
Computer Science • 22(1) 2021 https://doi.org/10.7494/csci.2021.22.1.3743

Muhammed Maruf Öztürk

COMPLEXFUZZY:
NOVEL CLUSTERING METHOD
FOR SELECTING TRAINING INSTANCES
OF CROSS-PROJECT DEFECT PREDICTION

Abstract Over the last decade, researchers have investigated to what extent cross-project

defect prediction (CPDP) shows advantages over traditional defect prediction

settings. These works do not take the training and testing data of defect pre-

diction from the same project; instead, dissimilar projects are employed. Se-

lecting the proper training data plays an important role in terms of the success

of CPDP. In this study, a novel clustering method called complexFuzzy is pre-

sented for selecting the training data of CPDP. The method reveals the most

defective instances that the experimental predictors exploit in order to complete

the training. To that end, a fuzzy-based membership is constructed on the data

sets. Hence, overfitting (which is a crucial problem in CPDP training) is al-

leviated. The performance of complexFuzzy is compared to its 5 counterparts

on 29 data sets by utilizing 4 classifiers. According to the obtained results,

complexFuzzy is superior to other clustering methods in CPDP performance.

Keywords cross-project defect prediction, complexFuzzy, training instance selection, fuzzy

clustering

Citation Computer Science 22(1) 2021: 3–37

Copyright © 2021 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

3

https://doi.org/10.7494/csci.2021.22.1.3743
https://orcid.org/0000-0001-6446-9754
https://creativecommons.org/licenses/by/4.0/

4 Muhammed Maruf Öztürk

1. Introduction

It is widely known that software maintenance accounts for up to 50% of total devel-

opment costs [7, 21, 56]. To reduce these costs, good planning is a possible solution,

thereby predicting defects. Defect prediction, which is an interesting research area of

software engineering, aims to estimate future defects by using the historical data

of software projects [28, 52, 71]. However, one critical point during defect prediction

is the structure of the data sets. Previous works had performed prediction through

different versions of the same projects because there were not enough defect predic-

tion data sets [45]. In such experiments (namely, within-project defect prediction

[WPDP]), data sets having the same metrics and a different number of instances are

employed. As the number of data sets increases with a specific diversity level, the

bias extracted from the defect prediction is desired to be transferred from local to

global; however, this is difficult in WPDP due to the lack of historical data.

Researchers prefer to take training and testing data from different projects rather

than working on the same domain to reach a certain bias. This method is called

CPDP; its main objective is to observe the success of a prediction model in which

the training and testing data is taken from different projects [38, 65, 66, 74]. The key

issues related to CPDP are comprised of 1) a great number of features are difficult

to select, and 2) dividing CPDP data sets into testing and training groups is often

effort-intensive. A trivial mistake in the training process may dramatically affect the

success of CPDP. Various studies have been developed to cope with these problems.

Despite the fact that WPDP tends to produce promising results in terms of

F-measure and precision [19], performing CPDP is a must in some cases in which

enough within-project data is not available. On the other hand, CPDP requires data

filtering or feature selection methods to improve the prediction models. Data quality

is a critical issue that should be removed in order to obtain reliable models [20, 30].

In [16], CPDP was investigated in terms of training data selection without con-

sidering data-filtering methods. On the other hand, the data used in CPDP become

reliable through regional data analyses. Ma et al. [35] simply focused on improving

the learning methods to be utilized in CPDP. Their method prefers a weighted model

to transfer data from the target to the source; it does not regard data distribution

while performing CPDP. Rahman et al.’s work [45] argued that CPDP has equal or

better prediction results when compared to WPDP. However, their experimental de-

sign was established by disregarding the defectiveness metrics of the training data.

The method presented in this paper contributes to CPDP by proposing a new clus-

tering method for selecting training data. By this way, a classifier is able to increase

the success of the prediction of defective instances.

The method presented in this paper aims to develop a new training instance selec-

tion method for CPDP. In this context, a clustering method (namely, complexFuzzy)

is proposed to reveal the most defective cluster of the instances.

complexFuzzy: Novel clustering method. . . 5

The paper’s detailed objectives are as follows:

• to improve detection of true positive rate in CPDP;

• to bring new clustering method that can be used in preprocessing;

• to discuss the effects of training instance selection in CPDP;

• to reveal which type of clustering is viable in training instance selection

of CPDP.

The contribution of the paper can be summarized as follows: 1) a novel fuzzy-

clustering method is developed for clustering defect prediction data sets that it is

superior to similar methods in terms of cluster centers; 2) complexFuzzy is a clustering

method that has the potential to reap the benefits of some areas such as metric

selection in CPDP and heterogeneity; 3) a metric formula has been developed so

that it may be adapted to software cost estimation, test case prioritization, and fault

localization; and 4) the effectiveness of the method has been confirmed by employing

10 · 10 cross-validation. In particular, complexFuzzy demonstrated high performance

with regard to performance parameters such as the area under the curve (AUC) and

F-measure.

The algorithm complexFuzzy shows clear advantages over traditional methods,

which are as follows: 1) it has a distinctive property regarding the selection of the train-

ing data in which the software metrics are utilized; 2) unlike preceding works, this study

presents a new method that may help practitioners solve the heterogeneity problem in

CPDP; and 3) complexFuzzy includes a sophisticated mathematical model that helps

detect themost defective instances. Defective instances are easily learned in the training

thanks to the model. This functionality is the main advantage that the model provides.

The remainder of the paper is organized as follows. The background of CPDP

and related works are described in Section 2. The method and experimental design

are detailed in Section 3. The obtained results are presented in Section 4. The threats

of the validity are discussed in Section 5. Lastly, Section 6 summarizes the results

and mentions future work.

1.1. Motivation

Clustering defect prediction data sets requires an indicator that shows the accuracy

level of a cluster label. This need emerges when noisy data sets are employed in

a prediction experiment. To date, a clustering method using defectiveness metrics

to select training data has yet to be developed. With respect to CPDP, the studies

focusing on metric matching represent the majority of the related literature. However,

as the selection of training data dramatically affects the success of the prediction, there

is a need for developing a method that explores suitable ways of selecting the training

data. Such a study could pave the way for improved CPDP methods.

Detecting defective instances via clustering could further improve the software

development process to some extent. For instance, the most defective software mod-

ule can be recoded to prevent possible defects. Furthermore, an organizational defi-

ciency can be removed with the help of clustering.

6 Muhammed Maruf Öztürk

In traditional clustering methods, distance measurement techniques are generally

preferred when assigning an instance to a cluster. They do not consider an instance

by examining defectiveness metrics to generate clusters. To address this problem,

complexFuzzy generates defective clusters from an instance pool by considering the

defectiveness of related instances. This determines the membership level of an in-

stance. In this respect, complexFuzzy has a distinctive property in creating clusters.

This is the first direction of the contribution. On the other hand, matching or filtering

the software metrics to perform CPDP creates a critical reliability thread. In doing so,

valuable information may unintentionally be ignored due to the metric selection. In-

stead, an experimental evaluation encompassing all of the metrics of the data sets can

yield reliable results. The second direction of the contribution is that complexFuzzy

is an adaptable clustering method; thus, it may be used in other software engineering

problems such as test case prioritization and fault localization through modifying the

membership determination step of complexFuzzy.

1.2. Research questions

In this section, research questions (RQ) depicting the contributions of the paper are

ordered as follows:

RQ1. To what extent is complexFuzzy able to detect cluster centers?

RQ2. Is complexFuzzy superior to similar methods in CPDP?

RQ3. Is instance-based CPDP better than feature-based alternatives?

RQ4. What is the performance of clustering methods in training data selection

depending on the scale of the data sets?

RQ1 is especially prominent for complexFuzzy to be an alternative in the sub-

fields of software engineering. The answer to RQ1 reveals the competitiveness of the

method. If a clustering method is used for selecting training data instances, RQ2 helps

us find the originality of the method. In addition to this, RQ2 determines whether

complexFuzzy is viable for CPDP. RQ3 could pave the way for future works that

examine execution time, memory consumption, and the working method with various

data sets of complexFuzzy. RQ4 investigates which sizes of data sets are viable to use

with complexFuzzy in CPDP.

2. Background and related works

2.1. Preliminaries

If x1, ..., xn denotes the instances of a software project, n is the number of instances, and

y1, ..., yn denotes the defectiveness labels. These labels include 1/0 values of true/false

strings. Moreover, they could be 0/1...t that is within a range of t = 0, ...,∞. In such

cases, binary classification is conducted by converting t to 1/0.

Let p denote the number of modules in a software system, with each mod-

ule having different instance sizes such as m1, ...,mp. Thus, if cm represents the

number of instances of the related software module, cm1, ..., cmp shows the list

complexFuzzy: Novel clustering method. . . 7

of the number of instances. Inherently, m1, ...,mp may be taken from the same

software project. In doing so, m is generally the same for each software met-

ric. The prediction is completed by using similar metrics. The defect predic-

tion data set is divided into parts according to the experimental design. For in-

stance, if z index is used in the division, the training and testing data sets are

denoted by m1, ...,mz and mz, ...,mp, respectively. Thus, the training and test-

ing are performed on the same software project. Prediction that is performed

on the same software project is called within-project defect prediction (WPDP).

Conversely, the case in CPDP is as follows: let m1, ...,mn be the software in

which the training data set is taken. s1, ..., st represents the software modules that

include the testing data set. In conclusion, the training and testing data sets are

either taken from a different project or different versions of a project. This is the

reason why such predictions are called CPDP.

The issues of CPDP vary depending on the number of instances and metric

types. If two projects are selected that include different numbers of software metrics,

the training and testing phases of the prediction cannot be performed in the usual

way. This problem is handled mostly by making a feature selection on the project

with further metrics. Another problem (called heterogeneity) originates from the

metric type [37]. If there are two metric groups, the proper metrics are selected

via metric matching. Metric matching is a deep research topic that requires a great

number of statistical analyses.

If the within- and cross-project defect prediction parameters are denoted by

gw, fw, aucw and gc, fc, aucc, gc ≤ gw, fc ≤ fw, aucc ≤ aucw is desired to make CPDP

worth performing. Here, g, f , and auc refer to the G-mean, F-measure, and auc area

under the curve, respectively. The processes (which include determining the training

and testing data) of the within- and cross-project defect prediction are illustrated in

Figure 1.

project A

Training data Testing data

Within-project defect prediction
 project A

Training data- CK metrics

 project B

 Testing data- Halstead metrics

Cross-project defect prediction

Figure 1. Data-selection process difference

between within- and cross-project defect prediction

8 Muhammed Maruf Öztürk

The training and testing data is taken from Project A in the within-project defect

prediction. Conversely, the training and testing data is taken from different projects

in CPDP, and the metrics might not match (as can be found in the CK-Halstead

metrics).

2.2. Cross-project defect prediction

Zimmermann et al.’s work [74] was the first to express that working on the same domain

or process does not improve prediction performance. Furthermore, their study paved

the way for determining how the combinations of training and testing data should be

devised. In [70], a connectivity-based algorithm was developed for classifying defect

prediction data sets. The obtained results showed that unsupervised classifiers outper-

formed supervised ones in terms of AUC. In addition to this, a spectral clustering (SC)

algorithm outperformed the alternatives. However, SC is not for generating suitable

training data sets; instead, it is used for labeling an entire data set. Ryu et al. [49]

proposed a cost-sensitive boosting approach for CPDP. In their method, the training

data has weights and a level of class imbalance in which these parameters are used for

enhancing prediction accuracy. The method yielded promising results in general per-

formance parameters. A credibility-based classifier was proposed by Poon et al. [43]. It

weights training and testing data by utilizing the standard deviation of the instances.

Themethod is an improved version of Naive Bayes that showed better performance than

NaiveBayes in termsofG-mean. However, themethoddidnot considerdatadistribution

during the experiment.

In [31], a new oversampling technique (namely, CDE-SMOTE) was proposed. It

alleviates the class imbalance problem by estimating the class distribution of defect

data sets. However, CDE-SMOTE was only tested on process metrics with a lim-

ited number of performance measures. In addition to this, during the validation of

CDE-SMOTE, the heterogeneity of the software metrics was not considered. Herbold

et al. [18] compared 24 different CPDP approaches. They concluded that, if a large-

scale project is used, the performance difference is not remarkable in various CPDP

methods. The learning type used in the training phase substantially affects CPDP.

For instance, in [59], a semi-supervised technique was proposed for cross-project pre-

diction settings. This outperformed four competing methods in four performance pa-

rameters. Instead, CPDP needs to be investigated in terms of heterogeneous metrics.

In this respect, metric matching techniques are recently focused on this domain [24].

Zhou et al. [73] investigated CPDP in an unusual way. They proposed a module

size model rather than benefiting from training data to perform CPDP. In doing so,

practitioners could save much time completing the prediction process. In [38], a new

cluster-based feature selection method was proposed for CPDP. This was compared

with four alternatives in terms of precision, recall, F1-score, and AUC. Despite the

fact that the method yielded promising results, it does not bring any novelty with re-

spect to the selection of training data instances. Porto et al. proposed a meta-learning

method to increase CPDP performance [44]. They pointed out that a CPDP method

should be selected regarding the properties of the project being predicted.

complexFuzzy: Novel clustering method. . . 9

2.3. Instance selection-based studies

In [17], the importance of training data selection in cross-project defect prediction was

investigated. According to the obtained results, utilizing a data-selection method to

determine the training data is crucial to improving the success rate of cross-project de-

fect prediction. Cross-project defect prediction was considered to be a multi-objective

optimization problem [53], but the experiment was not based on selecting training in-

stances that have higher complexities. A two-phase CPDP approach was presented

by Xia et al. [60]. The method (called Hydra) consists of a genetic algorithm and

ensemble-learning phases. This significantly improved the prediction performance of

29 data sets. Selecting the proper training data is prominent for cross-project de-

fect prediction. In [69], a novel training data-selection approach (namely, MT) was

proposed. Normality, parameters are used in MT that improve three prediction pa-

rameters. He et al. [15] conducted an experimental study on 15 data sets. They stated

that distance-based training data selection is better than baseline methods. However,

their study does not discuss the effects of clustering-based prediction when fuzzy-like

methods are used. Kamei et al. [25] investigated just-in-time (JIT) defect prediction

on within- and cross-project experiments. One of their findings is that JIT does not

give any tips for cross-project prediction performance if it is established on a within-

project configuration. This study focused on selecting the training data by using the

similarity between two projects rather than dividing a project into small parts to

determine the suitable training data. In [20], it is asserted that instance selection for

training data can be strengthened via feature selection. This study concluded that

cross-project defect prediction approaches should be enriched by developing new tech-

niques such as clustering that can be used for determining training or testing data sets.

There are various clustering methods that can be used while working with big

data groups. Some of these are Fuzzy c-mean [47], k-means [14], self-organizing

map (SOM) [57], model-based clustering (MBC) [9], hierarchical clustering (HC) [54],

WaveCluster [51], and OptiGrid [22]. Fuzzy c-mean and k-means are based on Eu-

clidean distance. New methods have been revealed as a way of measuring the distance

between instances. Basic approaches have led to the development of improved ver-

sions of measurement methods [58, 61]. The underlying mechanism of complexFuzzy

is similar to that of Fuzzy c-mean. This is the reason why it was utilized for devising

complexFuzzy. Fuzzy c-mean gives membership values to the instances while dividing

them into the clusters. The algorithm complexFuzzy has been revealed by making

modifications and improvements on Fuzzy c-mean to determine a new defectiveness

level on defect prediction data sets (except for defect labeling). The third step of

Fuzzy c-mean computes the membership matrix via only Euclidean distance. On

the other hand, complexFuzzy regards a complexity coefficient while computing the

membership matrix values via Euclidean distance (as detailed in subsequent sections).

In SOM, the instances are generally represented with a two-dimensional map.

Such a map consists of clustered hexagons. Naive SOM is the most common version

of SOM; therefore, the experiment includes the first version of SOM rather than an

10 Muhammed Maruf Öztürk

improved version of it. The main difference between k-means and SOM is that the

number of clusters is determined by distance matrix techniques instead of a random

technique in SOM [13].

The clustering results of HC are represented with tree-based structures called

dendrograms [50]. In the experiment, an agglomerative type of HC is employed with

Ward’s minimum variance method, which aims to merge pairs of clusters that have

minimum distances.

In MBC, the data is assumed to come from two or more clusters rather than one

cluster [10]. This case creates a distribution model in the sense that a data point has

a probability of belonging to its cluster.

There are some reasons why Fuzzy c-mean and k-means are involved in the

experiment. First, k-means has proven its validity in clustering. It has a great

number of improved versions that are used in different research fields [26, 27, 34, 67].

For instance, k-means++ is a sophisticated type of k-means. Over the last decade, an

unprecedented effort has been directed towards validating the efficiency of k-means++

[6, 11, 62]. On the other hand, fuzzy c-mean is quite popular among researchers who

work in the area of engineering. It is easily applied to numeric data sets thanks to its

scalability and feasibility [33]. Second, new methods that are developed for clustering

are needed to be compared with the pioneer ones; so, initiatives have been selected for

the comparison. Last, fuzzy c-mean and k-means are frequently employed in software

engineering problems [2, 64,68].

Defect prediction data sets are quite rich in terms of metric diversity [8]. This

case helped to increase the number of feature-focused works in CPDP [66]. However,

there are some problems that originate from noise rate in software data sets and

incorrect defect labeling. These problems could lead to wrongly interpreted data or

calculations. Therefore, the imperfections and deficiencies in data instances should be

eliminated. Furthermore, some software metrics determine or affect defect labeling;

thus, selecting training instances using merely defect labels is inadequate. From the

point of view of data instances, selecting training instances in CPDP is investigated

in this work. Table 1 summarizes some studies that bring new approaches to CPDP.

In this table, the number of all data sets for a study and the number of common data

sets to our study are denoted by DS and CommonDS, respectively. It is worth noting

that recent studies have a higher number of common data sets than relatively older

studies.
Table 1

Summary of some works that handle CPDP (C→conference; J→journal)

Name
Publication

type
Ref Description DS CommonDS

A two-phase transfer learning model

for cross-project defect prediction

J (Liu et al., 2018 [32]) Proposes a transfer learning model for CPDP 42 22

Data Transformation in Cross-project

Defect Prediction

J (Zhang et al., 2017 [69]) Investigates transformation effects on CPDP 18 9

Global vs. local models for cross-

project defect prediction

J (Herbold et al., 2017 [18]) Compare global and local models on CPDP 79 24

A transfer cost-sensitive boosting ap-

proach for cross-project defect predic-

tion

J (Ryu et al., 2017 [49]) Investigates CPDP in terms of transfer learning 15 8

complexFuzzy: Novel clustering method. . . 11

Table 1 (cont.)

Name
Publication

type
Ref Description DS CommonDS

An investigation on the feasibility of

cross-project defect prediction

J (He et al., 2012 [16]) Focuses on selecting training data 17 12

Multi-objective cross-project defect

prediction

C (Canfora et al., 2013 [5]) Proposes a multi-objective method for CPDP 10 7

Cross-project Defect Prediction Using

a Connectivity-based Unsupervised

Classifier

C (Zhang et al., 2016 [70]) Compares classifiers on CPDP 26 7

HYDRA: Massively compositional

model for cross-project defect predic-

tion

J (Xia et al., 2016 [60]) Proposed a hybrid model for CPDP 31 8

LACE2: Better privacy-preserving

data sharing for cross project defect

prediction

C (Peters et al., 2015 [41]) Investigates data sharing in CPDP 17 6

Which is More Important for Cross-

Project Defect Prediction: Instance or

Feature?

C (Yu et al., 2016 [65]) Investigates instance filtering on CPDP 6 2

FeSCH: A Feature Selection Method

using Clusters of Hybrid-data for

Cross-Project Defect Prediction

C (Ni et al., 2017 [38]) Proposes a feature selection method for CPDP 5 2

A feature matching and transfer ap-

proach for cross-company defect pre-

diction

J (Yu et al., 2017 [66]) Presents a feature matching technique for CPDP 16 5

Better Cross Company Defect Predic-

tion

C (Peters et al., 2013 [42]) Presents a data filtering for CPDP 56 14

On the relative value of cross-

company and within-company data

for defect prediction

J (Turhan et al., 2009 [55]) Investigates sample number for CPDP 8 0

Transfer learning for cross-company

software defect prediction

J (Ma et al., 2012 [35]) Focuses on data features of CPDP 10 0

Recalling the imprecision of cross-

project defect prediction

C (Rahman et al., 2012 [45]) Investigates quality tradeoffs of CPDP 9 3

Cross-project defect prediction using

a credibility theory based naive bayes

classifier

C (Poon et al., 2017 [43]) Proposes a classifier for CPDP 11 3

Evaluating Data Filter on Cross-

Project Defect Prediction: Compar-

ison and Improvements

J (Li et al., 2017 [29]) Presents a comparison of CPDP models 44 23

Combined classifier for cross-project

defect prediction: an extended empiri-

cal study

J (Zhang et al., 2018 [71]) Investigates composite algorithms for CPDP 10 8

A Cluster Based Feature Selection

Method for Cross-Project Software

Defect Prediction

J (Ni et al., 2017 [39]) Proposes a cluster-based method for CPDP 8 2

HDA: Cross-Project Defect Prediction

via Heterogeneous Domain Adapta-

tion With Dictionary Learning

J (Zhang et al., 2018 [63]) Proposes a heterogeneous method for CPDP 12 4

Dissimilarity Space Based Multi-

Source Cross-Project Defect Predic-

tion

J (Ren et al., 2019 [46]) Develops a density-based method for CPDP 17 0

2.4. Feature selection-based studies

Nam et al. [37] developed a new heterogeneous defect prediction (HDP) approach

that involves metric selection and metric matching. Their method increased the AUC

scores of the data sets dramatically. A similar study proposing a feature matching

algorithm was also done by Yu et al. [66]. They used feature distribution curves to

get feature distances. Their method achieved great success regarding cross-company

defect prediction with 16 data sets. Ryu and Baik [48] developed a multi-objective

technique for cross-project defect prediction. Their technique was established based

on Harmony Search, which is a heuristic optimization method that is widely-known

among practitioners. Although the results of the study are in favor of diversity met-

rics, they do not include any tips for how the training data should be selected in

a cross-project prediction experiment. Fukushima et al. [12] focused on just-in-time

prediction for cross-project data sets. They used a similarity metric that matches suit-

12 Muhammed Maruf Öztürk

able training and testing data. Ensemble methods were also proposed in their work

to yield more-accurate cross-project models. Defect prediction data sets are generally

collected by a great number of researchers; thus, they employ different metrics during

this process. In cross-project defect prediction, this case creates a heterogeneity issue;

to overcome this problem, metric matching is one of the preferred ways.

3. Method

The main steps of the algorithm are seen in Figure 2. In the first step, the data set

group is taken. The proposed method is then compared to Fuzzy c-mean, K-means,

SOM, MBC, and HC. The remaining steps are repeated for each algorithm. Thus,

while one data group denotes defective instances that are used for training, other clus-

ters represent testing instances. A performance comparison is the last step, in which

the results are recorded by performing the training and testing process in different

projects. Code smell metrics (including WMC, cohesion, and coupling) are involved in

determining the membership level of complexFuzzy. The reason is that these metrics

give tips to figure out defectiveness. More specifically, they constitute the underlying

formula of complexFuzzy.

Figure 2. Main steps of proposed method

Let S = (s1, s2, s3, s4, s5, ..., sn) denote defect prediction instances in which the

number of instances is n. If the metric values of the instances are denoted with

MS = (ms1,ms2,ms3,ms4,ms5, ...,mst), then t is the number of metrics. The

sum of metric values
∑t

i=1 ms1i is used for normalization analysis to decide whether

the data set is suitable for parametric tests. D = (d1, d2, d3, d4, d5, ..., dn) repre-

sent the distances of a set of instances. A distance dw selected from D is the dis-

tance for an sw from its cluster center. Let k denote the number of clusters; then,

the instances are divided into clusters C = (c1, c2, c3, ..., ck) via fuzzy clustering.

complexFuzzy: Novel clustering method. . . 13

The objective function of complexFuzzy is J where the membership interval is [0,1].

To calculate J , Equation 1 is employed. Here, m denotes the fuzziness index of the

value if it is greater than 1. ||si − cl|| calculates the Euclidean distance between

point si and related cluster center cl. Membership is denoted with U . The clusters

are generated via Equation 2, which aims to predict the instance classes. Equation 2

aims to minimize the sum of the prediction errors of the instances. Error() denotes

the error function that takes the class label of an instance class(si).

J =

n∑
i=1

k∑
l=1

(Uij)
m||si − cl||2 (1)

y =

n∑
i=1

Error(class(si)) (2)

The membership matrix is initialized at the beginning of the algorithm through Equa-

tion 3 (Uij = µr
ij).

U [i, j] =
1∑k

p=1
si−cj
si−cr

2
m−1

(3)

Thereafter, fuzzy clusters C are computed via Equation 4, which is meant to minimize

the value of J . Equations 2 and 3 are computed iteratively until this requirement is

satisfied.

C =

∑n
p=1((µij)

r)m.si∑n
i=1(µij)r)m

(4)

Initially, the experimental data sets have values of 20 software metrics and their

defectiveness label. In complexFuzzy, these values are converted to p(x, y) points;

thus, p(x, y) is generated for each instance. The cluster points of the instances are

calculated by using Equation 5. In this equation, n denotes the number of metrics.

n/2 refers to the half of all metrics; thus, x is the mean of the first half of the

metrics of the related instance. The same calculation is performed on the second

half of the metrics to obtain y. Consequently, the metric values have a decisive role

in determining p(x, y). The cluster centers are determined depending on the scale

of the data sets afterwards. Usually, the number of clusters ranges from 2 to 5. It

is feasible to work with a lower number of clusters if the data sets are small-scale.

Although complexFuzzy has some similarities to Fuzzy c-mean in terms of instance

values (except for the defectiveness label), it differs in specifying the membership

levels of the clusters.

x =

∑n/2
i=0 xi

n/2
y =

∑n
i=n/2 yi

n/2
(5)

A coefficient has been devised for affecting the generation of the membership matrix of

complexFuzzy. This coefficient is extracted from specific software metrics, including

WMC, RFC, and LCOM, which have shown great promise [4] in creating software

14 Muhammed Maruf Öztürk

quality indicators. In doing so, each membership value can be changed by ±50,

which is a boundary value that was obtained via various trials. This means that

the minimum magnitude affecting the level of membership changes according to the

properties of the data set. The formula of the coefficient is presented in Equation 6.

coEfficient =

∑n
i=0(wmci ∗ lcomi)/rfci

n
(6)

n refers to the number of data sets, and rfc is in the denominator because it is

an inversely proportional metric to LCOM. WMC is written to the nominator of

Equation 6 by controlling whether its value is higher than the threshold (that is, 24)

in the experiment. When this value is exceeded, it is reduced as the membership level

becomes lower. complexFuzzy can be described in six steps as in Algorithm 1.

Algorithm 1 complexFuzzy Algorithm

Step1: Input all instances as p(x,y) with clusters, fuzziness, and coEfficient.

Step2: Define membership matrix U depending on number of instances and number of

clusters.

Step3: Iterate through all instances to create initial U matrix. (Compute diff =√
(px − cx)2 + (py − cy)2), IF coefficient > 10 diff+=50 else diff-=50; U [i, j]=(diff==0)

? 10−5 : diff , S+=U [i, j]

Step4: UpdateU [i, j] for eachclusterbycalculatingUij = 1∑k
p=1

si−cj
si−cr

2
m−1

, nsum2+=U [i, j]

Step5: U [i, j] = U [i, j]/sum2;

Step6: Recalculate cluster indexes by comparing max and U [i, j] values.

Despite the fact that there are some similarities between complexFuzzy and Fuzzy

c-mean, they have substantial differences. The differences start with coEfficient de-

fined in Step 1. After membership matrix U is defined in Step 2, the values of member-

ship U [i, j] are specified depending on coEfficient. In U [i, j], i denotes the index of

the instance, and j denotes the index of the cluster. The sum of these values (sum2) is

calculated in the next step. EachU [i, j] is updated according to its fuzziness parameter,

and the sum of U [i, j] is assigned to sum2 in Step 4. U [i, j] values are redefined with

the formula described in Step 5. In the last step, max (which is −1 in beginning) is

compared with all U [i, j] values. If max < U [i, j], max is assigned as max = U [i, j],

and the index of point is determined with p.ClusterIndex = (max == 0.5)?0.5 : cj . cj
represents the related cluster. The algorithm should be re-executed until the accu-

racy is at the desired level. The accuracy is provided with the procedure presented

in Algorithm 2. When the accuracy is obtained as desired, the clustering calcula-

tions are suspended. Initially, the cluster parameters and thresholds are given to

the algorithm as inputs. The values of U [i, j] are multiplied by the cluster-center

Euclidean distance and summed. If the result is less than the threshold, this means

that the desired accuracy is obtained; otherwise, the steps are repeated from Step 2.

complexFuzzy: Novel clustering method. . . 15

Algorithm 2 Iteration procedure of complexFuzzy

Step1: Input cluster parameters, threshold with iteration count.

Step2: Calculate objective function (result+=U [i, j]fuzziness ∗ euclidean(p(x, y), c[j])2)
Step3: Calculate cluster centers.

Step4: If result < threshold, break; else return step2;

4. Experimental setup

4.1. Data sets

In the study, 29 data sets were used to devise a prediction experiment. The ex-

perimental data sets have CK and LOC metrics. The data sets have been selected

by reviewing similar works relevant to cross-project defect prediction. The decision

formula of the complexFuzzy membership function was completed by utilizing CK

metrics (which is widely acknowledged, as it includes beneficial tips for the defec-

tiveness level) [1, 23, 36]. The experimental data sets were retrieved from different

open-source projects that have four or fewer versions. The details of the data sets are

given in Table 2.
Table 2

Details of projects used in experiment

Project Version Number of instances Total defects % Defects

ant 1.7 745 338 22

arc 1 234 234 14

berek 1 43 70 37

camel 1 339 14 3

camel 1.2 608 522 35

camel 1.4 872 335 16

camel 1.6 965 500 19

e-learning 1 64 9 7

ivy 1.1 111 233 56

ivy 1.4 241 18 16

ivy 2 352 56 40

jedit 3.2 272 382 33

jedit 4 306 226 24

jedit 4.1 312 217 25

jedit 4.2 367 106 13

jedit 4.3 492 12 2

kalkulator 1 27 7 22

log4j 1 135 61 25

log4j 1.1 109 86 33

log4j 1.2 205 498 92

lucene 2 198 268 46

lucene 2.2 247 414 58

16 Muhammed Maruf Öztürk

Table 2 (cont.)

Project Version Number of instances Total defects % Defects

lucene 2.4 340 632 59

nieruchomosci 1 27 13 37

tomcat 6 858 114 8

xalan 2.4 723 156 15

xalan 2.5 803 531 48

xalan 2.6 885 625 46

As shown from the table, these data sets include the different number of instances

(ranging from 27 to 965). This case helped generalize the experimental results. While

“Total defects” denotes the total number of defects in a data set, “% Defects” shows

the percentage of defects encountered in all instances. The “0/1” values in the in-

stances are of great importance for producing this column. Those instances that have

“1” or a greater number of defects create the same effect in the clustering.

Some metrics of software defect data sets can also be used for the indicators

of defectiveness (except for defect labels). Software that has high cohesion and low

coupling helps to improve the quality [4]; otherwise, maintaining the software becomes

much more difficult. In addition to this, metrics such as WMC (weighted method per

class) are used for prioritizing the test cases; software modules with a high WMC are

given a high priority for test execution [40].

Table 3
Metrics of experimental data sets

Name Description

wmc Weighted Methods per Class

dit Depth of inheritance

noc Number of children

cbo Coupling between objects

rfc Response for a class

lcom Lack of cohesion

ca Afferent coupling

ce Efferent couplings

npm Number of Public Methods

lcom3 A variant of LCOM

loc Line of codes

dam Data Access Metric

moa Measure of. Aggregation

mfa Measure of functionality abstraction

cam Cohesion Among Methods of class

ic Inheritance Coupling

cbm Coupling between Methods

amc Average Method Complexity

max cc Maximum Class Coupling

avg cc Average Class Coupling

complexFuzzy: Novel clustering method. . . 17

The details of the metrics of the data sets are presented in Table 3. Data sets

including 20 software metrics are from the projects coded with object-oriented lan-

guages. WMC, LCOM, and RFC were utilized to conjecture the defectiveness level

of an instance in the complexFuzzy algorithm.

4.2. Machine configurations and setup conditions

The experiment was completed via the R package and C# programming language.

The membership values of the points and clustering information were generated by

executing C# codes. The figures illustrating the centers of the clusters via normal-

izing data points were drawn with R package functions (including “rnorm”, “plot”,

and “points”). The mean AUC and F-measure results were obtained by using four

predictors harnessed on the R package. The experiment was performed on a CentOS

Linux machine with a 64-bit/Intel(R) Xenon(R)/2.9 GHz/32 CPU Core server with

263 GB RAM and a Tesla C1060 graphics processor. The iteration count of com-

plexFuzzy is restricted to 20. While the large-scale data sets were able to reach this

count, the small-scale ones were not.

One of the most crucial points during the experiment is to devise cross-project

combinations. If d1, ..., dn denotes the data sets, then n is 29. If one of the data

sets is employed as the training data, the others are used as the testing data.

In other words, if d1 is selected as the training data, the testing process is exe-

cuted for d2, ..., dn. Consequently, the total number of iterations of the testing is

combinationCount = n ∗ (n− 1). For all of the data sets, 812 combinations are pro-

duced. Excluding combinations of different versions of the same projects, this resulted

in 758 combinations. Thus, these are the ultimate testing operations.

Five data sets have 200 or fewer instances. During the experiment, it was detected

that overlapping centers occur when four centers are determined for these data sets.

Thus, distinguishing the centers is much more difficult and complex than expected. To

solve this problem, two centers are determined in the data sets having 200 or fewer

data sets. Such a problem does not occur in other data sets in which four cluster

centers are determined. To illustrate the cluster overlapping problem, Figure 3 has

been drawn with the ivy-1.1 data set that has 111 instances.

Table 4 presents detailed information about the iteration, time, and threshold.

Note that 0.75 is the critical value to proceed with the iteration. The time required

to complete a related iteration doubles after 0.75. Prior to this value, the increase

rate of the time is constant depending on the threshold. However, the values given in

Table 4 could change in accordance with the types of the used data sets.

The centers have been determined as follows:

1) compute mean of instance values;

2) divide data sets into four parts according to this mean;

3) choose maximum values of these parts to assign cluster centers.

18 Muhammed Maruf Öztürk

Table 4
Iteration and required time for obtaining results according to threshold

specified by Algorithm 2. threshold changes between 0 and 1 for execution of

complexFuzzy

Iteration Time

(minutes)

Threshold

10 5 0.2

20 15 0.3

30 27 0.4

40 43 0.6

50 59 0.7

60 70 0.75

70 90 0.83

80 110 0.89

90 150 0.92

100 180 0.94

Figure 3. Example of overlapping instance. This figure is of ivy-1.1 cluster results

(in which four cluster centers were used)

An example of the raw values of the metrics is presented in Figure 4. com-

plexFuzzy generates a new sheet through a naive data sheet as seen in Figure 5.

In the figure, “InstanceIndex” represents the initial instance index before executing

complexFuzzy. p(x, y) is in the column named “Point.” The cluster index has four

different values ranging from “0” to “3.” ”Value” denotes U [i, j]. Generally, “0”

indicates the instances of defective cluster and training instances that are

constituted from this cluster for each data set.

complexFuzzy: Novel clustering method. . . 19

wmc
 dit
 noc
 cbo
 rfc
 lcom
 bug

3
 1
 0
 10
 18
 3
 CONTINUED
 0

9
 3
 0
 5
 26
 16
 METRICS
 0

9
 1
 0
 5
 19
 8

 1

1
 1
 0
 10
 1
 0
 0

3
 2
 0
 2
 5
 0
 0

5
 2
 0
 7
 14
 6
 0

11
 3
 0
 3
 24
 17
 0

CONTINUED
 VALUES
 ...
 ...
 ...
 ...
 ...

CLASS VALUES

METRIC VALUES

Figure 4. Examples of raw metric values. In experiment, column count shows number of

features. Last column indicates defectiveness of related software module. Instances having

“0” in “bug” do not include any defects

InstanceIndex
 Point
 ClusterIndex
 Value1

0
 4.60-14.12
 0
 0.9176960325

2899

4
 3.40-9.42
 0
 0.8713389281

60539

8
 1.10-1.70
 0
 0.7904647752

48996

12
 8.70-11.54
 0
 0.8277612089

6491

16
 7.50-20.89
 0
 0.8920434788

44525

20
 3.60-2.38
 0
 0.7856221180

86435

28
 9.50-20.66
 0
 0.8291834834

43268

32
 6.40-13.58
 0
 0.8863876643

04627

36
 7.10-30.77
 0
 0.6074039281

06438

40
 8.40-8.77
 0
 0.8069487208

67525

44
 7.00-5.42
 0
 0.7904687958

66468

CONTINUED

VALUES

 ...

MEMBERSHIP

VALUES

Figure 5. Clustered instance points with membership values

In CPDP, the AUC and F-measure performance parameters were recorded. These

parameters were obtained by employing 10*10 cross-validation. The mean results on

all of the data sets of the predictors (including naiveBayes, Bayes, random forest, and

J48) were discussed with tables and figures. The confusion matrix that is constituted

with the classification results includes the counts of TP, FP, FN, and TN. The graph

drawn by utilizing the true positive rate and false positive rate is called the receiver

operating characteristic (ROC). The area under this curve is the AUC; it is desired

20 Muhammed Maruf Öztürk

that this be close to 1. The formulas of the performance parameters used in the

evaluation of the method are presented in Table 5.

Table 5
Performance parameters used in experiment

Name Formula

True positive rate TP/(TP+FN)

False positive rate FP/(FP+TN)

F-measure (2∗Recall∗Precision)
(Recall+Precision)

5. Results

The answers for the research questions are ordered in terms of both the cluster centers

in the working way of complexFuzzy and some performance parameters.

RQ1. To evaluate RQ1, the cluster centers are observed. Furthermore, a clustering

evaluation metric called NMI [3] is employed. Having an NMI that is close to 1

means a successful clustering. NMI takes cluster assignment set S for the instances

in a data set. Clustering result C must be known to construct the NMI formula as

in Equation 7. While I(S,C) denotes mutual information, the entropy is represented

with H(.). Table 6 presents the NMI results of all of the comparison algorithms.

According to these results, complexFuzzy outperformed the others for all data sets

except for camel 0.9 and camel 1.2.

NMI(S,C) =
I(S,C)√
H(S)H(C)

(7)

First, complexFuzzy was compared to k-means and Fuzzy c-mean, SOM, MBC,

and HC with regard to the cluster centers in Appendix A. This comparison is divided

into three groups: small-scale, medium-scale, and large-scale data set comparisons.

Figure 9a presents the cluster centers and the related points of lucene 2.2 generated by

Fuzzy c-mean. Cluster points p(x, y) were normalized within a range of (-2,2). While

a black-colored center denotes a defective cluster, the others are of non-defective

instances. When these centers are compared with Figures 9b, 9c, 9d, 9e, and 9f, it

is clear that the distance between the centers is far greater in complexFuzzy than in

the other algorithms. Furthermore, a black star indicating the center of a defective

cluster is further away than the other points. This result showed that the centers

drawn by complexFuzzy were more accurately obtained. The cluster structures of

camel-1.4 in Fuzzy c-mean, K-means, SOM, HC, complexFuzzy, and MBC can be

seen in Figures 10b, 10c, 10d, 10e, and 10f, respectively. This data set yielded better

results than lucene 2.2 in terms of both the distances between the clusters and the

difference of the defective cluster center. Despite the fact that the data distribution

is similar in both Fuzzy c-mean and complexFuzzy, conflicting results were observed

in the cluster centers. One of the small-scale data sets is ivy-1.1; complexFuzzy

complexFuzzy: Novel clustering method. . . 21

outperformed the other algorithms in this data set as well. However, Fuzzy c-mean

produced more adjacent cluster points in such data sets. The details can be examined

in Figures 11b, 11c, 11d, 11e, and 11f, respectively.

Table 6
NMI comparison of clustering algorithms on all data sets

Data Set Fuzzy c-mean K-means complexFuzzy SOM MBC HC

ant 0.331 0.641 0.818 0.511 0.520 0.500

arc 0.514 0.568 0.726 0.323 0.506 0.511

berek 0.567 0.555 0.856 0.501 0.622 0.677

camel 0.9 0.750 0.302 0.661 0.640 0.558 0.601

camel 1.2 0.804 0.38 0.301 0.573 0.671 0.515

camel 1.4 0.710 0.75 0.801 0.759 0.661 0.678

camel 1.6 0.514 0.55 0.890 0.623 0.610 0.420

e-learning 0.521 0.24 0.795 0.813 0.570 0.518

ivy 1.1 0.403 0.37 0.772 0.545 0.681 0.567

ivy 1.4 0.800 0.84 0.854 0.813 0.780 0.793

ivy 2 0.501 0.430 0.679 0.479 0.347 0.458

jedit 3.2 0.702 0.65 0.762 0.442 0.468 0.471

jedit 4 0.755 0.619 0.781 0.500 0.469 0.488

jedit 4.1 0.521 0.58 0.692 0.569 0.517 0.524

jedit 4.2 0.522 0.600 0.718 0.652 0.677 0.648

jedit 4.3 0.677 0.72 0.802 0.561 0.549 0.576

kalkulator 0.910 0.91 0.882 0.611 0.654 0.678

log4j 0.666 0.701 0.792 0.779 0.747 0.738

log4j 1.1 0.820 0.678 0.849 0.588 0.544 0.551

log4j 1.2 0.504 0.67 0.806 0.421 0.459 0.408

lucene 2 0.711 0.75 0.779 0.319 0.307 0.355

lucene 2.2 0.772 0.63 0.779 0.579 0.546 0.618

lucene 2.4 0.771 0.72 0.835 0.810 0.797 0.768

nieruchomosci 1 0.775 0.825 850 0.619 0.767 0.718

tomcat 6 0.733 0.651 0.764 0.588 0.597 0.653

xalan 2.4 0.788 0.79 0.847 0.819 0.877 0.768

xalan 2.5 0.566 0.723 0.801 0.787 0.761 0.908

xalan 2.6 0.766 0.764 0.880 0.879 0.847 0.828

The clustering structures of SOM, HC, and MBC are similar to that of k-means.

However, they do not have many separated clusters as compared to complexFuzzy

(especially defective clusters). The small but distinct differences among the compar-

ison algorithms may have originated from the determination of the cluster numbers

and the way of assigning an instance to its cluster.

SOM, HC, and MBC produce different plots to examine their cluster types. In

order to present the comparable results, the plot of each clustering algorithm has been

converted to the same view.

RQ2. The mean F-measure results of all of the data sets of the predictors are given in

Table 7. Note that, in some data sets (such as camel, jedit, and xalan), the prediction

22 Muhammed Maruf Öztürk

success is higher than with the others. This group consists of medium-large scale

data sets. Furthermore, the formula presented in Equation 6 is rather decisive on the

average success.

Table 7
Mean F-measure values of four predictors involving Bayes, naiveBayes, random forest, and

J48 on 29 data sets. Values generated employing 758 cross combinations. Clustering meth-

ods were utilized to generate testing data. For each data set, associated result is mean of

some combinations of target data sets. Boldfaced values are best in their respective rows

Source data set Version Fuzzy c-mean K-means complexFuzzy SOM MBC HC

ant 1.7 0.51 0.5 0.50 0.45 0.48 0.55

arc 1 0.54 0.55 0.57 0.52 0.49 0.51

berek 1 0.52 0.51 0.57 0.49 0.52 0.53

camel 1 0.68 0.64 0.64 0.56 0.51 0.50

camel 1.2 0.68 0.68 0.67 0.43 0.54 0.47

camel 1.4 0.74 0.73 0.79 0.65 0.62 0.63

camel 1.6 0.72 0.71 0.78 0.70 0.69 0.65

e-learning 1 0.59 0.57 0.65 0.56 0.58 0.62

ivy 1.1 0.6 0.61 0.65 0.51 0.58 0.63

ivy 1.4 0.57 0.64 0.6 0.58 0.59 0.60

ivy 2 0.56 0.63 0.61 0.55 0.58 0.62

jedit 3.2 0.75 0.73 0.79 0.71 0.53 0.66

jedit 4 0.78 0.72 0.7 0.72 0.75 0.71

jedit 4.1 0.76 0.69 0.68 0.65 0.78 0.69

jedit 4.2 0.73 0.68 0.7 0.71 0.67 0.70

jedit 4.3 0.79 0.73 0.74 0.76 0.65 0.81

kalkulator 1 0.62 0.61 0.75 0.70 0.63 0.64

log4j 1 0.52 0.49 0.56 0.54 0.55 0.51

log4j 1.1 0.53 0.51 0.58 0.54 0.53 0.55

log4j 1.2 0.51 0.55 0.59 0.43 0.56 0.57

lucene 2 0.54 0.59 0.55 0.48 0.51 0.47

lucene 2.2 0.51 0.5 0.6 0.53 0.52 0.49

lucene 2.4 0.54 0.58 0.64 0.61 0.60 0.57

nieruchomosci 1 0.61 0.62 0.63 0.56 0.52 0.59

tomcat 6 0.62 0.64 0.61 0.58 0.51 0.61

xalan 2.4 0.76 0.74 0.84 0.61 0.65 0.69

xalan 2.5 0.78 0.75 0.74 0.61 0.65 0.66

xalan 2.6 0.77 0.79 0.78 0.75 0.72 0.73

The more the magnitude of coEfficient increases, the better F-measure results

that are yielded due to its significant effect on the membership level of an instance

through diff . For instance, the coEfficient values of jedit-3.2 and log4j-1 projects

are 2.5 and 6, respectively. Although complexFuzzy produced high performance in the

log4j projects, it does not show such success in the jedit projects. In this case,

the wmc, rfc, and rfc metrics are prominent. To achieve high prediction scores, the

rfc of the experimental data should be at a minimum. On the other hand, those

projects with high levels of wmc and rfc are feasible when creating clusters with

complexFuzzy: Novel clustering method. . . 23

complexFuzzy. The data sets that have low F-measure values are the small-scale

ones. While Fuzzy c-mean and K-means yielded similar results in terms of their

cluster centers, the testing data obtained with complexFuzzy produced higher or

equal prediction success than the other two clustering methods in CPDP.

Compared with Zhang et al.’s work [69], complexFuzzy is preferable in terms of

its F-measure and AUC scores. For camel 1.6, complexFuzzy has an overwhelming

F-measure value (0.78), while their experiment produced an F-measure value of 0.33.

When it comes to an AUC comparison, the best AUC score of Zhang et al.’s work

is 0.82, which is worse than that of complexFuzzy (0.96). Herbold [17] stressed the

importance of the quality issues of CPDP; the findings of complexFuzzy verified his

assertion. Hosseini et al. [19] performed a CPDP experiment through genetic instance

selection. Their method produced a worse F-measure value than complexFuzzy; the

F-measure difference between their method and complexFuzzy is 0.2.

In Figure 6, the ROC curves of the comparison algorithms are presented (along

with the AUC values in CPDP). These results are the mean of the records obtained

in 29 data sets. The highest AUC was achieved by complexFuzzy (0.96), and the

lowest was from HC (0.53). On the other hand, the AUC values of Fuzzy c-mean and

HC are similar; they produced relatively worse values than the others. Unexpectedly,

k-means is a preferable method in that it yielded a better AUC than all of the other

comparison algorithms (except for complexFuzzy).

Specificity

S
en

si
tiv

ity

1.2 1.0 0.8 0.6 0.4 0.2 0.0 −0.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.658

AUC: 0.538

AUC: 0.588

AUC: 0.700

AUC: 0.544

AUC: 0.966

complexFuzzy
Kmeans
SOM
MBC
FuzzyCmean
HC

Figure 6. ROC curves of mean cross-project defect prediction in which training data is

obtained through six different clustering algorithms. Performance values are means of four

classifiers. complexFuzzy outperforms others, producing highest AUC (0.96)

RQ3. Specifically, the metric selection is much more important for data sets that

have large-scale software metrics. However, data sets with 30 or fewer features may

24 Muhammed Maruf Öztürk

produce promising results (for instance, the focused methods from the experiment).

Furthermore, unsupervised methods such as clustering could be used after metric

selection. In [66], a feature matching-based CPDP was performed by Yu et al.; how-

ever, they were only able to reach a 0.79 F-measure in some data sets. On the other

hand, complexFuzzy achieved 0.84 F-measure for the xalan data set. Peters et al. [41]

proposed a training data-filtering method for CPDP. They achieved a significant im-

provement in accuracy and G-mean. Likewise, our study has taken step towards

understanding the importance of training data selection in CPDP. In summary, com-

plexFuzzy has the potential to be an alternative for metric selection methods with

regard to the AUC and F-measure performance parameters.

RQ4: The distance between a defective cluster center and the centers of other clus-

ters is evident, especially in medium- and large-scale data sets. In addition to this,

a similar case was detected in small-scale data sets such as ivy-1.1. The F-measure

values of medium- and large-scale data sets are better than small-scale data sets in

terms of CPDP (as can be seen in Table 7). For instance, some projects such as camel,

jedit, and xalan consist of large-scale data sets. In these data sets, the F-measure

is relatively high when compared to the other data sets. SOM, MBC, and HC are

not better than the others in the sense that the F-measure is the only performance

parameter. In summary, complexFuzzy should be executed with large-scale data sets.

In order to provide new insight into the effectiveness of complexFuzzy, a training

time comparison is presented in Table 8.

Table 8
Comparison of average training times of data obtained after performing clustering

(milliseconds). Boldfaced values are lowest values

Data Set Version Fuzzy c-mean K-means complexFuzzy SOM MBC HC

ant 1.7 0.511 0.609 0.708 0.513 0.520 0.518

arc 1 0.578 0.98 0.704 0.623 0.610 0.518

berek 1 0.404 0.501 0.407 0.523 0.641 0.517

camel 1 0.9 0.65 0.302 0.661 0.640 0.558

camel 1.2 0.304 0.38 0.301 0.573 0.671 0.515

camel 1.4 0.73 0.75 0.601 0.759 0.661 0.678

camel 1.6 0.51 0.55 0.490 0.623 0.610 0.420

e-learning 1 0.21 0.24 0.205 0.813 0.570 0.518

ivy 1.1 0.39 0.37 0.322 0.545 0.681 0.567

ivy 1.4 0.8 0.84 0.774 0.813 0.780 0.793

ivy 2 0.403 0.43 0.309 0.479 0.347 0.458

jedit 3.2 0.7 0.65 0.402 0.442 0.468 0.471

jedit 4 0.87 0.619 0.501 0.500 0.469 0.488

jedit 4.1 0.503 0.58 0.492 0.569 0.517 0.524

jedit 4.2 0.79 0.602 0.618 0.652 0.677 0.648

jedit 4.3 0.84 0.72 0.502 0.561 0.549 0.576

kalkulator 1 0.96 0.91 0.582 0.611 0.654 0.678

log4j 1 0.713 0.701 0.692 0.779 0.747 0.738

log4j 1.1 0.801 0.678 0.519 0.588 0.544 0.551

complexFuzzy: Novel clustering method. . . 25

Table 8 (cont.)

Data Set Version Fuzzy c-mean K-means complexFuzzy SOM MBC HC

log4j 1.2 0.543 0.67 0.406 0.421 0.459 0.408

lucene 2 0.81 0.75 0.209 0.319 0.307 0.355

lucene 2.2 0.773 0.63 0.542 0.579 0.546 0.618

lucene 2.4 0.81 0.72 0.665 0.810 0.797 0.768

nieruchomosci 1 0.84 0.825 0.705 0.619 0.767 0.718

tomcat 6 0.737 0.651 0.574 0.588 0.597 0.653

xalan 2.4 0.823 0.79 0.647 0.819 0.877 0.768

xalan 2.5 0.849 0.723 0.711 0.787 0.941 0.908

xalan 2.6 0.866 0.764 0.758 0.879 0.947 0.858

According to this table, complexFuzzy is a formidable rival to other clustering

algorithms. Except for the four data sets that included ant-1.7, arc, berek, camel 1.6,

nieruchomosci, and jedit 4.2, complexFuzzy produced minimum values. These data

sets are not similar in terms of their instance numbers; therefore, the difference in

training times of the clustering algorithms may have originated from the software

metrics rather than the project’s scale. It can also clearly be seen in Table 8 that

Fuzzy c-mean yields better results than K-means in the overall evaluation. On the

other hand, SOM, MBC, and HC do not have reasonable training times.

6. Threats to validity

The 29 data sets used in the experiment have the same metrics. However, performing

CPDP while considering heterogeneity has recently gained a great deal of interest

from researchers. Employing data sets that do not require any metric matching, the

experiment creates a threat in terms of the generality of the results. As the main

objective of the experiment is to observe the effects of the training data sets that are

selected with clustering for CPDP, this threat is not so important.

One of the factors that affected the results of the methods is the fuzziness pa-

rameter. Determining such a parameter in an unusual way may lead to wrongly inter-

preting the results. In the experiment, the fuzziness parameter was assigned as two.

This value was determined by examining the best ranges from similar studies [72].

The algorithm complexFuzzy has been compared with K-means and Fuzzy

c-mean. The reason is that these two clustering methods have construction simi-

larities. Furthermore, the two comparison methods can be considered to be pioneers

in their field.

Four cluster centers were used in the experimental data sets (except for the small-

-scale ones). While one of the centers represents a defective cluster, the instances

that include no defects are represented with three clusters. The cluster points are

assigned by calculating the means of the instances that have two labels. However, it is

ambiguous whether randomly defined cluster centers do indeed yield favorable results.

The centers of the data sets were not changed during the 10 · 10 cross-validation by

considering this case.

26 Muhammed Maruf Öztürk

The experimental data sets that consisted of similar data sets used in the pre-

ceding works are important for the validity of the study. In this respect, 29 data

sets were selected that were comprised of both feature and instance selection works.

Process metrics do indeed produce successful results as well as static code metrics.

However, the experiment does not have any data sets that have process metrics. Hav-

ing only static code metrics may create a threat for the validity, but the metrics that

specify the object-oriented parameters were used for both the compatibility of the

objective and the performance comparison. Moreover, the formula developed for de-

termining the membership matrix values of complexFuzzy was on the basis of static

code metrics.

The calculation presented in Equation 6 was done in complexFuzzy. This cal-

culation did not adversely affect the complexity due to the lack of some expressions

(such as loops). This is O(n2) (as in Fuzzy c-mean).

As the metrics given in Equation 6 affect the value of the membership matrix, it

should be investigated whether the distributions of three metric populations are iden-

tical. An average result was obtained when applying the Kruskal Wallis test on the

three selected metrics, as the metrics do not have a normal distribution. P < 0.05 rep-

resents a remarkable difference between the mean of the metric groups. The statistic

that indicates the mean values of the metrics is presented in Figure 7.

Metrics

V
al
u
e

rfc lcom wmc
0

20

40

60

80

100

Figure 7. Kruskal Wallis test samples, including RFC, LCOM, and WMC metrics (p < 0.05)

Besides the success rates, it is also important to evaluate the error rates when

classifying instances. One of the predictors is the random forest algorithm, which was

involved in the experiment. In this algorithm, the error rates of the prediction were

illustrated in Figures 8a and 8b for all of the experimental data sets that depended on

complexFuzzy: Novel clustering method. . . 27

the generated trees. In these figures, the numbers of trees change between 0 and 100.

The black line (namely, out-of-bag [OOB]) shows the average error of each sample of

the training observations. The red line represents the instances that have no defects.

The green line is labeled with “true1”; it represents those instances with one defect.

Those instances with two or more defects are labeled “true2,” and their color is blue.

Since each execution changes the error rates, Figures 8a and 8b are the averages of

50 executions.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

rf

trees

E
rr

or

OOB
false
true1
true2

a)

0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

rf

trees

E
rr

or

OOB
false
true1
true2

b)

Figure 8. Mean error rates of random forest predictor: a) WPDP; b) CPDP

28 Muhammed Maruf Öztürk

While “true1” and “true2” were greater than 0.6 in WPDP, only “true1” was

greater than 0.6 in CPDP. CPDP produced “true2” values that were lower than 0.6.

The results were similar in two figures in terms of OOB. Consequently, complexFuzzy

is much more suitable for software systems that have a high level of defectiveness.

In the training and testing processes, four classifiers (Bayes, näıve Bayes, random

forest, and J48) were used. Competitive classifiers such as k-nearest neighbor, artifi-

cial neural network, and support vector machine were not involved in the experiment,

as these classifiers are not common among CPDP practitioners. However, they are

planned to be employed in an improved version of the baseline study.

7. Conclusion and future works

In this study, a new way of selecting training instances of CPDP (namely, complex-

Fuzzy) is proposed. The success rates for k-means and Fuzzy c-mean are also calcu-

lated in CPDP for comparison with complexFuzzy. Performance values were recorded

via 758 cross combinations of CPDP in the experimental design. Four different classi-

fiers were harnessed in CPDP with 10 · 10 cross-validation. The AUC and F-measure

performance parameters were selected. In these parameters, complexFuzzy outper-

formed Fuzz c-mean and k-means. In particular, complexFuzzy produced promising

results in medium- and large-scale data sets. Furthermore, the cluster centers of the

method are far more discrete than others. This case may have facilitated the selection

of defective instances to expose CPDP.

In summary, complexFuzzy produced the results that were as competitive as

those recorded in the featured selection methods. Moreover, it was able to reveal

some tips that can be used for performing instance-focused future works.

In future works, the impacts of hybrid methods merging feature and instance

selection will be investigated in CPDP. In addition, the formula designed in the study

for the indicator of the defectiveness will be further analyzed to adapt it to the process

metrics. The algorithm complexFuzzy utilizes Euclidean distance in clustering; how-

ever, another direction is to compare the success of complexFuzzy with other popular

clustering methods that employ Minkowski or Manhattan distances in calculating the

distances between clusters.

Acknowledgements

We thank TUBITAK ULAKBIM, High Performance and Grid Computing Center

(TRUBA Resources) for the numerical calculations reported in this work.

complexFuzzy: Novel clustering method. . . 29

APPENDIX A

−2 −1 0 1 2

−
2

−
1

0
1

x

y

−2 −1 0 1 2 3 4

−
1

0
1

2
x

y

a) b)

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

c) d)

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

e) f)

Figure 9. Cluster centers of lucene-2.2 data set: a) Fuzzy c-mean; b) k-means;

c) Hierarchical; d) complexFuzzy; e) SOM; f) MBC

30 Muhammed Maruf Öztürk

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

−2 −1 0 1 2

−
2

−
1

0
1

x

y

a) b)

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

x

y
c) d)

−2 −1 0 1 2

−
2

−
1

0
1

2
3

x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

e) f)

Figure 10. Cluster centers of camel-1.4 data set: a) Fuzzy c-mean; b) k-means;

c) Hierarchical; d) complexFuzzy; e) SOM; f) MBC

complexFuzzy: Novel clustering method. . . 31

−2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

−3 −2 −1 0 1

−
2

−
1

0
1

2

x

y

a) b)

−1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y
c) d)

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

e) f)

Figure 11. Cluster centers of ivy-1.1 data set: a) Fuzzy c-mean; b) k-means;

c) Hierarchical; d) complexFuzzy; e) SOM; f) MBC

32 Muhammed Maruf Öztürk

References

[1] Bansal M., Agrawal C.: Critical Analysis of Object Oriented Metrics in Software

Development. In: 2014 Fourth International Conference on Advanced Computing

and Communication Technologies, pp. 197–201, IEEE, 2014. doi: 10.1109/ACCT.

2014.106.

[2] Bishnu P.S., Bhattacherjee V.: Software Fault Prediction Using Quad Tree-Based

K-Means Clustering Algorithm, IEEE Transactions on Knowledge and Data En-

gineering, vol. 24(6), pp. 1146–1150, 2012. doi: 10.1109/TKDE.2011.163.

[3] Cai D., Zhang C., He X.: Unsupervised feature selection for multi-cluster data.

In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining – KDD’10, p. 333, ACM Press, New York, USA, 2010.

doi: 10.1145/1835804.1835848.

[4] Candela I., Bavota G., Russo B., Oliveto R.: Using Cohesion and Coupling for

Software Remodularization. Is It Enough? ACM Transactions on Software En-

gineering and Methodology, vol. 25(3), pp. 1–28, 2016. doi: 10.1145/2928268.

[5] Canfora G., De Lucia A., Di Penta M., Oliveto R., Panichella A., Panichella S.:

Multi-objective Cross-Project Defect Prediction. In: 2013 IEEE Sixth Interna-

tional Conference on Software Testing, Verification and Validation, pp. 252–261,

IEEE, 2013. doi: 10.1109/ICST.2013.38.

[6] Chan J.Y.K., Leung A.P.: Efficient k-means++ with random projection. In: In-

ternational Joint Conference on Neural Networks 2017, pp. 94–100, 2017.

[7] Chikofsky E.J., Cross J.H.: Reverse engineering and design recovery: A taxon-

omy, IEEE Software, vol. 7(1), pp. 13–17, 1990.

[8] Fenton N., Bieman J.: Software Metrics: A Rigorous and Practical Approach,

CRC Press, 2014.

[9] Fraley C., Raftery A.E.: Model-Based Clustering, Discriminant Analysis, and

Density Estimation, Journal of the American Statistical Association, vol. 97(458),

pp. 611–631, 2002.

[10] Fraley C., Raftery A.E., Murphy T.B., Scrucca L.: MCLUST version 4 for R:

Normal Mixture Modeling for Model-Based Clustering, Classification, and Den-

sity Estimation, Technical report, vol. 597, 2012.

[11] Fritzke B.: The k-means-u* algorithm: non-local jumps and greedy retries im-

prove k-means++ clustering, arXiv preprint arXiv:170609059, 2017.

[12] Fukushima T., Kamei Y., McIntosh S., Yamashita K., Ubayashi N.: An empirical

study of just-in-time defect prediction using cross-project models. In: Proceedings

of the 11th Working Conference on Mining Software Repositories – MSR 2014,

pp. 172–181, ACM Press, New York, USA, 2014. doi: 10.1145/2597073.2597075.

[13] Garćıa H.L., González I.M.: Self-organizing map and clustering for waste-

water treatment monitoring, Engineering Applications of Artificial Intelligence,

vol. 17(3), pp. 215–225, 2004.

https://doi.org/10.1109/ACCT.2014.106
https://doi.org/10.1109/ACCT.2014.106
https://doi.org/10.1109/ACCT.2014.106
https://doi.org/10.1109/ACCT.2014.106
https://doi.org/10.1109/TKDE.2011.163
https://doi.org/10.1109/TKDE.2011.163
https://doi.org/10.1109/TKDE.2011.163
https://doi.org/10.1145/1835804.1835848
https://doi.org/10.1145/2928268
https://doi.org/10.1109/ICST.2013.38
https://doi.org/10.1109/ICST.2013.38
https://doi.org/10.1145/2597073.2597075
https://doi.org/10.1145/2597073.2597075
https://doi.org/10.1145/2597073.2597075

complexFuzzy: Novel clustering method. . . 33

[14] Hartigan J.A., Wong M.A.: Algorithm AS 136: A K-Means Clustering Algorithm,

Journal of the Royal Statistical Society Series C (Applied Statistics), vol. 28(1),

pp. 100–108, 1979.

[15] He P., Ma Y., Li B.: TDSelector: A Training Data Selection Method for Cross-

-Project Defect Prediction, arXiv preprint arXiv:161209065, 2016.

[16] He Z., Shu F., Yang Y., Li M., Wang Q.: An investigation on the feasibility

of cross-project defect prediction, Automated Software Engineering, vol. 19(2),

pp. 167–199, 2012.

[17] Herbold S.: Training data selection for cross-project defect prediction. In: Pro-

ceedings of the 9th International Conference on Predictive Models in Software

Engineering, pp. 1–10, 2013.

[18] Herbold S., Trautsch A., Grabowski J.: A Comparative Study to Benchmark

Cross-Project Defect Prediction Approaches, IEEE Transactions on Software En-

gineering, vol. 44(9), pp. 811–833, 2018.

[19] Hosseini S., Turhan B., Gunarathna D.: A Systematic Literature Review and

Meta-Analysis on Cross Project Defect Prediction, IEEE Transactions on Soft-

ware Engineering, vol. 45(2), pp. 111–147, 2019.

[20] Hosseini S., Turhan B., Mäntylä M.: A benchmark study on the effectiveness of

search-based data selection and feature selection for cross project defect predic-

tion, Information and Software Technology, vol. 95, pp. 296–312, 2018.

[21] Huang J., Li Y.F., Xie M.: An empirical analysis of data preprocessing for ma-

chine learning-based software cost estimation, Information and Software Tech-

nology, vol. 67, pp. 108–127, 2015.

[22] Ishida M., Takakura H., Okabe Y.: High-Performance Intrusion Detection Using

Optigrid Clustering and Grid-Based Labelling. In: 2011 IEEE/IPSJ Interna-

tional Symposium on Applications and the Internet, pp. 11–19, IEEE, 2011.

[23] Jabangwe R., Börstler J., Šmite D., Wohlin C.: Empirical evidence on the link

between object-oriented measures and external quality attributes: a systematic

literature review, Empirical Software Engineering, vol. 20(3), pp. 640–693, 2015.

doi: 10.1007/s10664-013-9291-7.

[24] Jing X., Wu F., Dong X., Qi F., Xu B.: Heterogeneous cross-company defect

prediction by unified metric representation and CCA-based transfer learning. In:

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-

ing, pp. 496–507, 2015.

[25] Kamei Y., Fukushima T., McIntosh S., Yamashita K., Ubayashi N., Hassan A.E.:

Studying just-in-time defect prediction using cross-project models, Empirical

Software Engineering, vol. 21(5), pp. 2072–2106, 2016.

[26] Kant S., Ansari I.A.: An improved K means clustering with Atkinson index to

classify liver patient dataset, International Journal of System Assurance Engi-

neering and Management, vol. 7(1), pp. 222–228, 2016.

https://doi.org/10.1007/s10664-013-9291-7
https://doi.org/10.1007/s10664-013-9291-7
https://doi.org/10.1007/s10664-013-9291-7
https://doi.org/10.1007/s10664-013-9291-7

34 Muhammed Maruf Öztürk

[27] Kumar G.R., Mangathayaru N., Narasimha G.: An improved k-Means Clustering

algorithm for Intrusion Detection using Gaussian function. In: Proceedings of The

International Conference on Engineering & MIS 2015, pp. 1–7, 2015.

[28] Laradji I.H., Alshayeb M., Ghouti L.: Software defect prediction using ensem-

ble learning on selected features, Information and Software Technology, vol. 58,

pp. 388–402, 2015.

[29] Li Y., Huang Z., Wang Y., Fang B.: Evaluating Data Filter on Cross-Project De-

fect Prediction: Comparison and Improvements, IEEE Access, vol. 5, pp. 25646–

25656, 2017. doi: 10.1109/ACCESS.2017.2771460.

[30] Liebchen G.A., Shepperd M.: Data sets and data quality in software engineer-

ing. In: Proceedings of the 4th International Workshop on Predictor Models in

Software Engineering, pp. 39–44, 2008.

[31] Limsettho N., Bennin K.E., Keung J.W., Hata H., Matsumoto K.: Cross project

defect prediction using class distribution estimation and oversampling, Informa-

tion and Software Technology, vol. 100, pp. 87–102, 2018.

[32] Liu C., Yang D., Xia X., Yan M., Zhang X.: A two-phase transfer learning model

for cross-project defect prediction, Information and Software Technology, 107,

pp. 125–136, 2019. doi: 10.1016/j.infsof.2018.11.005.

[33] Ludwig S.: MapReduce-based fuzzy c-means clustering algorithm: implementa-

tion and scalability, International Journal of Machine Learning and Cybernetics,

vol. 6(6), pp. 923–934, 2015.

[34] Ma L., Gu L., Li B., Ma Y., Wang J.: AN Improved K-Means Algorithm Based

on Mapreduce and Grid, International Journal of Grid & Distributed Computing,

vol. 8(1), pp. 189–200, 2015.

[35] Ma Y., Luo G., Zeng X., Chen A.: Transfer learning for cross-company software de-

fectprediction, Information and Software Technology, vol.54(3),pp.248–256,2012.

[36] Malhotra R., Chug A.: Application of Group Method of Data Handling model

for software maintainability prediction using object oriented systems, Interna-

tional Journal of System Assurance Engineering and Management, vol. 5(2),

pp. 165–173, 2014. doi: 10.1007/s13198-014-0227-4.

[37] Nam J., Fu W., Kim S., Menzies T., Tan L.: Heterogeneous Defect Prediction,

IEEE Transactions on Software Engineering, vol. 44(9), pp. 874–896, 2018. doi:

10.1109/TSE.2017.2720603.

[38] Ni C., Liu W., Gu Q., Chen X., Chen D.: FeSCH: A Feature Selection Method Us-

ing Clusters of Hybrid-Data for Cross-Project Defect Prediction. In: 2017 IEEE

41st Annual Computer Software and Applications Conference (COMPSAC),

vol. 1, pp. 51–56, IEEE, 2017.

[39] Ni C., Liu W.S., Chen X., Gu Q., Chen D.X., Huang Q.G.: A Cluster Based

Feature Selection Method for Cross-Project Software Defect Prediction, Journal

of Computer Science and Technology, vol. 32(6), pp. 1090–1107, 2017. doi: 10.

1007/s11390-017-1785-0.

https://doi.org/10.1109/ACCESS.2017.2771460
https://doi.org/10.1109/ACCESS.2017.2771460
https://doi.org/10.1109/ACCESS.2017.2771460
https://doi.org/10.1016/j.infsof.2018.11.005
https://doi.org/10.1016/j.infsof.2018.11.005
https://doi.org/10.1016/j.infsof.2018.11.005
https://doi.org/10.1007/s13198-014-0227-4
https://doi.org/10.1007/s13198-014-0227-4
https://doi.org/10.1007/s13198-014-0227-4
https://doi.org/10.1109/TSE.2017.2720603
https://doi.org/10.1109/TSE.2017.2720603
https://doi.org/10.1109/TSE.2017.2720603
https://doi.org/10.1007/s11390-017-1785-0
https://doi.org/10.1007/s11390-017-1785-0
https://doi.org/10.1007/s11390-017-1785-0
https://doi.org/10.1007/s11390-017-1785-0

complexFuzzy: Novel clustering method. . . 35

[40] Öztürk M.: Adapting code maintainability to bat-inspired test case prioritiza-

tion. In: Proceedings – 2017 IEEE International Conference on INnovations in

Intelligent SysTems and Applications, INISTA 2017, 2017. doi: 10.1109/INISTA.

2017.8001134.

[41] Peters F., Menzies T., Layman L.: LACE2: Better Privacy-Preserving Data

Sharing for Cross Project Defect Prediction. In: 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, pp. 801–811, IEEE, 2015. doi:

10.1109/ICSE.2015.92.

[42] Peters F., Menzies T., Marcus A.: Better cross company defect prediction. In:

Proceedings of the 10th Working Conference on Mining Software Repositories,

pp. 409–418, 2013.

[43] Poon W.N., Bennin K.E., Huang J., Phannachitta P., Keung J.W.: Cross-Project

Defect Prediction Using a Credibility Theory Based Naive Bayes Classifier. In:

2017 IEEE International Conference on Software Quality, Reliability and Security

(QRS), pp. 434–441, IEEE, 2017.

[44] Porto F., Minku L., Mendes E., Simao A.: A Systematic Study of Cross-Project

Defect Prediction With Meta-Learning, arXiv preprint arXiv:180206025, 2018.

[45] Rahman F., Posnett D., Devanbu P.: Recalling the “imprecision” of cross-project

defect prediction. In: Proceedings of the ACM SIGSOFT 20th International Sym-

posium on the Foundations of Software Engineering, pp. 1–11, 2012.

[46] Ren S., Zhang W., Munir H., Xia L.: Dissimilarity Space Based Multi-Source

Cross-Project Defect Prediction, Algorithms, vol. 12(1), p. 13, 2019. doi: 10.3390/

a12010013.

[47] Rezaee M.R., Lelieveldt B.P., Reiber J.H.: A new cluster validity index for the

fuzzy c-mean, Pattern Recognition Letters, vol. 19(3-4), pp. 237–246, 1998.

[48] Ryu D., Baik J.: Effective multi-objective näıve Bayes learning for cross-project

defect prediction, Applied Soft Computing, vol. 49, pp. 1062–1077, 2016. doi:

10.1016/j.asoc.2016.04.009.

[49] Ryu D., Jang J.I., Baik J.: A transfer cost-sensitive boosting approach for cross-

project defect prediction, Software Quality Journal, vol. 25(1), pp. 235–272, 2017.

[50] Salvador S., Chan P.: Determining the number of clusters/segments in hierarchi-

cal clustering/segmentation algorithms. In: 16th IEEE International Conference

on Tools with Artificial Intelligence, pp. 576–584, IEEE, 2004.

[51] Sheikholeslami G., Chatterjee S., Zhang A.: WaveCluster: A Multi-Resolution

Clustering Approach for Very Large Spatial Databases. In: VLDB, vol. 98,

pp. 428–439, 1998.

[52] Shepperd M., Bowes D., Hall T.: Researcher Bias: The Use of Machine Learn-

ing in Software Defect Prediction, IEEE Transactions on Software Engineering,

vol. 40(6), pp. 603–616, 2014.

[53] Shukla S., Radhakrishnan T., Muthukumaran K., Neti L.B.M.: Multi-objective

cross-version defect prediction, Soft Computing, vol. 22(6), pp. 1959–1980, 2018.

https://doi.org/10.1109/INISTA.2017.8001134
https://doi.org/10.1109/INISTA.2017.8001134
https://doi.org/10.1109/INISTA.2017.8001134
https://doi.org/10.1109/INISTA.2017.8001134
https://doi.org/10.1109/ICSE.2015.92
https://doi.org/10.1109/ICSE.2015.92
https://doi.org/10.1109/ICSE.2015.92
https://doi.org/10.1109/ICSE.2015.92
https://doi.org/10.3390/a12010013
https://doi.org/10.3390/a12010013
https://doi.org/10.3390/a12010013
https://doi.org/10.3390/a12010013
https://doi.org/10.1016/j.asoc.2016.04.009
https://doi.org/10.1016/j.asoc.2016.04.009
https://doi.org/10.1016/j.asoc.2016.04.009
https://doi.org/10.1016/j.asoc.2016.04.009

36 Muhammed Maruf Öztürk

[54] Suzuki R., Shimodaira H.: Pvclust: an R package for assessing the uncertainty

in hierarchical clustering, Bioinformatics, vol. 22(12), pp. 1540–1542, 2006.

[55] Turhan B., Menzies T., Bener A.B., Di Stefano J.: On the relative value of

cross-company and within-company data for defect prediction, Empirical Soft-

ware Engineering, vol. 14(5), pp. 540–578, 2009. doi: 10.1007/s10664-008-9103-7.

[56] Turver R.J., Munro M.: An early impact analysis technique for software main-

tenance, Journal of Software Maintenance: Research and Practice, vol. 6(1),

pp. 35–52, 1994.

[57] Vesanto J., Alhoniemi E.: Clustering of the self-organizing map, IEEE Transac-

tions on Neural Networks, vol. 11(3), pp. 586–600, 2000.

[58] Wang X., Wang Y., Wang L.: Improving fuzzy c-means clustering

based on feature-weight learning, Pattern Recognition Letters, vol. 25(10),

pp. 1123–1132, 2004.

[59] Wu F., Jing X.Y., Dong X., Cao J., Xu M., Zhang H., Ying S., Xu B.: Cross-

-project and within-project semi-supervised software defect prediction problems

study using a unified solution. In: 2017 IEEE/ACM 39th International Confer-

ence on Software Engineering Companion (ICSE-C), pp. 195–197, IEEE, 2017.

[60] Xia X., Lo D., Pan S.J., Nagappan N., Wang X.: HYDRA: Massively Composi-

tional Model for Cross-Project Defect Prediction, IEEE Transactions on software

Engineering, vol. 42(10), pp. 977–998, 2016.

[61] Xu Y., Qu W., Li Z., Ji C., Li Y., Wu Y.: Fast Scalable k-means++ Algorithm

with MapReduce. In: International Conference on Algorithms and Architectures

for Parallel Processing, pp. 15–28, Springer, 2014.

[62] Xu Y., Qu W., Li Z., Min G., Li K., Liu Z.: Efficient k-Means++ Approxima-

tion with MapReduce, IEEE Transactions on parallel and distributed systems,

vol. 25(12), pp. 3135–3144, 2014.

[63] Xu Z., Yuan P., Zhang T., Tang Y., Li S., Xia Z.: HDA: Cross-Project Defect Pre-

diction via Heterogeneous Domain Adaptation with Dictionary Learning, IEEE

Access, vol. 6, pp. 57597–57613, 2018. doi: 10.1109/ACCESS.2018.2873755.

[64] Yoon K.A., Kwon O.S., Bae D.H.: An Approach to Outlier Detection of Software

Measurement Data using the K-means Clustering Method. In: First International

Symposium on Empirical Software Engineering and Measurement (ESEM 2007),

pp. 443–445, IEEE, 2007. doi: 10.1109/ESEM.2007.49.

[65] Yu Q., Jiang S., Qian J.: Which Is More Important for Cross-Project Defect

Prediction: Instance or Feature?. In: 2016 International Conference on Software

Analysis, Testing and Evolution (SATE), pp. 90–95, IEEE, 2016.

[66] Yu Q., Jiang S., Zhang Y.: A feature matching and transfer approach for

cross-company defect prediction, Journal of Systems and Software, vol. 132,

pp. 366–378, 2017.

[67] Yu S.S., Chu S.W., Wang C.M., Chan Y.K., Chang T.C.: Two improved k-means

algorithms, Applied Soft Computing, vol. 68, pp. 747–755, 2018.

https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1109/ACCESS.2018.2873755
https://doi.org/10.1109/ACCESS.2018.2873755
https://doi.org/10.1109/ACCESS.2018.2873755
https://doi.org/10.1109/ESEM.2007.49
https://doi.org/10.1109/ESEM.2007.49
https://doi.org/10.1109/ESEM.2007.49

complexFuzzy: Novel clustering method. . . 37

[68] Yuan X., Khoshgoftaar T.M., Allen E.B., Ganesan K.: An application of fuzzy

clustering to software quality prediction. In: Proceedings 3rd IEEE Symposium

on Application-Specific Systems and Software Engineering Technology, pp. 85–90,

IEEE, 2000. doi: 10.1109/ASSET.2000.888052.

[69] Zhang F., Keivanloo I., Zou Y.: Data Transformation in Cross-Project Defect

Prediction, Empirical Software Engineering, vol. 22(6), pp. 3186–3218, 2017.

[70] Zhang F., Zheng Q., Zou Y., Hassan A.E.: Cross-Project Defect Prediction Using

a Connectivity-Based Unsupervised Classifier. In: 2016 IEEE/ACM 38th Inter-

national Conference on Software Engineering (ICSE), pp. 309–320, IEEE, 2016.

[71] Zhang Y., Lo D., Xia X., Sun J.: Combined classifier for cross-project defect pre-

diction: an extended empirical study, Frontiers of Computer Science, vol. 12(2),

pp. 280–296, 2018.

[72] Zhou K., Fu C., Yang S.: Fuzziness parameter selection in fuzzy c-means: The

perspective of cluster validation, Science China Information Sciences, vol. 57,

pp. 1–8, 2014. doi: 10.1007/s11432-014-5146-0.

[73] Zhou Y., Yang Y., Lu H., Chen L., Li Y., Zhao Y., Qian J., Xu B.: How Far We

Have Progressed in the Journey? An Examination of Cross-Project Defect Pre-

diction, ACM Transactions on Software Engineering and Methodology (TOSEM),

vol. 27(1), pp. 1–51, 2018.

[74] Zimmermann T., Nagappan N., Gall H., Giger E., Murphy B.: Cross-project de-

fect prediction: a large scale experiment on data vs. domain vs. process. In: Pro-

ceedings of the 7th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering,

pp. 91–100, 2009.

Affiliations

Muhammed Maruf Öztürk
Suleyman Demirel University, Department of Computer Engineering, Isparta, Turkey,
muhammedozturk@sdu.edu.tr, ORCID ID: https://orcid.org/0000-0001-6446-9754

Received: 03.04.2020

Revised: 12.07.2020

Accepted: 12.07.2020

https://doi.org/10.1109/ASSET.2000.888052
https://doi.org/10.1109/ASSET.2000.888052
https://doi.org/10.1109/ASSET.2000.888052
http://link.springer.com/10.1007/s11432-014-5146-0
http://link.springer.com/10.1007/s11432-014-5146-0
https://doi.org/10.1007/s11432-014-5146-0
https://orcid.org/0000-0001-6446-9754
muhammedozturk@sdu.edu.tr
https://orcid.org/0000-0001-6446-9754

	Introduction
	Motivation
	Research questions

	Background and related works
	Preliminaries
	Cross-project defect prediction
	Instance selection-based studies
	Feature selection-based studies

	Method
	Experimental setup
	Data sets
	Machine configurations and setup conditions

	Results
	Threats to validity
	Conclusion and future works
	APPENDIX A

