 Conv. 256 256 5 1 1,638,400

Max-Pooling – – 2 1 –

3 Conv. 256 256 5 1 1,638,400

Max-Pooling – – 2 1 –

4 Conv. 256 256 5 1 1,638,400

Max-Pooling – – 2 1 –

5 Conv. 256 256 5 1 1,638,400

Max-Pooling – – 2 1 –

6 Conv. 256 256 4 1 1,048,576

The detailed configuration of SincNet-CNN can be found in Table 8. In the third

convolution layer, the input samples of a size of 76 from each of the 256 filters were

given as input, and the output sample size will become 76 − 5 + 1 = 72 samples.

Again, pooling with a filter size of 2 was applied to reduce the output dimension. In
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the fourth CNN layer, the sample size was reduced by 36 − 5 + 1 = 32, which was

further reduced to 32/2 = 16 by adding the pooling layer. In the fifth CNN layer,

this size will become 16 − 5 + 1 = 12; the pooling layer reduces this to 6. Finally,

in the sixth CNN layer, the sample size will become 3. Layer normalization [3] was

applied in each convolution layer. The parameters of the first layer of SincNet-CNN

were initialized by using the mel-scale lower and upper cut-off frequencies. All of the

other CNN layers were initialized by the “Glorot” scheme [14]. We further stacked

3 LiGRU layers with 550 hidden units and 5 MLP layers with 1,024 hidden units.

Table 9
WER [%] comparison of proposed model having increased convolution layers and hidden

units in FC layers

No. of hidden layers

WER [%]

Hidden Units

Conv. LiGRU FC 550 800 1,024 2,048

2 2

5 9.8 9.6 9.5 9.4

6 9.7 9.5 9.4 9.3

7 9.6 9.5 9.3 9.2

8 9.5 9.4 9.3 9.2

3 2

5 9.4 9.3 9.2 9.2

6 9.3 9.2 9.1 9.0

7 9.4 9.3 9.1 9.1

8 9.2 9.1 9.0 8.9

4 2

5 9.1 9.0 8.9 8.8

6 9.0 8.9 8.8 8.7

7 8.9 8.8 8.6 8.5

8 8.7 8.6 8.5 8.4

5 2

5 8.7 8.6 8.5 8.4

6 8.6 8.5 8.4 8.3

7 8.5 8.4 8.3 8.2

8 8.4 8.3 8.2 8.2

We train four architectures based on Convolution Layers 2–6. The first archi-

tecture was composed of three convolution layers, three LiGRU layers, and five MLP

layers (see Table 9). In the second through fourth architectures, only the convolution

layer increases; all other configurations remain the same. The feature dimensions for

all four architectures remained the same as per the table that was already explained.

These architectures were extensively examined by increasing the number of MLP lay-

ers and hidden units in each MLP layer. Two observations were recorded here. First,

as the number of CNN layers increases, the accuracy also increases. The best model

was found to contain six convolution layers. Second, as the number of hidden layers

and hidden units increases in the FC layers, the discrimination capabilities of DNN

increases. This result leads to a corresponding WER reduction. We found 8 MLP

layers that give the best results with 2,048 hidden units in each layer. There is a very
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slight difference in the WER between 1,024 and 2,048 hidden units. By considering

computational efficiency, we found the 1,024-hidden-unit size most efficient for this

work. The proposed very deep hybrid architecture (six CNN + three LiGRU + eight

MLP layers) performs well with raw speech features.

Table 10
Varying length k of filters (WER [%])

Model
Filter length k in samples

64 80 128 256 512 1,024

CNN-SincNet 8.6 8.4 8.2 8.0 8.2 8.4

CNN-Raw 8.9 8.7 8.5 8.3 8.6 8.8

The length of the filter has a significant impact on system accuracy (see Ta-

ble 10). The filter of a length of k = 128 has an impulse response that corresponds to
128

16 kHz = 8 ms at most or a bandwidth that is at least 16 kHz
128 = 125 Hz. Table 11 shows

the WER of Hindi ASR when utilizing different window lengths. We found that 256 is

the optimal window-length choice for Hindi ASR. Table 11 considers the 17-layer ar-

chitecture (six SincNet-CNN + three LiGRU + eight MLP layers) for system accuracy.

Table 11
WER [%] for different acoustic features

SN Models Features WER(%)

1 CNN-LSTM 11.9

2 CNN-GRU FBANK 10.6

3 CNN-LiGRU 9.1

4 CNN-LSTM 12.1

5 CNN-GRU MFSC 10.8

6 CNN-LiGRU 9.3

7 CNN-LSTM 11.2

8 CNN-GRU Raw 9.8

9 CNN-LiGRU 8.3

10 CNN-LSTM 10.8

11 CNN-GRU SincNet 9.4

12 CNN-LiGRU 8.0

6.3. Comparison of hybrid acoustic models
with different acoustic features

In this experiment, we compared the WER [%] of different hybrid acoustic models

with various acoustic features. We found that raw speech as input for the acoustic

models to be the right choice rather than hand-crafted pre-computed features like

MFSE and FBANK. All of the acoustic models are the combination of six CNN,

three LiGRU, and eight MLP layers. The LiGRU layers use 550 hidden units, and
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the MLP layer uses 1,024 hidden units in each layer. We found that the proposed

SincNet-CNN-LiGRU model performs better with a 1% WER reduction as compared

to the FBANK features.

7. Conclusion

This paper describes the impact of our proposed hybrid neural network architecture

on the Hindi ASR system. The proposed architecture has shown significant perfor-

mance improvement when compared to the other acoustic models. Except for the

performance improvement, the proposed architecture also considerably reduces the

computational load and increases the convergence speed. We obtained the lowest

WER (8.0%) when using the proposed model. The other findings of this work can be

summarized as follows:

• Increasing the convolutional layers by the careful selection of the kernel and

pooling sizes helps improve the system’s accuracy by up to 1%.

• The proposed architecture has 17 layers (very deep architecture) and fewer pa-

rameters.

• Raw speech features were found to a more suitable choice as input for CNN as

compared to handcrafted features like FBANK.
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