
Computer Science • 21(4) 2020 https://doi.org/10.7494/csci.2020.21.4.3728

Adel Benamira

CAUSAL REVERSIBILITY
IN INDIVIDUAL TOKEN INTERPRETATION
OF PETRI NETS

Abstract Causal reversibility in concurrent systems means that events that the origin of
other events can only be undone after undoing its consequences. In opposition
to backtracking, events that are independent of each other can be reversed in
an arbitrary order; in other words, we have flexible reversibility with respect
to a causality relationship. An implementation of individual token interpreta-
tion of Petri Nets (IPNs) has been proposed by Rob Van Glabbeek et al.; the
present paper investigates a study of causal reversibility within IPNs. Given
N as an IPN, by adding an intuitive firing rule to undo transitions accord-
ing to the causality relationship, the coherence of N is assured; i.e., the set
of all reachable states of N in the reversible version and that of the original
one are identical. Furthermore, reversibility in N is flexible, and their initial
state can be accessible in reverse from any state. In this paper, an approach for
controlling causal-reversibility within IPNs is proposed.

Keywords reversibility, concurrent systems, Petri Nets, causality

Citation Computer Science 21(4) 2020: 489–511

Copyright © 2020 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

489

https://doi.org/10.7494/csci.2020.21.4.3728
https://creativecommons.org/licenses/by/4.0/

490 Adel Benamira

1. Introduction

Reversibility in concurrent systems has received much attention over the last decade.
The concept of reversible computing is based on a combination of forward and back-
ward computation (in contrast to traditional forward computation). This has been
sprung from [21,28], in which the authors confirm that only irreversible computations
need to consume energy; therefore, reversible computation is favorable in low-energy
computing. In the literature, there are a surprising number of reversible computation
studies that have emerged for modeling systems that are naturally reversible, such as
biological system [9,15,40], chemical systems [9,42], and quantum computations [1,10].
Reversibility has also been used in transactions systems [14,29] and in debugging sys-
tems [26,32,33], without forgetting space exploration problems [11,17,27,29]. In this
kind of system, each one can automatically go backward to a specific state (e.g.,
a stable state) in case of error or checkpoints.

Reversibility in a sequential context is well-understood [34, 44]. To reverse the
execution of a calculus, we can recursively undo the last action performed by this
calculus. Since there is no concept of a last action in a concurrent context1, the
definition of reversibility in which context is trickier and more complex to analyse it.

As mentioned by [43], three forms of undoing events exist. Backtracking is the
first (and simplest) one in which events are undone in the inverse order that they oc-
curred. Causal reversing (the second form) means that events that cause other events
can only be undone after the caused events are undone first; thus, independent
events can be undone in any order irrespective of the order that they have actu-
ally occurred. Opposite to causal reversing, the third form is out-of-causal reversing.

The foundational studies of causal reversibility in concurrent computations have
been largely deployed. The notion of causally reversibility was first introduced in
the process calculus RCCS [13]. To this end, the authors associate a memory to
each process, which accumulates the necessary information to capture the history
of its attached process to backtrack. Alternatively, Phillips and Ulidowski proposed
a technique for reversing process calculi without using memories [41]. In this technique,
they generated unique identifiers for each new execution of actions. The interesting
proprieties must be assured by causal reversibility are resumed by (i) the coherence of
a system, which means that the modified system has the same states as the original
one, and (ii) flexible reversibility, in which events that are independent of each other
can be reversed in an arbitrary order.

In the works discussed above, there are no directives to go forward nor backward.
Hence, reversibility is uncontrollable. In [31], the authors have classified controlling re-
versibility with respect to a causality relationship in three categories: internal control,
external control, and semantic control [12,14,30,40].

It is well-known that, in the literature, causal reversibility can distinguish con-
currency from non-determinism and discern between instances of the same action

1Many actions are executed concurrently.

Causal reversibility in individual token interpretation of Petri nets 491

(auto-concurrency). Hence, it is naturally able to define causal reversibility within
causality semantics. Furthermore, it’s well-understood [7, 8, 18] and largely defined
within Petri nets (which are general formal descriptive models of concurrent systems)
and can also be used as an underlying semantics model. In [23,25], causality semantics
have been formalized by the notion of an individual token interpretation of Petri nets.

In [23] explains that, in the individual token interpretation of Petri nets, one
can distinguish different tokens residing in the same place, keeping track of where
they come from. if a transition fires by using a token that has been produced by
another transition, there is a causal link between the two. Consequently, the causal
relationships between the transitions in a run of net can always be described by means
of a partial order. On the other hand, tokens cannot be distinguished in the collective
token interpretation.

s0

s1

s2

t1 : a

t2 : b

a)

M0

M1 M2

M4M3

M5

a b

b

b
a

b

b

b)

M0

M1 M2

M4M3

M5

a b

b

ab

a

b

ab

c)

Figure 1. Collective and individual token interpretations of Petri net: a) Petri net N ;
b) CT-Marking graph of N ; c) IT-Marking graph of N

The net of Figure 1 [23] illustrates the difference between the collective token in-
terpretations (see Figure 1b) and the individual token interpretation (see Figure 1c)
of given Petri net N in Figure 1a. In this net, the transitions labeled a and b are in-
dependent actions; thus, we can fire each once. After a has fired, there are two tokens
in the place of s1. According to the individual token philosophy, it makes a differ-
ence which of these tokens is used in firing b. if the token that was already there is
used (which must certainly be the case if b happens before the token from a arrives),
transitions a and b are causally independent (case 1). If the token that was produced
by a is used, b is causally dependent on a and noted by ab (case 2). In an oppo-
site manner, the collective token interpretation cannot distinguish these two cases.

1.1. Previous work

Few researchers have addressed reversible computation within the Petri net context.
The first study was proposed in [3, 5]; more recently, causal reversibility has been
introduced within an individual token interpretation [4]. Similar to the Phillips and

492 Adel Benamira

Ulidowski approach, a unique identifier for each firing is assured without adding mem-
ories. [37] proposes an approach for controlling reversibility by associating transitions
with conditions whose satisfaction/violation allows for the execution of transitions in
the forward/reverse direction, respectively. These works have been limited to a sub-
class of Petri nets that are acyclic.

1.2. Our contribution

We believe that the restriction to acyclic Petri nets is due to the mechanism that are
used to distinguish tokens; hence, the work reported in the current paper was moti-
vated by the powerful of the manner of [23] in which tokens can be distinguished. In-
deed, the present work finds, as in [4], an interesting set of results with any restriction2.

Precisely, the contribution of this paper is based on causality semantics that uses
Glabbeek’s presentation of the individual token interpretation of Petri nets [23], noted
in the present work by IPN. A study of causal reversibility within IPNs is proposed and
in which interesting proprieties have been verified, such as the coherence of a system
and flexible reversibility. Furthermore, the initial state of a system can be accessible
in reverse from any one. In this paper, a control causal reversibility within IPNs is
proposed as well. According to Mazurkiewicz’s trace equivalence, flexible reversibility
in IPNs is founded on the interesting theorem that is proven in Section.3.

1.3. Paper organization

The paper is organized as follows. The second section defines the individual token in-
terpretation of Petri nets under the interleaving semantics. The third section examines
the application of Mazurkiewicz’s trace equivalence to IPNs in which an interesting
theorem (to hold flexible reversibility) has been proven. The fourth section is the core
of the present paper in which the coherence and flexible reversibility of a given IPN
are assured and the initial state of a system can be accessible in reverse from any
one. Section 5 defines a new model (States-based Control Causal-Reversible IPNs) in
which causal reversible is controlled by a rollback specification. This paper is ended
by some conclusions of the present work.

2. Preliminaries

In [23], the reader finds a formal presentation of the individual token interpretation
of Petri nets using step semantics; however, the contribution of this paper is defined
using interleaving semantics. Hence, the present section redefines it under interleaving
semantics.

In [23], each token has been identified by a triple (u, k, s) such that s is the
place where the token is created and u is the transition firing that brought it there.
The n tokens that are created in s by u have been distinguished by giving ordinal

2For any cyclic or acyclic Petri net.

Causal reversibility in individual token interpretation of Petri nets 493

numbers k = 0, 1, 2, ..., n − 1. Hence, the tokens that are defined as tuple (u,k,s)
allow us to distinguish them in the following situations: (i) tokens are located in
different places (held by s); (ii) tokens are located in the same place but created
by different firings (see u); and (iii) tokens are located in the same place and created
by the same firing (assured by k). We take (∗, k, s) for initial tokens of s, we have u = ∗.

The (X, t) pair introduces the firing of transition t with consuming the set of
tokens X. Function β is defined from the tokens to the places where they occur by
β(u, k, s) = s, and η from transition firings u such that u = (X, t) to the transition
that fires by η(u) = t. Function β extends to a function from sets of tokens X to sets
of places by β(X) = {β(n)|∀n ∈ X}.
Definition 2.1. A (labeled, marked)Petri net is a tuple N = (S, T, F, I, L) where:

• S and T are disjoint sets (of places and transitions);
• F : (S × T ∪ T × S)→ N (the flow relationship including arc weights);
• I : S → N (the initial marking);
• L : T −→ A, for A a set of actions, the labeling function.

Definition 2.2. Given Petri net N = (S, T, F, I, L), sets of tokens S• and transition
firing T• of N are recursively defined by:

• (∗, k, s) ∈ S• for s ∈ S and k < I(s);
• (u, k, s) ∈ S• for s ∈ S, u ∈ T• and k < F (η(u), s);
• (X, t) ∈ T• for t ∈ T and X ⊆ S• such that β(X) =• t 6= φ where •t = {s|∀s ∈
S.F (s, t) 6= 0}.
Labeling function L• : T• −→ A on transition firings is given by L•(t) = L(η(t)).

An individual marking of N is a subset of tokens M ⊆ S•. The initial individual
marking I• is defined as ∀(∗, k, s) ∈ S• implies that (∗, k, s) ∈ I•.
Definition 2.3. For a firing u ∈ T• such that u = (X, t), let •u = X and u• =
{(u, k, s)|K < F (η(u), s)} be the set of input tokens and the set of output tokens of u.
Transition t is enabled under an individual marking M ∈ S• if •u ⊆M . In this case,
t can fire under M , yielding M ′ = (M \• u)∪ u•, written as M u−→• M ′ or M [u〉M ′.

For each marking M , [M〉 is the set of markings reachable from M . Hence, [I•〉
is the set of markings reachable from I•, in the other words it’s the set of all marking
reachable of N .

To explain how IPNs can preserve a causal relationship between actions, given
the Petri net N of Figure 1 in which the initial individual marking I• is the set
{(∗, 0, s0), (∗, 0, s1)}. From this state, transition t1 (respectively, t2) is enabled; hence,
we have firing u1 = ({(∗, 0, s0)}, t1) (respectively, u2 = ({(∗, 0, s1)}, t2)). Firing u1
creates state M1 such that M1 = {(u1, 0, s1), (∗, 0, s1)} from which we have two pos-
sible firings: the first one is caused by the initial token (∗, 0, s1), and the second one
by the consequence of u1; i.e., token (u1, 0, s1), noted respectively by u3 and u4 such
that u3 = ({(∗, 0, s1)}, t2) and u4 = ({(u1, 0, s1)}, t2). These mean that we can differ-
entiate the firing of t2 that is caused by the execution of t1 to the one which is caused
by the initial token of s1. In the collective token interpretation, we do not have this
possibility (see Figure 1b).

494 Adel Benamira

The marking graph of N is given as Figure 2 such that:

• X1 = {(∗, 0, s0)} and M1 = {((X1, t1), 0, s1), (∗, 0, s1)};
• X2 = {(∗, 0, s1)} and M2 = {((X2, t2), 0, s2), (∗, 0, s0)}};
• X3 = {((X1, t1), 0, s1)} and M3 = {((X3, t2), 0, s2), (∗, 0, s1)};
• M4 = {((X1, t1), 0, s1), ((X2, t2), 0, s2)};
• M5 = {((X3, t2), 0, s2), ((X2, t2), 0, s2)}.

I•

M1 M2

M4M3

M5

(X1, t1) (X2, t2)

(X2, t2)

(X3, t2)

(X1, t1)

(X2, t2) (X3, t2)

Figure 2. Marking graph within individual token interpretation

3. Trace equivalence in IPNs

Let σ and σ′ be two sequences, and let u and u′ be two independent actions. By
the definition of Mazurkiewicz’s trace equivalence [35, 36], sequences σ.u.u′.σ′ and
σ.u′.u.σ′ are two equivalent traces. This section examines Mazurkiewicz’s trace equiv-
alence within the IPN context and in which it’s found that any two sequences are
Mazurkiewicz’s equivalent traces only if they share a same source and a same target
marking; i.e., M [σ.u.u′.σ′〉M ′ and M [σ.u′.u.σ′〉M ′.

When we give a sequence to reverse it, two possible reversing sequences can
emerge: (i) the reversing of itself (the usual backtracking), and (ii) the reversing of
their equivalent sequence. Thus, it can be shown that the equivalence concept is a pile
foundation of the flexible reversibility definition.

In this section, the Mazurkiewicz’s trace equivalence is redefined in the IPN
context; to this end, we begin by defining the independent relationships between the
firings in the IPN context. Intuitively, two firings (X, t) and (X ′, t′) are in conflict if
and only if X ∩ X ′ 6= φ. We say that a firing causes another one if and only if the
second one consumes the tokens that are directly or indirectly created by the first one;
i.e., (X, t) causes (X ′, t′) if and only if (X, t)• ∩X ′ ∩ ~(X ′) 6= φ, the indirect tokens
are given by function ~ (see Definition 3.1). Concerning the independent relationship,
we can say that two firings are independent if and only if they are not in conflict and
neither causes the other one.

Causal reversibility in individual token interpretation of Petri nets 495

Definition 3.1. Let X ⊆ S•. The function ~ is defined recursively as: ~(X) = {X ′ ∪
~(X ′)|∀((X ′, t), k, s) ∈ X}.
Definition 3.2. Let u, u′ ∈ T• such that u = (X, t) and u′ = (X ′, t′). Independent
relationship I ⊆ T• × T• is defined by (u, u′) ∈ I if and only if

1. X ∩X ′ = φ and
2. u• ∩X ′ ∩ ~(X ′) = φ and u′• ∩X ∩ ~(X) = φ.

s0

s2

s1

s3

t1 : a t2 : b

t3 : c

a)

I•

M1 M2

M4M3

M6

M5

M7

M8

(X1,t1)

(X2,t2)

(X3,t3)

(X3,t3)

(X2,t2)

(X2,t2)

(X1,t1)

(X4,t3)

(X1,t1)

(X4,t3)

(X4,t3) (X3,t3)

b)

Figure 3. Marking graph of IPN: a) Petri net N ; b) the marking graph of N

For instance, let N be an IPN of Figure 3. This net presents an auto-concurrence
of action c, which is caused by the parallel execution of actions a and b. The marking
graph of N is presented as Figure 3b such that:

• I• = {(∗, 0, s0), (∗, 0, s1)};
• X1 = {(∗, 0, s0)};
• M1 = {(∗, 0, s1), ({(X1, t1)}, 0, s2)};
• X2 = {(∗, 0, s1)};
• M2 = {(∗, 0, s0), ({(X2, t2)}, 0, s2)};
• X3 = {({(X1, t1)}, 0, s2)};
• M3 = {(∗, 0, s1), ({(X3, t3)}, 0, s3)};
• M4 = {({(X1, t1)}, 0, s2), ({(X2, t2)}, 0, s2)};
• X4 = {({(X2, t2)}, 0, s2)};
• M5 = {(∗, 0, s0), ({(X4, t3)}, 0, s3)};
• M6 = {({(X3, t3)}, 0, s3), ({(X2, t2)}, 0, s2)};
• M7 = {({(X1, t1)}, 0, s2), ({(X4, t3)}, 0, s3)};
• M8 = {({(X3, t3)}, 0, s3), ({(X4, t3)}, 0, s3)}.

496 Adel Benamira

From this graph, we can take that:
• ((X1, t1), (X2, t2)) ∈ I because X1 ∩ X2 = φ, (X1, t1)• ∩ X2 ∩ ~(X2) = φ and

(X2, t2)•∩X1∩~(X1) = φ such that (X1, t1)• = {({(X1, t1)}, 0, s2)}, ~(X2) = φ,
(X2, t2)• = {({(X2, t2)}, 0, s2)} and ~(X1) = φ;

• ((X3, t3), (X2, t2)) ∈ I because X3 ∩ X2 = φ, (X3, t3)• ∩ X2 ∩ ~(X2) = φ and
(X2, t2)•∩X3∩~(X3) = φ such that (X3, t3)• = {({(X3, t3)}, 0, s3)}, ~(X2) = φ,
(X2, t2)• = {({(X2, t2)}, 0, s2)} and ~(X3) = {(∗, 0, s0)};

• ((X1, t1), (X4, t3)) ∈ I because X1 ∩ X4 = φ, (X1, t1)• ∩ X4 ∩ ~(X4) = φ and
(X2, t2)• ∩ X1 ∩ ~(X1) = φ such that (X1, t1)• = {({(X1, t1)}, 0, s2)}, ~(X4) =
{(∗, 0, s1)}, (X4, t3)• = {({(X4, t3)}, 0, s3)} and ~(X1) = φ;

• ((X3, t2), (X4, t3)) ∈ I because X3 ∩ X4 = φ, (X1, t1)• ∩ ~(X4) = φ and
(X2, t2)• ∩ ~(X1) = φ such that (X3, t3)• = {({(X3, t3)}, 0, s3)}, ~(X4) =
{(∗, 0, s1)}, (X4, t3)• = {({(X4, t3)}, 0, s3)} and ~(X3) = {(∗, 0, s0)}.

Mazurkiewicz’s trace equivalence is defined in the IPN context as follows:
Definition 3.3. Let σ, σ′ be two sequences and let u, u′ be two firings such that
(u, u′) ∈ I. Relationship ∼⊆ T ∗• × T ∗• is defined by:

if σ.u.u′.σ′, σ.u′.u.σ′ ∈ T ∗• , then σ.u.u′.σ′ ∼ σ.u′.u.σ′.
Given sequences σ = (X1, t1).(X2, t2).(X3, t3).(X4, t3) and σ′ =

(X2, t2).(X4, t3).(X1, t1).(X3, t3) from Figure 3b,
we can take:

• σ ∼ (X2, t2).(X1, t1).(X3, t3).(X4, t3) from the fact that ((X1, t1), (X2, t2)) ∈ I;

• since ((X3, t3), (X4, t3)) ∈ I, we have (X2, t2).(X1, t1).(X3, t3).(X4, t3) ∼
(X2, t2).(X1, t1).(X4, t3).(X3, t3);

• (X2, t2).(X1, t1).(X4, t3).(X3, t3) ∼ (X2, t2).(X4, t3.)(X1, t1).(X3, t3) = σ′; thus,
((X1, t1), (X4, t3)) ∈ I.
Hence, σ ∼ σ′.
Any one can observe that, in this IPN, for any two sequences σ and σ′ such that

M [σ〉M ′ and M [σ′〉M ′, we have σ ∼ σ′. In the following, we find that it remains true
for any IPN (see Theorem 3.1); however, before this, it is important to report that σ
and σ′ have exactly the same set of actions.

Lemma 3.1. Let σ and σ′ be two sequences such that M [σ〉M ′ and M [σ′〉M ′. We
can have ‖σ‖ = ‖σ′‖.

With ‖u1.u2...un‖ = {ui|∀i ∈ 1..n}.
Proof 3.1. We use proof by contradiction. Suppose the claim is false; this implies
that M [u1〉M1[u2〉M2...[un〉M ′ and M [u′1〉M ′1[u2〉M ′2...[u′m〉M ′ such that n 6= m. So,
have u = (X, t) ∈ ‖σ‖ such that u 6∈ ‖σ′‖ means that we haven’t any state M ′i such
that X ∈ M ′i . As a consequence, X does not appear in any token history of M ′. By
Definition 2.3, this will be impossible.

Theorem 3.1. Let σ, σ′ ∈ T ∗• , σ ∼ σ′ if and only if M [σ〉M ′ and M [σ′〉M ′.

Causal reversibility in individual token interpretation of Petri nets 497

Proof 3.2. We prove σ ∼ σ′ ⇒M [σ〉M ′ ∧M [σ′〉M ′ and vice-versa.

1. First, we show σ ∼ σ′ ⇒ M [σ〉M ′ ∧ M [σ′〉M ′: From the definition of ∼, we
have σ1.σ2.σ3 ∼ σ1.σ

′
2.σ3 such that σ = σ1.σ2.σ3 and σ′ = σ1.σ

′
2.σ3. From

the fact that [...〉 is a function and each sequence in an IPN is unique, we take
M [σ1〉M1[σ2〉M2[σ3〉M ′ and M [σ1〉M1[σ′2〉M2[σ3〉M ′. Thus, M [σ〉M ′∧M [σ′〉M ′
is held.

2. Now, we show M [σ〉M ′ ∧M [σ′〉M ′ ⇒ σ ∼ σ′: we remember from Lemma 3.1
that ‖σ‖ = ‖σ′‖. We use proof by contradiction. Suppose the claim is false; this
implies that:

a) a sub-sequence u.u1 exists in σ and a sub-sequence u.u2 in σ′ such that
(u1, u2) 6∈ I; this implies the following: if u1 causes u2 in σ (respectively if
u2 causes u1), then u1 6∈ ‖σ′‖ (respectively u2 6∈ ‖σ‖); this will be impossible,
in fact that ‖σ‖ = ‖σ′‖;

b) or, they exist a sub-sequence u1.u of σ and a sub-sequence u2.u of σ′ such
that (u1, u2) 6∈ I, this implies the following: if u1 causes u2 in σ (respec-
tively if u2 causes u1), then u1 6∈ ‖σ′‖ (respectively u2 6∈ ‖σ‖); this will be
impossible, in fact that ‖σ‖ = ‖σ′‖.

4. Reversibility in IPNs

Causal reversibility means that an event that causes other events can only be undone
after the caused events are undone first. Our contribution consists of modeling this
kind of reversibility within IPNs. Given N = (S, T, F, I, L) as an IPN, let u ∈ T• such
that u = (X, t), the forward firing of t can be shown as the destruction of all tokens
of set X and then the production of tokens set u•. Therefore (and opposite), the
undoing (backward) of u consumes u• and produces X. In this section, we show how
this intuitive undoing vision can assure both the coherence of a system and flexible
reversibility.

First, the formal definitions of forward and backward firings within IPNs are
given.

Definition 4.1. For a firing u ∈ T• in a Petri net such that u = (X, t), let •u = X

and u• = {(u, k, s)|K < F (η(u), s)} be the set on input tokens and the set of output
tokens of u, respectively.

1. forward firing: transition t is enabled under an individual marking M ∈ S• if
•u ⊆ M ; in this case, t can fire under M , yielding M ′ = (M \• u) ∪ u•, written
as M u−→•f M ′ or M [u〉fM ′.

2. backward firing: transition t can be undone under an individual marking M ′ ∈ S•
if u• ⊆ M ′; in this case, the undo of t can fire under M ′, yielding M = (M ′ \
u•) ∪• u, written as M ′ u−→•b M or M ′[u〉bM .

498 Adel Benamira

s0

s1 s2

s3 s4

t1 : a

t2 : b t3 : c

a)

I•

M1

M2 M3

M4

(X1,t1)

(X2,t2) (X3,t3)

(X3,t3) (X2,t2)

b)

I•

M1

M2 M3

M4

(X1,t1)

(X2,t2) (X3,t3)

(X3,t3) (X2,t2)

c)

Figure 4. Reversibility in individual token interpretation Petri net: a) Petri net N ; b) usual
marking graph; c) marking graph with causal reversibility

For example, let N be the IPN of Figure 4, and let I• = {(∗, 0, s0)} be the
initial marking state of N . Marking I• allows us to only perform (X1, t1) such
that X1 = {(∗, 0, s0)}. By Definition 4.1.1, we have I•[(X1, t1)〉fM1 such that
M1 = {({(X1, t1)}, 0, s1), ({(X1, t1)}, 0, s2)}.

At state M1, we have three possible actions: perform (X2, t2), perform (X3, t3),
or undo (X1, t1):

1. M1[(X2, t2)〉fM2 such that X2 = {({(X1, t1)}, 0, s1)} and
M2 = {({(X1, t1)}, 0, s2), ({(X2, t2)}, 0, s3)};

2. M1[(X2, t3)〉fM3 such that X3 = {({(X1, t1)}, 0, s2)} and
M3 = {({(X1, t1)}, 0, s1), ({(X3, t3)}, 0, s4)};

3. M1[(X1, t1)〉bI•.

Causal reversibility in individual token interpretation of Petri nets 499

The undoing of (X2, t2) or the performing of (X3, t3) will be possible from M2:
1. M2[(X3, t3)〉fM4 such that
M4 = {({(X2, t2)}, 0, s3), ({(X3, t3)}, 0, s4)};

2. M2[(X2, t2)〉bM1 .
From M3, we have:

1. M3[(X2, t2)〉fM4 such that
M4 = {({(X2, t2)}, 0, s3), ({(X3, t3)}, 0, s4)};

2. M3[(X3, t3)〉bM1.
The marking M4 allows us to undo (X3, t3) or (X2, t2):

1. M4[(X3, t3)〉bM2;
2. M4[(X2, t2)〉bM3.

All of these will be resumed as the marking graph of Figure 4c, in which
a dashed arc means the undoing of an action. The graph of Figure 4b is the
usual marking graph of N (without reversibility). Each one can be see that (i)
the two previous graphs have exactly the same marking set, and (ii) in Fig-
ure 4c, the undoing of sequence I•[(X1, t1)〉fM1[(X2, t2)〉fM2[(X3, t3)〉fM4 is real-
ized either by backtracking M4[(X3, t3)〉bM2[[(X2, t2)〉bM1(X1, t1)〉bI•, or by sequence
M4[(X2, t2)〉bM3[[(X3, t3)〉bM1(X1, t1)〉bI•; i.e., by the backtracking of its equivalent
sequence I•[(X1, t1)〉fM1[(X3, t3)〉fM2[(X2, t2)〉fM4.

In this instance, it is obvious to affirm both the coherence of the system and
flexible reversibility. The question is now to know whether these proprieties will be
held for any reversible IPN. In the follow, the coherence and flexible reversibility for
a given reversible IPN are proven. Furthermore, the initial marking is reachable by
reversibility from any marking state.
Definition 4.2. Let u ∈ T•. Relationships F,B ⊆ T• × S• × S• are defined by

• (u,M,M ′) ∈ F if and only if M u−→•f M ′;
• (u,M,M ′) ∈ B if and only if M ′ u−→•b M .

In a reversible IPN, the undoing of a firing (X, t) generates any new marking
state. It is just the reverse of the past state of (X, t). To check this, it must be proven
that B is a partial function that is the inverse function of F.
Lemma 4.1. F and B are partial functions on T• × S• −→ S•.
Proof 4.1. Let u ∈ T• such that u = (X, t), and let M1,M2,M3 ∈ S•. Function F is
a partial function from T• × S• to S• if and only if: F(u,M1) = M2 and F(u,M1) =
M3, then M2 = M3.

With the aim of obtaining a contradiction, we assume that M2 6= M3. By the
definition of forward firing, we have M2 = (M1 \X) ∪ u• and M3 = (M1 \X) ∪ u•;
thus, M1 6= M1, X 6= X and {(u, k, s)|K < F (η(u), s)} 6= {(u, k, s)|K < F (η(u), s)}.
Therefore, they are a contradiction.

This is a similar proof for B.
In the rest, an application F(u,M) (respectively, B(u,M)) is noted by Fu(M)

(respectively, Bu(M)).

500 Adel Benamira

Proposition 4.1. Let u ∈ T•, the function Bu is the inverse function of Fu.
Proof 4.2. Function Bu is the inverse function of Fu if and only if Bu◦Fu(M) = M .
We have Bu ◦ Fu(M) = ((M \X) ∪ u•) \ u• ∪X = M . Thus, Bu ◦ Fu(M) = M .
Proposition 4.2. In a reversible IPN, the undoing of a firing (X, t) generates any
new marking state. This is just the reverse of the past marking of (X, t).
Proof 4.3. From the fact that Bu is the inverse function of Fu.

To define our calculus, functions F and B will be extended by composition to T ∗• .
Definition 4.3. Let σ = u1.u2....un be a sequence in T ∗• such that M0

u1−→•f
M1

u2−→•f M2...
un−→•f Mn. Function F : T ∗• × S• −→ S• is defined by Fσ =

Fun ◦ Fun−1 ...Fu2 ◦ Fu1 .
In what follows, we note M [σ〉fM ′ for Fσ(M) = M ′.

For any marking M , set [M〉f is the set of markings reachable from M . Hence,
[I•〉f is the set of all markings that are reachable of N .

Definition 4.4. Let σ = u1.u2. . . . un be a sequence in T ∗• such that Mn
un−→•b

Mn−1
un−1−→•b Mn−2...

u1−→•b M0. Function B : T ∗• × S• −→ S• is defined as follows:
Bσ = Bu1 ◦Bu2 ...Bun−1 ◦Bun .

We note M ′[σ〉bM for Bσ(M ′) = M .

For any marking M , set [M〉b is the set of markings reachable by reversibility
from M ; thus, [I•〉b = {M |∀σ ∈ T ∗• : M [σ〉bI•} .
Proposition 4.3. In a reversible IPN, for any σ ∈ T• such that Fσ(M) = M ′, we
have Bσ(M ′) = M

Proof 4.4. Let n be the length of sequence σ. We will use induction on n.

1. n = 1: this is evident by the fact that B is the inverse function of F.
2. Suppose that, if n is held, then Bσ(M ′) = M . If we take Fσ.u(M) = M” such

that u ∈ T•, then we wish to show that Bσ.u(M”) = M . From Definition 4.3, we
have Fu(M ′) = M”; therefore, Bu(M”) = M ′. As a result, Bσ ◦Bu(M”) = M .

Proposition 4.3 confirms that a backtracking of any sequence will be possible.
Therefore, the initial marking is reachable by backtracking from any marking state
of the system (see Proposition 4.4).
Proposition 4.4. In a reversible IPN, for any M ∈ S•, σ ∈ T ∗• exists such that
Bσ(M) = I•.
Proof 4.5. M ∈ S• means that ∃σ ∈ T ∗• such that Fσ(I•) = M . Thus, from Proposi-
tion 4.3, we have Bσ(M) = I•

Now, we can enunciate the theorem of the coherence of the system.
Theorem 4.1. (The coherence of the system)

Given N = (S, T, F, I, L) being an IPN, the set of all reachable states of N and that
the reversible N will be identical: [I•〉 = [I•〉f = [I•〉b.
Proof 4.6. By definition, [I•〉 = [I•〉f . From definitions [I•〉f and [I•〉b and from
Proposition 4.4, we have [I•〉f = [I•〉b.

Causal reversibility in individual token interpretation of Petri nets 501

Theorem 4.2. (Flexible Reversibility)

For any σ ∈ T ∗• such that Fσ(M) = M ′, if σ′ ∈ T ∗• exists such that σ ∼ σ′, then
Bσ(M ′) = Bσ′(M ′) = M .

Proof 4.7. From Theorem 3.1, we take Fσ′(M) = M ′, and from Proposition 4.3, we
can take Bσ(M ′) = Bσ′(M ′) = M .

This theorem means that the reversibility of σ will be given by backtracking or
by the backtracking of its equivalent sequences.

5. States-based controlling causal-reversibility

Unfortunately, controlling reversibility in the distributed system context is trickier and
not evident. Furthermore, we do not have a global view of a system. For example,
taken the distributed system of Figure 5a, which is composed of two subsystems (Sub1
and Sub2), dispersed in two different locations. We note that this vision of distributed
systems has been proposed in [24]. The undoing of Sub2 vis-a-vis their local vision
means that it must undo t22 and then undo t21; thus, t22.t21 is the associated sequence
to this backtracking. This reflect is held if only if the subsystem is independent of
the components of the system. However, in the global vision, we must also undo
t12 of Sub1 and its consequences; hence, it will be possible to have two equivalent
backtracking sequences3: t22.t13.t12.t21 and t13.t22.t12.t21.

The above example is introduced to explain the difficulty of controlling reversibil-
ity using a given sequence. The alternative is the employment of the state space of
a system, one can proposes a pair of states (trigger, target) such as when trigger state
R is spotted, rollback4 (R,G) can be used to go back to target state G. However, we
have fallen in the same previous problem. Indeed, the (R,G) pair will be defined from
the global system; i.e., we must dispose their enumeration states.

To get around this obstacle, this section proposes a control causal-reversibility
within IPNs by giving an implicit rollback. Let us go back to our distributed system of
Figure 5a. When one wants to undo the second subsystem, the trigger state is the one
that contains token (, , s22), and the target state includes token (∗, 0, s20). Hence, the
specification of this rollback can be taken as a pair of predicates as (Φ(M),Ψ(M))
such that Φ(M) = (, , s22) ∈ M and Ψ(M) = (∗, 0, s20) ∈ M ; i.e., a rollback
specification will be defined from the description of the system (e.g., tokens and
places) instead of their global state space. A rollback is executed if a marking state
exists that satisfies Φ. As a conclusion, our control causal-reversibility approach is
defined as a control causal-reversibility using a given enumerate rollback that satisfies
the rollback specification.

3We remember that reversibility in reversible IPN is flexible.
4The rollback can be realized by either backtracking or flexible reversibility.

502 Adel Benamira

s10

s11 in1

s20

s12

s21in2

s13 s22

t11 : a t21 : b

t12 : c

t13 : d t22 : e

Location1 : Sub1 Location2 : Sub2
a)

I•

M1 M2

M3

M4

M5 M6

M7

(X1, t11)

(X2, t21)

(X3, t12)

(X2, t21)

(X1, t11)

(X4, t13) (X5, t22)

(X5, t22) (X4, t13)

b)

I•

M1 M2

M3

M4

M5 M6

M7

(X1, t11)

(X2, t21)

(X3, t12)

(X2, t21)

(X1, t11)

(X4, t13) (X5, t22)

(X5, t22) (X4, t13)

c)

Figure 5. Controlling reversibility: a) distributed system N ; b) marking graph of N ;
c) marking graph of (N, (M7,M1))

In the following and in the first, the formal definition of control causal-reversibility
using an enumerate rollback is given and followed by a presentation of the control
causal-reversibility approach using the rollback specification that is noted by states-
based controlling causal-reversibility within IPNs (SCCR-IPNs).

Causal reversibility in individual token interpretation of Petri nets 503

To give the intuition behind the formal definition of the control causal-reversibil-
ity using an enumerate rollback, let us take the marking graph from Figure 6b, and
let the given (M5,M1) be a rollback. To execute this rollback, we have two reversible
equivalent sequences (X4, t4).(X3, t3).(X2, t2) and (X4, t4).(X2, t2).(X3, t3). Now, if
we take the rollback (M5,M2) we also have two sequences σ1 = (X4, t4).(X3, t3)
and σ2 = (X4, t4).(X2, t2).(X3, t3).(X2, t2). However, the sequence σ2 is more costly
than the first, since both the undoing and the doing of (X3, t3) are not needed.
It will be possible to control the rollback in order to get out of σ2; the intu-
ition of this is based on the definition of a partial order over the states (see Def-
inition 5.2). According to this partial order, we only have the M2 �M4 �M5
chain between M5 and M2. Therefore, the rollback enables the σ1 sequence.

We show the following: (i) given a finite marking graph, the marking state set
is structured as a domain (see Proposition 5.2) over partial order �; (ii) the control
backward firing is a continued function on this domain. This means that our control
causal-reversibility is an optimal and finite calculus.
Definition 5.1. Let n, n′ ∈ S• such that n = (u, k, s), n′ = (u′, k′, s′) and u′ = (X, t).
Relationship ¬: S• −→ S• is defined recursively as follows:

n ¬ n′ if and only if:
• n = n′,
• or n ∈ X : means n directly gives rise to n′,
• or ∃n” ∈ X such that n ¬ n”: means n indirectly gives rise to n′.

Definition 5.2. Let M,M ′ ∈ S•. Relationship �: S• −→ S• is defined as follows:
M �M ′ if and only if ∀n ∈M , then ∃((X, t), k, s) ∈M ′ such that:

• n = ((X, t), k, s): means same token,
• or n ∈ X: means n directly gives rise to ((X, t), k, s),
• or ∃n′ ∈ X such that n ¬ n′: means n indirectly gives rise to ((X, t), k, s).

Proposition 5.1. Relationship � is a partial order.
Proof 5.1. Relationship � is reflexive, transitive, and anti-symmetric.

1. Reflexive: by definition.
2. Transitive: let M1 �M2 and M2 �M3, it will be easy to deduce that M1 �M3.

From the definition of �, we can write:

• M1 � M2 if and only if ∀n1 ∈ M1 then ∃((X2, t2), k2, s2) ∈ M2 such that
n1 = ((X2, t2), k2, s2) ∨ n1 ∈ X2 ∨ ∃n2 ∈ X2.n1 ¬ n2;

• M2 � M3 if and only if ∀n2 ∈ M2 then ∃((X3, t3), k3, s3) ∈ M3 such that
n2 = ((X3, t3), k3, s3) ∨ n2 ∈ X3 ∨ ∃n3 ∈ X3.n2 ¬ n3.

From the fact that (∀a ∈ A.∃b ∈ B) and (∀b ∈ B.∃c ∈ C) implies (∀a ∈
A.∃c ∈ C), we can deduce that ∀n1 ∈ M1 then ∃((X3, t3), k3, s3) ∈ M3 such
that n1 = ((X3, t3), k3, s3)∨ n1 ∈ X3 ∨ ∃n3 ∈ X3.n1 ¬ n3. So, we have M1 �M3
as a result.

3. Anti-symmetric: if M1 � M2 and M2 � M1, then M1 = M2, since the marking
graph of IPN is acyclic.

504 Adel Benamira

s0

s1 s2

s3 s4

s5

t1 : a

t2 : b t3 : c

t4 : d

a)

I•

M1

M2 M3

M4

M5

(X1,t1)

(X2,t2) (X3,t3)

(X3,t3) (X2,t2)

(X4,t4)

b)

I•

M1

M2 M3

M4

M5

(X1,t1)

(X2,t2) (X3,t3)

(X3,t3) (X2,t2)

(X4,t4)

c)

I•

M1

M2 M3

M4

M5

(X1,t1)

(X2,t2) (X3,t3)

(X3,t3) (X2,t2)

(X4,t4)

d)

Figure 6. Control Causal-Reversibility using given enumerate rollback: a) reversible IPN N ;
b) marking graph of N ; c) marking graph of (N, (M5,M2)); d) marking graph of

(N, (M5,M1))

Proposition 5.2. (S•,�) is a domain.
Proof 5.2. (S•,�) is a domain if it is a complete partial order CPO with down
button ⊥. Let N be an IPN, and let Y be a chain defined over S•; if the marking
graph of N is a finite graph, then Y has a least upper bound (so, it is a CPO). Since
∀M ∈ S• : I• �M , the down button is the initial marking state, ⊥= I•.

Causal reversibility in individual token interpretation of Petri nets 505

M7

M5 M6

M4

M3

M1 M2

I•

a) M5

M4

M2 M3

M1

I•

b)

Figure 7. Domain of marking graph: a) domain of Figure 5a; b) domain of Figure 6a

Given a rollback (R,G), in the following, we define the control causal-reversibility
within an IPN as a reversible IPN by modifying the backward firing rule (see Definition
5.3.2) with respect to chain G � .. � R, written as (N, (R,G)).

Definition 5.3. Let (R,G) be a rollback. For a firing u ∈ T• in a Petri net such that
u = (X, t), let •u = X and u• = {(u, k, s)|K < F (η(u), s)} be the set on input tokens
and the set of output tokens of u.

1. Forward firing: transition t is enabled under an individual marking M ∈ S• if
•u ⊆ M . In this case, t can fire under M , yielding M ′ = (M \• u) ∪ u•, written
as M u−→•f M ′ or M [u〉fM ′.

2. Controlling backward firing: transition t can be undone under a rollback (R,G)
and an individual marking M ′ ∈ S• if u• ⊆M ′, G �M � R, and G ≺M ′ � R.
In this case, the undo of t can fire under M ′, yielding M = (M ′\u•)∪•u. written
as M ′ u−→•cb M or M ′[u〉cbM .

The controlling backward firing rule means that the undoing is possible if an only
if both the source and the target of this firing are on chain G � ... � R.

For instance, the marking graph of (N, (M5,M2)) (respectively, (N, (M5,M1)))
is presented as Figure 6c (respectively, Figure 6d). The marking graph of Figure 5c is
from rollback (M7,M1).

Proposition 5.3. Controlling backward firing [..〉cb is a continued function over
(S•,�).

Proof 5.3. Let Y be a chain on (S•,�) such that Y = M1 � M2 � .. � Mn.
Function [..〉cb over rollback (Mn,M1) is continued if and only if it is monotone and⊔

(Y) =
⊔
{M ′|∀M ∈ Y.∃u ∈ T• : M [u〉cbM ′}.

506 Adel Benamira

• Function [..〉cb is monotone: for all M1 � M2, we have M1[u〉cbM ′1 and
M2[u〉cbM ′2. From the definition of [..〉cb and �, we have M ′1 �M1 and M ′2 �M2.
From the fact that [..〉cb is a function, we have M1 = M ′2. So, M ′1 �M ′2.

• Function [..〉cb is continuous: it is a direct consequence of the monotony
of [..〉cb. We recall that [..〉cb is defined over (Mn,M1); thus, ∃u1 ∈ T•
such that M2[u1〉cbM1, ∃u2 ∈ T• such that M3[u2〉cbM2,...and ∃un ∈ T•
such that Mn+1[un〉cbMn. We get

⊔
{M ′|∀M ∈ Y.∃u ∈ T• : M [u〉cbM ′} =⊔

({M1,M2, ...,Mn}) =
⊔

(Y) as an outcome.

In the above, it has been proven that (i) given a finite marking graph, the marking
state set is structured as a domain over partial order � and (ii) the control backward
firing is a continued function. In other words, this reversibility is a finite calculus, and
it is optimal in the way that we cannot redo an action5.

After given the formal definition of the control causal-reversibility using a given
enumerate rollback, the formal definition of a rollback specification is introduced in
the following to use in the states-based control reversible IPN definition.
Definition 5.4. A rollback specification is a (Φ,Ψ) pair such that Φ and Ψ are pred-
icates over S•. Let (M,M ′) ∈ S• × S•, we saw that (Φ,Ψ) is satisfied by (M,M ′) if
and only if M satisfies Φ and M ′ satisfies Ψ, written as (M,M ′) � (Φ,Ψ).

Definition 5.5. The states-based control reversible IPN (noted as SCCR-INP) is a
tuple (N, (Φ,Ψ)) such that N is a Petri net (S, T, F, I, L) and (Φ,Ψ) is a rollback
specification.

Definition 5.6. Let (Φ,Ψ) be a rollback specification. For a firing u ∈ T• in a Petri
net such that u = (X, t), let •u = X and u• = {(u, k, s)|K < F (η(u), s)} be the set of
input tokens and the set of output tokens of u.

1. Forward firing: transition t is enabled under an individual marking M ∈ S• if
•u ⊆ M . In this case, t can fire under M , yielding M ′ = (M \• u) ∪ u•, written
as M u−→•f M ′ or M [u〉fM ′.

2. Controlling backward firing: transition t can be undone under (Φ,Ψ) and an
individual marking M ′ ∈ S• if u• ⊆ M ′ and (R,G) exists such that (R,G) �
(Φ,Ψ) such that G � M � R and G ≺ M ′ � R. In this case, the undo of t
can fire under M ′, yielding M = (M ′ \ u•) ∪• u, written as M ′ u−→•cb M or
M ′[u〉cbM .

6. Conclusions

This paper has explained causal reversibility in an individual token interpretation of
Petri nets (IPNs). The evidence from this study intimates that causal reversibility
in a given IPN assures both its coherence and flexible reversibility; furthermore, its
initial state can be accessible in reverse from any state.

5This calculus follows a chain of the domain.

Causal reversibility in individual token interpretation of Petri nets 507

In the distributed system context, it will be difficile to control causal-reversibility
without being given the global behavior of a system. In the present work, we found
that Van Glabbeek’s representation of individual token interpretation [24] provides
a powerful tool for define a controlling causal-reversibility by giving an implicit roll-
back that describes the state that, from it, we go back to a consistent one it is con-
cretized by the proposition of the states-based control causal-reversible IPN (SCCR-
-IPN) definition. Improving the rollback specification language, this model has the
potential to be used in different contexts such as biological, chemical, debugging,
transaction systems, and in state space exploration problems.

References

[1] Altenkirch T., Grattage J.: A functional quantum programming language. In:
20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26–29 June
2005, Chicago, IL, USA, Proceedings, pp. 249–258, 2005. https://doi.org/10.110
9/LICS.2005.1.

[2] Barylska K., Erofeev E., Koutny M., Mikulski L., Piątkowski M.: Reversing Tran-
sitions in Bounded Petri Nets, Fundamenta Informaticae, vol. 157(4), pp. 341–
357, 2018, https://doi.org/10.3233/FI-2018-1631.

[3] Barylska K., Koutny M., Mikulski L., Piątkowski M.: Reversible Computation vs.
Reversibility in Petri Nets. In: Devitt S., Lanese I. (eds.), Reversible Computation.
RC 2016, Lecture Notes in Computer Science, vol. 9720, pp. 105–118, Springer,
Cham, 2016. https://doi.org/10.1007/978-3-319-40578-0 7.

[4] Barylska K., Koutny M., Mikulski L., Piątkowski M.: Reversible computation vs.
reversibility in Petri nets, Science of Computer Programming, vol. 151, pp. 48–60,
2018. https://doi.org/10.1016/j.scico.2017.10.008.

[5] Barylska K., Mikulski L., Piątkowski M., Koutny M., Erofeev E.: Reversing Tran-
sitions in Bounded Petri Nets. In: Proceedings of the 25th International Workshop
on Concurrency, Specification and Programming, Rostock, Germany, September
28–30, 2016, pp. 74–85, 2016. http://ceur-ws.org/Vol-1698/CS&P2016 08 Baryl
ska&Mikulski&Piatkowski&Koutny&Erofeev Reversing-Transitions-in-Bounde
d-Petri-Nets.pdf.

[6] Bednarczyk M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Institute of Com-
puter Science, Polish Academy of Sciences, Gdansk, 1991.

[7] Best E., Devillers R.R.: Sequential and concurrent behaviour in Petri net theory,
Theoretical Computer Science, vol. 55(1), pp. 87–136, 1987, https://doi.org/10.1
016/0304-3975(87)90090-9.

[8] Best E., Devillers R.R., Kiehn A., Pomello L.: Concurrent bisimulations in Petri
nets, Acta Informatica, vol. 28(3), pp. 231–264, 1991, https://doi.org/10.1007/
BF01178506.

https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.3233/FI-2018-1631
https://doi.org/10.1007/978-3-319-40578-0_7
https://doi.org/10.1016/j.scico.2017.10.008
http://ceur-ws.org/Vol-1698/CS&P2016_08_Barylska&Mikulski&Piatkowski&Koutny&Erofeev_Reversing-Transitions-in-Bounded-Petri-Nets.pdf
http://ceur-ws.org/Vol-1698/CS&P2016_08_Barylska&Mikulski&Piatkowski&Koutny&Erofeev_Reversing-Transitions-in-Bounded-Petri-Nets.pdf
http://ceur-ws.org/Vol-1698/CS&P2016_08_Barylska&Mikulski&Piatkowski&Koutny&Erofeev_Reversing-Transitions-in-Bounded-Petri-Nets.pdf
https://doi.org/10.1016/0304-3975(87)90090-9
https://doi.org/10.1016/0304-3975(87)90090-9
https://doi.org/10.1007/BF01178506
https://doi.org/10.1007/BF01178506

508 Adel Benamira

[9] Cardelli L., Laneve C.: Reversible structures. In: CMSB’11: Proceedings of the
9th International Conference on Computational Methods in Systems Biology,
pp. 131–140, 2011. https://doi.org/10.1145/2037509.2037529.

[10] Clairambault P., Visme de M., Winskel G.: Concurrent Quantum Strategies. In:
Thomsen M., Soeken M. (eds.), Reversible Computation. RC 2019, Lecture Notes
in Computer Science, vol. 11497, pp. 3–19, Springer, Cham, 2019. https://doi.or
g/10.1007/978-3-030-21500-2 1.

[11] Clavel M., Durán F., Eker S., Lincoln P., Mart́ı-Oliet N., Meseguer J., Que-
sada J.F.: Maude: specification and programming in rewriting logic, Theoretical
Computer Science, vol. 285(2), pp. 187–243, 2002, https://doi.org/10.1016/S030
4-3975(01)00359-0.

[12] Cook J.J.: Reverse Execution of Java Bytecode, The Computer Journal,
vol. 45(6), pp. 608–619, 2002. https://doi.org/10.1093/comjnl/45.6.608.

[13] Danos V., Krivine J.: Reversible Communicating Systems. In: Gardner P.,
Yoshida N. (eds.), CONCUR 2004 – Concurrency Theory. CONCUR 2004,
Lecture Notes in Computer Science, vol. 3170, pp. 292–307, Springer, Berlin–
Heidelberg, 2004. https://doi.org/10.1007/978-3-540-28644-8 19.

[14] Danos V., Krivine J.: Transactions in RCCS. In: Abadi M., de Alfaro L. (eds.),
CONCUR 2005 – Concurrency Theory. CONCUR 2005. Lecture Notes in Com-
puter Science, vol. 3653, pp. 398–412, Springer, Berlin, Heidelberg, 2005. https:
//doi.org/10.1007/11539452 31.

[15] Danos V., Krivine J.: Formal Molecular Biology Done in CCS-R, Electronic Notes
in Theoretical Computer Science, vol. 180(3), pp. 31–49, 2007, https://doi.org/
10.1016/j.entcs.2004.01.040.

[16] Danos V., Krivine J., Sobociński P.: General Reversibility, Electronic Notes in
Theoretical Computer Science, vol. 175(3), pp. 75–86, 2007, https://doi.org/10.1
016/j.entcs.2006.07.036.

[17] Danos V., Krivine J., Tarissan F.: Self-assembling Trees, Electronic Notes in
Theoretical Computer Science, vol. 175(1), pp. 19–32, 2007, https://doi.org/10.1
016/j.entcs.2006.11.017.

[18] Engelfriet J.: Branching processes of Petri nets, Acta Informatica, vol. 28(6),
pp. 575–591, 1991, https://doi.org/10.1007/BF01463946.

[19] Fecher H.: A completed hierarchy of true concurrent equivalences, Information
Processing Letters, vol. 89(5), pp. 261–265, 2004, https://doi.org/10.1016/j.ipl.
2003.11.008.

[20] Feldman S.I., Brown C.B.: IGOR: A system for program debugging via reversible
execution, ACM SIGPLAN Notices, vol. 24(1), pp. 112–123, 1988. https://doi.or
g/10.1145/68210.69226.

[21] Frank M.P.: Physical Foundations of Landauer’s Principle. In: Kari J.,
Ulidowski I. (eds.), Reversible Computation. RC 2018, Lecture Notes in Com-
puter Science, vol. 11106, pp. 3–33, Springer, Cham, 2018. https://doi.org/10.1
007/978-3-319-99498-7 1.

https://doi.org/10.1145/2037509.2037529
https://doi.org/10.1007/978-3-030-21500-2_1
https://doi.org/10.1007/978-3-030-21500-2_1
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1093/comjnl/45.6.608
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/11539452_31
https://doi.org/10.1016/j.entcs.2004.01.040
https://doi.org/10.1016/j.entcs.2004.01.040
https://doi.org/10.1016/j.entcs.2006.07.036
https://doi.org/10.1016/j.entcs.2006.07.036
https://doi.org/10.1016/j.entcs.2006.11.017
https://doi.org/10.1016/j.entcs.2006.11.017
https://doi.org/10.1007/BF01463946
https://doi.org/10.1016/j.ipl.2003.11.008
https://doi.org/10.1016/j.ipl.2003.11.008
https://doi.org/10.1145/68210.69226
https://doi.org/10.1145/68210.69226
https://doi.org/10.1007/978-3-319-99498-7_1
https://doi.org/10.1007/978-3-319-99498-7_1

Causal reversibility in individual token interpretation of Petri nets 509

[22] Glabbeek van R.J.: The Linear Time – Branching Time Spectrum I. In: Handbook
of Process Algebra, pp. 3–99, 2001. https://doi.org/10.1016/b978-044482830-9/5
0019-9.

[23] Glabbeek van R.J.: The Individual and Collective Token Interpretations of Petri
Nets. In: Abadi M., de Alfaro L. (eds.), CONCUR 2005 – Concurrency Theory,
Lecture Notes in Computer Science, vol. 3653, pp. 323–337, Springer, Berlin–
Heidelberg, 2005. https://doi.org/10.1007/11539452 26.

[24] Glabbeek van R.J., Goltz U., Schicke-Uffmann J.: On Distributability of Petri
Nets. In: Birkedal L. (ed.), Foundations of Software Science and Computa-
tional Structures. FoSSaCS 2012, Lecture Notes in Computer Science, vol. 7213,
pp. 331–345, Springer, Berlin–Heidelberg, 2012. https://doi.org/10.1007/978-3-
642-28729-9 22.

[25] Goltz U., Reisig W.: The non-sequential behaviour of Petri nets, Information and
Control, vol. 57(2–3), pp. 125–147, 1983. https://doi.org/10.1016/S0019-9958
(83)80040-0.

[26] Hoey J., Ulidowski I.: Reversible Imperative Parallel Programs and Debugging.
In: Thomsen M., Soeken M. (eds.), Reversible Computation. RC 2019, Lecture
Notes in Computer Science, vol. 11497, pp. 108–127, Springer, Cham, 2019. https:
//doi.org/10.1007/978-3-030-21500-2 7.

[27] Krivine J.: A Verification Technique for Reversible Process Algebra. In: Reversible
Computation, 4th International Workshop, RC 2012, Copenhagen, Denmark, July
2-3, 2012. Revised Papers, pp. 204–217, 2012. https://doi.org/10.1007/978-3-64
2-36315-3 17.

[28] Landauer R.: Irreversibility and Heat Generation in the Computing Process, IBM
Journal of Research and Development, vol. 5(3), pp. 183–191, 1961, https://doi.
org/10.1147/rd.53.0183.

[29] Lanese I., Lienhardt M., Mezzina C.A., Schmitt A., Stefani J.-B.: Concurrent
Flexible Reversibility. In: Felleisen M., Gardner P. (eds.), Programming Lan-
guages and Systems. ESOP 2013. Lecture Notes in Computer Science, vol. 7792,
pp. 370–390, Springer, Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-
642-37036-6 21.

[30] Lanese I., Mezzina C.A., Schmitt A., Stefani J.-B.: Controlling Reversibility in
Higher-Order Pi. In: Katoen J.P., König B. (eds.), CONCUR 2011 – Concurrency
Theory, Lecture Notes in Computer Science, vol. 6901, pp. 297–311, Springer,
Berlin–Heidelberg, 2011. https://doi.org/10.1007/978-3-642-23217-6 20.

[31] Lanese I., Mezzina C.A., Stefani J.-B.: Controlled Reversibility and Compen-
sations. In: Glück R., Yokoyama T. (eds.), Reversible Computation. RC 2012,
Lecture Notes in Computer Science, vol. 7581, pp. 233–240, Springer, Berlin–
Heidelberg, 2012. https://doi.org/10.1007/978-3-642-36315-3 19.

https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/978-3-642-28729-9_22
https://doi.org/10.1007/978-3-642-28729-9_22
https://doi.org/10.1016/S0019-9958(83)80040-0
https://doi.org/10.1016/S0019-9958(83)80040-0
https://doi.org/10.1007/978-3-030-21500-2_7
https://doi.org/10.1007/978-3-030-21500-2_7
https://doi.org/10.1007/978-3-642-36315-3_17
https://doi.org/10.1007/978-3-642-36315-3_17
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-36315-3_19

510 Adel Benamira

[32] Lanese I., Nishida N., Palacios A., Vidal G.: CauDEr: A Causal-Consistent Re-
versible Debugger for Erlang. In: Gallagher J., Sulzmann M. (eds.), Functional
and Logic Programming. FLOPS 2018, Lecture Notes in Computer Science,
vol. 10818, pp. 247–263, Springer, Cham, 2018. https://doi.org/10.1007/978-
3-319-90686-7 16.

[33] Lanese I., Palacios A., Vidal G.: Causal-Consistent Replay Debugging for Mes-
sage Passing Programs. In: Pérez J., Yoshida N. (eds.), Formal Techniques for
Distributed Objects, Components, and Systems. FORTE 2019, Lecture Notes
in Computer Science, vol. 11535, pp. 167–184, Springer, Cham, 2019. https:
//doi.org/10.1007/978-3-030-21759-4 10.

[34] Leeman G.B.: A formal approach to undo operations in programming languages,
ACM Transactions on Programming Languages and Systems, vol. 8(1), pp. 50–87,
1986, https://doi.org/10.1145/5001.5005.

[35] Mazurkiewicz A.W.: Trace theory. In: Brauer W., Reisig W., Rozenberg G. (eds.),
Petri Nets: Applications and Relationships to Other Models of Concurrency.
ACPN 1986, Lecture Notes in Computer Science, vol. 255, pp. 279–324, Springer,
Berlin–Heidelberg, 1986. https://doi.org/10.1007/3-540-17906-2 30.

[36] Mazurkiewicz A.W.: Basic notions of trace theory. In: de Bakker J.W., de Roever
W.P., Rozenberg G. (eds.), Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency. REX 1988, Lecture Notes in Computer
Science, vol. 354, pp. 285–363, Springer, Berlin–Heidelberg, 1988. https://doi.or
g/10.1007/BFb0013025.

[37] Philippou A., Psara K., Siljak H.: Controlling Reversibility in Reversing Petri
Nets with Application to Wireless Communications, CoRR, vol. abs/1905.11958,
2019. http://arxiv.org/abs/1905.11958.

[38] Phillips I., Ulidowski I.: A Logic with Reverse Modalities for History-preserving
Bisimulations. In: Proceedings 18th International Workshop on Expressiveness
in Concurrency, EXPRESS 2011, Aachen, Germany, 5th September 2011,
pp. 104–118, 2011. https://doi.org/10.4204/EPTCS.64.8.

[39] Phillips I., Ulidowski I.: Reversibility and asymmetric conflict in event structures,
The Journal of Logic and Algebraic Programming, vol. 84(6), pp. 781–805, 2015.
https://doi.org/10.1016/j.jlamp.2015.07.004.

[40] Phillips I., Ulidowski I., Yuen S.: A Reversible Process Calculus and the Mod-
elling of the ERK Signalling Pathway. In: Glück R., Yokoyama T. (eds.), Re-
versible Computation. RC 2012, Lecture Notes in Computer Science, vol. 7581,
pp. 218–232, Springer, Berlin–Heidelberg, 2012. https://doi.org/10.1007/978-3-
642-36315-3 18.

[41] Phillips I., Ulidowski I.: Reversing algebraic process calculi, The Journal of Logic
and Algebraic Programming, vol. 73(1–2), pp. 70–96, 2007. https://doi.org/10.1
016/j.jlap.2006.11.002.

https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1145/5001.5005
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/BFb0013025
https://doi.org/10.1007/BFb0013025
http://arxiv.org/abs/1905.11958
https://doi.org/10.4204/EPTCS.64.8
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1016/j.jlap.2006.11.002

Causal reversibility in individual token interpretation of Petri nets 511

[42] Soloveichik D., Seelig G., Winfree E.: DNA as a universal substrate for chemi-
cal kinetics. In: Goel A., Simmel F.C., Sośık P. (eds.), DNA Computing. DNA
2008, Lecture Notes in Computer Science, vol. 5347, pp. 57–69, Springer, Berlin–
Heidelberg, pp. 57–69, 2008. https://doi.org/10.1007/978-3-642-03076-5 6.

[43] Ulidowski I., Phillips I., Yuen S.: Concurrency and Reversibility. In: Yamashita S.,
Minato S. (eds.), Reversible Computation. RC 2014, Lecture Notes in Computer
Science, vol. 8507, pp. 1–14, Springer, Cham, 2014. https://doi.org/10.1007/97
8-3-319-08494-7 1.

[44] Zelkowitz M.V.: Reversible Execution, Communications of the ACM, vol. 16(9),
p. 566, 1973. https://doi.org/10.1145/362342.362360.

Affiliations

Adel Benamira
8 May 1945 Guelma University, Computer Science Department, BP-401, 24000, Guelma,
Algeria, benamira.adel@univ-guelma.dz

Received: 15.03.2020
Revised: 17.05.2020
Accepted: 17.05.2020

https://doi.org/10.1007/978-3-642-03076-5_6
https://doi.org/10.1007/978-3-319-08494-7_1
https://doi.org/10.1007/978-3-319-08494-7_1
https://doi.org/10.1145/362342.362360

	Introduction
	Previous work
	Our contribution
	Paper organization

	Preliminaries
	Trace equivalence in IPNs
	Reversibility in IPNs
	States-based controlling causal-reversibility
	Conclusions

