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Abstract Maintaining semantic relations between words during the translation process

yields more accurate target-language output from Neural Machine Translation

(NMT). Although difficult to achieve from training data alone, it is possible to

leverage Knowledge Graphs (KGs) to retain source-language semantic relations

in the corresponding target-language translation. The core idea is to use KG

entity relations as embedding constraints to improve the mapping from source

to target. This paper describes two embedding constraints, both of which em-

ploy Entity Linking (EL)—assigning a unique identity to entities—to associate

words in training sentences with those in the KG: (1) a monolingual embed-

ding constraint that supports an enhanced semantic representation of the source

words through access to relations between entities in a KG; and (2) a bilingual

embedding constraint that forces entity relations in the source-language to be

carried over to the corresponding entities in the target-language translation.

The method is evaluated for English-Spanish translation exploiting Freebase

as a source of knowledge. Our experimental results demonstrate that exploit-

ing KG information not only decreases the number of unknown words in the

translation but also improves translation quality.
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1. Introduction

Machine Learning (ML) has been the quintessential solution for many Artificial Intel-

ligence (AI) problems. Nowadays, ML is centered around algorithms that are trained

on available task-specific labeled and unlabeled training examples. Although learning

paradigms like Transfer Learning [36] attempt to incorporate knowledge from one

task into another, these techniques are limited in scalability and are specific to the

task at hand. On the other hand, humans have the intrinsic ability to elicit required

past knowledge from the world on demand and infuse it with newly learned concepts

to solve problems [4].

Two major issues have emerged for current Neural Machine Translation (NMT)

systems: (1) vocabulary size is limited by training data content, thus yielding many

Out-Of-Vocabulary (OOV) cases [30]; and (2) current neural architectures [7, 19,

45, 50] only model parallel sentence relationships without any explicit attempt to

leverage word-level relationships for disambiguation. Ideally, semantic relations and

distinctions between words (e.g., king, man vs. queen, woman) are identified and

maintained during the translation process, but NMT models do not currently support

this functionality.

This paper demonstrates the viability of using entities and relations in existing

Knowledge Graphs (KGs) [8] for NMT. KG knowledge is encoded as a triple that

includes a head entity (e.g., Barack Obama), a relation (e.g., president), and a tail

entity (e.g., United States). KGs bring external knowledge to bear so that seman-

tic relationships between entities are gleaned in many Natural Language Processing

(NLP) tasks [4] including MT [29,33].

As an illustration, consider the source sentence Barack Obama took the presiden-

tial oath of office at the White House. Translation into Spanish via a baseline NMT

would be: Barack Obama tomó juramento presidencial en el <UNK> <UNK>, where

<UNK> is an OOV indicator. Clearly this output is deficient in comparison to the

corresponding human reference: Barack Obama, hizo el juramento presidencial en

la Casa Blanca. We demonstrate that it is possible to use a KG to improve NMT

output quality, assuming Barack Obama appears both in the source vocabulary and

in the KG – even when the word White House does not appear in the source vocab-

ulary. Specifically, we leverage knowledge about the entity Barack Obama, coupled

with the KG’s trained representation of its relationship to White House, to map to

the corresponding Spanish term Casa Blanca.

KG information is represented in the form of embedding constraints, that is, during

training, word embeddings are trained to support the mapping from source to target

language while also satisfying KG requirements. The translation module and KG in-

formation extraction module are shown as two independent parts in Figure 1. Shown

as two independent parts in Figure 1; however, these two interact through the concate-

nation of KG embedding vectors and translation module embedding vectors. These

two modules yield the Knowledge Loss and Translation Loss that are adopted into

monolingual embedding constraints and bilingual embedding constraints, respectively.



Knowledge graphs effectiveness in neural machine translation improvement 301

Freebase

Entity
Linking

KG Information Extraction

Monolingual - Bilingual

Source Target

Translation Module

Encoder          Decoder

Concatenation

Knowledge 
Loss

Translation
Loss

Final Loss

Figure 1. KG-based NMT model with monolingual and bilingual embedding constraints

using entity linking system

In this paper, we use Freebase as a source of information for NMT models and we

employ TransR technique to learn entities’ embeddings (represent entities and their

relations). We also utilize Entity Linking (EL) – assigning a unique identity to enti-

ties – to align triples in the KG with the source sentences. Based on a monolingual

embedding constraint, KG entity relations are used to influence the source side; this

constraint forces the embedding of the source words to hold the semantic relations pro-

vided by the KG. Based on a bilingual embedding constraint, the relation equivalence

between the source words and their corresponding translations is modeled. Thus,

semantic relations between the source words are maintained throughout their trans-

lation. Both monolingual and bilingual embedding constraints are modeled during

the training process to enable enrichment of the NMT system with KG information.

We demonstrate for English-Spanish translation that this method achieves a higher

quality translation than baselines and decreases the number of <UNK> tokens.

Generally, the Spanish language uses the Latin alphabet, with a few special

letters, vowels with an acute accent (á, ú, é, ó, ı́), u with an umlaut (ü), and an n with

a tilde (ñ). Due to a number of reforms, the Spanish spelling system is almost perfectly

phonemic and, therefore, easier to learn than the majority of languages. Spanish is

pronounced phonetically, but includes the trilled r which is somewhat complex to

reproduce. In the Spanish IPA, the letters b and v correspond to the same symbol

b and the distinction only exists in regional dialects. The letter h is silent except in

conjunction with c, ch, which changes the sound into tf. Spanish language punctuation

is very close to English. There are a few significant differences. For example, in

Spanish, exclaim and interrogative sentences are preceded by inverted question and

exclamation marks. Also, in a Spanish conversation, a change in speakers is indicated

by a dash, while in English, each speaker’s remark is placed in separate paragraphs.

Formal and informal translations address several different characteristics. Inflection,

declination and grammatical gender are important features of Spanish language [1,3].

The remaining parts of this paper are organized as follows; Section 2 reviews

the previous related work. In Section 3, we describe the methodology of the present

work. The experimental details are provided in Section 4. In Section 5, we evaluate

our experimental results. Finally, Section 6 presents conclusions and future work.
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2. Related work

To resolve issues of vocabulary size in NMT, several approaches have already been

explored by MT researchers. Byte Pair Encoding (BPE) [41] is a form of data com-

pression that iteratively replaces the most frequent pair of bytes in a sequence with

a single unused byte. Hybrid solutions have been implemented to combine word

and character models in order to achieve an open vocabulary NMT system [30]. In

addition, using monolingual data for data reinforcement has gained considerable at-

tention [52] as such an approach does not alter the neural network architectures.

There are several recent proposals for integration of external knowledge in NMT

during training. Gülçehre et al., (2015) used monolingual data to train a neural

Language Model (LM) that is integrated into the NMT decoder through concatenation

of hidden states [21]. In the work of Arthur et al., (2016), the probability of the next

target word in the NMT decoder is biased by lexicon probabilities computed from a

bilingual lexicon [5]. When external knowledge is available in the form of linguistic

information, Sennrich and Haddow, (2015) computed separate embedding vectors for

each aspect of linguistic information, and these are then concatenated without altering

the decoder [40].

Knowledge embedding has received a lot of attention in recent years, existing

knowledge embedding methods aim to represent entities and relations of KG as vec-

tors in continuous vector space, where they define a loss function to learn the represen-

tations. Different methods differ in the definition of loss functions with respect to the

triple in a KG. The loss function implies some type of transformation on head and tail.

With the help of a Knowledge Base (KB), [42] formulate a semantic space to connect

the source and target languages, and apply it to the sequence-to-sequence framework

to propose a KB Semantic Embedding (KBSE) method. In this method, the source

sentence is first mapped into a KB semantic space, and then the target sentence is

generated using a Recurrent Neural Network (RNN) with the internal meaning pre-

served. Yang and Mitchell, (2017) exploited of external KBs in a neural model called

as KBLSTM that leverages continuous representations of KBs to improve the learn-

ing of RNNs for machine reading [53]. Their model utilizes an attention mechanism

with a sentinel to adaptively decide whether to tap into background knowledge to

determine which KB information is useful. The architecture of the KBLSTM model

draws on the development of attention mechanisms that are employed in MT and

Image Captioning tasks.

Du and Way, (2016) proposed an approach to address the issue of OOV words

through the application of different methods using BabelNet [35]. They create ad-

ditional training data and apply a post-editing technique that replaces OOV words

while querying BabelNet [17].

Other prior work has considered external knowledge in the design of the mapping

function from source sentence. Li et al., (2018) utilized the synonym as well as

hypernym relations extracted from WordNet to find appropriate replacements for

low-frequency words [26].
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Approaches above have succeeded in addressing the OOV problem (to a degree)

and in building semantic embedding models reliant upon a specific KB to be used

in NMT systems. However, each has shortcomings related to distinguishing among

potential target-language options for a source-language word (disambiguation) and

incorporation of external knowledge (for translation of relations). Prior approaches

have revealed the importance of finding ways to equip translation techniques with

external knowledge that supports production of target-language sentences that convey

the meaning of source-language counterparts.

It is clear that a NMT framework is desired that provides access to external

knowledge during the translation. We adopt KG due to its suitability to applications

such as Machine Reading [53], Question Answering [44], and Natural Language In-

terface (NLI) [4]. We expect that improved translation of sentence meaning relies

on the type of knowledge that enhances these related applications, i.e., knowledge

about entities and the relations between entities. To the best of our knowledge, the

main KGs are Freebase [8], Google Knowledge Vault [14] and DBpedia [6], which are

mainly used in English.

Of course, integration of KGs into NMT is not new. For example, Moussallem

et al., (2019) describe a range of strategies for incorporating KGs into neural models

and examine the influence of DBpedia in English-German translation [33]. The work

of Lu et al., (2019) is most similar to ours in that it uses an external KG (WordNet)

to support semantic relation modeling between source and target sentences and uses

monolingual and bilingual constraints that are similar to those used in our work [29].

However, our NMT approach differs from these in that we produce a framework that

is designed to overcome the high false-negative rates that lead to a reduction in overall

performance.

For example, Lu et al., (2019) incorporate exact matching for linking words of

training sentences in the KG [29]. A disadvantage of this approach is that, due to

its low coverage, the bilingual constraint requires filtering test-set sentences for those

that contain at least one trained entity. Because some words do not appear on one

side of a bilingual constraint, their embedding cannot be affected by KG extraction.

Thus, the words remain the same as those in the original NMT model, and the selected

sentences explicitly reflect the influence of KG. In contrast, our approach utilizes EL

instead of exact matching, thus eliminating the need for filtering of test-set sentences.

An additional difference between our work and that of [29] concerns the construc-

tion of positive and negative examples for distinguishing between viable translations

and non-viable translations. Lu et al., (2019) adopt an approach where, for each

positive KG triple, the head or tail word is replaced to construct a negative exam-

ple [29]. In our work, each positive triple associated with our monolingual embedding

constraint is subject to head-word replacement only. The intuition behind the single

replacement choice is that it allows one-to-many relations to be captured, e.g., each

customer can have many sales orders. Our head-word replacement approach also re-

duces the parameter set in the KG embedding technique and thus enables learning of
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a low-dimensional vector for each entity and each relationship. Additionally, proba-

bilities are used to avoid any random replacements that may introduce false negative

labels. Of course, the proof is in the pudding: the head-word replacement approach

must be demonstrated as a step forward to be considered a contribution. Section 3

demonstrates improvements over prior methods due to this technique.

Other differences to be described below are the following: (1) we conduct experi-

ments with unmodified versions of OpenNMT-py [24] and Transformer [50]; (2) we use

the TransR technique [27] for training KG-embedding; (3) and we adopt Freebase [8]

as our KG. We implement and test this approach for the task of English-Spanish

translation and show that our method achieves a significant decrease in the number

of <UNK> tokens.

Dasgupta et al., (2018) proposed HyTE, a temporally-aware KG embedding

method that explicitly incorporates time in the entity-relation space by associating

each timestamp with a corresponding hyperplane [13]. HyTE performs KG inference

using temporal guidance, and predicts temporal scopes for relational facts with miss-

ing time annotations. HyTE is built on top of TransE, yielding gains over TransE

alone, but also modifies TransE by treating the timestamps as hyperplanes (TransH).

However, HyTE combines entities and relations into a single semantic space. As we

will see below, our approach employs TransR to represent entities and their relations

in distinct semantic spaces – with relation-specific bridging – and yields improved

performance over HyTE.

3. Methodology

The core idea behind our methodology is to use the learned word embeddings as

an encoding of the semantic relations imposed by KG and to demonstrate how this

external knowledge influences translation quality. We integrate entity relations –

transformed to embedding patterns independently – to boost the semantic relations

between source and target words. We use external knowledge expressed in KGs by

linking the words in the source sentences to the entity types in a reference KG. We

jointly train two modules, a translation module and a KG embedding module, and

impose consistency constraints on the embedding spaces. The goal is show that the

word embeddings trained by the translation module and the word embeddings of the

linked KG concepts (trained by the KG embedding module) consistently represent

the same semantic relationships between words.

3.1. Neural machine translation embeddings

The NMT module uses a commonly-used encoder-decoder architecture [7], where

a source sentence x = x1, x2, ..., xJ is transformed (encoded) into an internal repre-

sentation h = h1, h2, ..., hJ , and then h is transformed (decoded) into a target sentence

y = y1, y2, ..., yI .

For example, to translate an English sentence the dog likes to eat an apple into

Spanish al perro le gusta comer la manzana, each word is transformed into a 1-hot
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encoding vector (with a single 1 associated with the index of that word, and all other

indexed values 0). Each word in the dataset has a distinct 1-hot encoding vector that

serves as a numerical representation that serves as input to the model.

The first step toward creating these vectors is to assign an index to each unique

word in English (as the input language). This process is then repeated for Spanish

(as the output language). The assignment of an index to each unique word creates

a vocabulary for each language [2].

The encoder portion of the NMT model takes a sentence in English and creates

a representational vector (an embedding) from this sentence. This vector represents the

meaning of the sentence and is subsequently passed to a decoder which outputs

the translation of the sentence in Spanish.

NMT models the conditional probability of the target sentence as:

P (y|x) =

I∏
i=1

P (yi|y<i, x) (1)

where yi is the target word emitted by the decoder at step i and y<i
= (y1, y2, ..., yi−1).

The conditional output probability of a target word yi defined as follows:

P (yi|y<i, x) = softmax (f(di, yi−1, ci)) (2)

where f is a non-linear function and di = g(di−1, yi−1, ci), g is a non-linear function.

ci is a context vector computed as the weighted sum of the hidden vectors hj ,

ci =

J∑
j=1

αt,jhj , (3)

where hj is the annotation of source word xj , αt,j is computed by what is known as

the attention model, which focuses on sub-parts of the sentence during translation.

The attention mechanism supports memorization of long source sentences in

NMT. Rather than building a single context vector out of the encoder’s last hid-

den state, an attention model creates shortcuts between the context vector and the

entire source input. The weights of these shortcut connections are customizable for

each output element.

The context vector has access to the entire input sequence – for retention of

the full context of the sentence – and controls the alignment between the source

and target. Stated simply: the attention mechanism converts two sentences into

a matrix where the words of one sentence form the columns, and the words of another

sentence form the rows. From this, matches are obtained, thus identifying the relevant

and yielding a positive impact on MT. Apart from improving the performance on

MT, attention-based networks allow models to learn alignments between different

modalities (different data types) for e.g., between speech frames and text or between

visual features of a picture and its text description.
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We adopt the OpenNMT-py translation architecture [24] based on LSTM [22] and

use it for our NMT-embedding. Given a training data set with N bilingual sentences,

an attention-based NMT training loss function [31] is defined as the conditional log-

likelihood:

Loss =

N∑
n=1

I∑
i=1

−logP (yni |yn<i, x
n) (4)

In addition to the RNN-based attentional model described above, we conduct

experiments employing the Transformer model [50]. In contrast to the RNN-based

mechanism, the Transformer model is a purely-attention architecture. It abandons

the idea of successive encoding and iteratively applies a self-attention mechanism over

inputs to obtain contextual information. The decoder also performs self-attention

itself and applies a multi-head attention on the output of the encoder to produce the

target translation. The encoder is a stack of six identical layers, each of which includes

two sub-layers: (1) a multi-head self-attention layer; and (2) a simple position-wise

fully connected feed-forward network. A residual connection around each sub-layer

is used and followed by a normalization layer. The decoder is also composed of six

identical layers that have the same sub-layers as those in the encoder. In addition,

a multi-head attention is used over the encoder outputs to help produce the target

translations [50]. Based on Equation 2, for a training dataset {xn, yn}Nn=1, the NMT

training loss function is defined the same as Equation 4.

3.2. Knowledge graph embeddings

KG embedding aims at representing entities and relations in a large-scale KG as ele-

ments in a continuous vector space. KG entities are encoded into a numerical repre-

sentation for processing. Based on Annervaz et al., (2018), KG embedding techniques

are classified as follows [4]:

• Structure-based embeddings, which translates subject entity to object entity us-

ing low-dimensional relation vector.

• Semantically-enriched embeddings, which learns to represent entities of the KG

along with their semantic information.

We exploit the structure-based embeddings technique and use Freebase as a source of

knowledge.

The KG yields a set of triples T consisting of a head h, a relation r, and a tail

t, denoted as (h, r, t). For example, the triple <Spain, capital, Madrid> is extracted

for Madrid is the capital of Spain. We view the learning of entity embeddings as

central aspect of EL and employ TransR1 [27] to learn entities’ embeddings. TransR

represents entities and relations in distinct semantic spaces bridged by relation-specific

matrices. For each relation r in TransR, we set a projection matrix Mr that projects

1https://github.com/thunlp/KB2E/tree/master/TransR
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entities from entity space to relation space. With the mapping matrix, we define the

projected vectors of entities as follows:

hr = hMr (5)

tr = tMr (6)

The score function is correspondingly defined as:

fr(h, t) = ‖hr + r − tr‖22 (7)

We thus enforce constraints on the norms of the embeddings h, r, t, and the mapping

matrices2.

We align triples with the source sentences using EL. Specifically, for a document

C and a set of KG entities T , we generate an assignment Q of labels l = (l1, l2, .., ln)

to entities Q(l) ∈ (T )n. The result is a set of named entities in the source and target

sentences, linked to the KG via EL.

Next, we incorporate the Uniform Resource Identifiers (URIs) of entities along

with their named entity tags. After this, we embed our KG employing the TransR

technique and then concatenate the embedding vectors to the internal vectors of the

NMT embeddings [33].

Having described the NMT-embedding and KG-embedding modules (and the cor-

respondence between them), we now turn to the monolingual and bilingual constraints

imposed on these two embeddings.

3.2.1. Monolingual embedding constraint

Monolingual constraints are imposed via KG entity relations that influence the train-

ing of semantic embeddings of the source words. Triples whose h word appears in the

source sentence are extracted, yielding a set of positive examples, denoted as:

S = {(h, r, t)|h ∈ x} (8)

For each triple in S, the h word is replaced to make a set of negative examples S′

which includes (h′, r, t)3:

S′ = {(h′, r, t)|h′ ∈ T} (9)

The loss function for monolingual constraints (Lossmono) is defined as follows:

Lossmonolingual =
∑

(h,r,t)∈S

∑
(h′,r,t)∈S′

max(0, fr(h, t) + λ− fr(h′, t)) (10)

where λ > 0 is a margin hyper parameter.

2∀r, t we have ‖h‖2 ≤ 1, ‖t‖2 ≤ 1, ‖hMr‖2 ≤ 1 and ‖tMr‖2 ≤ 1.
3To avoid random replacement which may introduce false negative labels, we employ

probabilities.
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Training embeddings under this constraint and using the negative and positive

triples guarantees the distance between linked words in the KG is smaller than the

distance between irrelevant words. This facilitates entity disambiguation during trans-

lation. For example, consider the source sentence The bill has been added to law by

the US President. We assume the source word president has the relation r with the

head Barack Obama in the KG. We replace the source word with the head in the KG

to construct a negative example.

3.2.2. Bilingual embedding constraint

The bilingual embedding constraint maintains the relation between source entities

and their corresponding translations. All triples for which both h and t appear in the

source sentence are extracted:

Ssrc = {(hsrc, r, tsrc)|(hsrc, tsrc) ∈ x} (11)

Then hsrc and tsrc are aligned with their corresponding translations:

Strg = {(htrg, r, ttrg)|(htrg, ttrg) ∈ y} (12)

Without this constraint there would be a gap between the source triples and

their aligned target triples. Following Lu et al., (2019), the loss function Lossbilingual
is applied to minimize the potential for a gap [29]:

Lossbilingual = −
∑

(hsrc,r,tsrc)∈Ssrc

∑
(htrg,r,ttrg)∈Strg

|fr(hsrc, tsrc)− fr(htrg, ttrg)| (13)

For example, given a source sentence The bill has been added to law by the US

president, the relation between the Spanish words projecto (bill) and presidente (pres-

ident) in the target language is the same as that between bill and president in the

source language. The bilingual constraint is modeled during the training process and

makes the NMT system more knowledgeable.

3.2.3. Joint training

The monolingual and bilingual embedding constraints are employed to augment se-

mantic word embeddings during the NMT training process. To implement this idea,

the overall loss function is defined such that it includes the conventional translation

loss as well as the entity relation loss described above for the monolingual and bilin-

gual constraints (we call those KG-losses). The translation loss and the KG-losses

will be optimized iteratively. Thus, the final loss function are written as follows:

Lossfinal =

N∑
n=1

I∑
i=1

−logP (yni |yn<i, x
n) + α

1

N

N∑
n=1

Loss(xn, yn) (14)

where α is a hyper parameter and N denotes the number of training examples. The

Loss(xn, yn) function for the monolingual and bilingual embedding constraints is

denoted as Lossmonolingual and Lossbilingual, respectively.
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4. Experimental framework

There are massive resources available to build an English-Spanish NMT system in the

framework of the WMT’18 translation task4. Our bilingual dataset includes about

2.1M sentences collected from Europarl as well as News-Commentary for training and

development sets. We also use the newstest2012 and newstest2013 as our test sets.

For the KG, we extract triples from the human-created Freebase5 (FB15k) which

was launched by Metaweb as an open and collaborative KB [8]. Freebase includes

general knowledge and partially covers common-sense knowledge and domain know-

ledge [43].

Our training data consist of 2M parallel sentences. We use 2K parallel sentences

for validation and 3K parallel sentences for test. For knowledge extraction, we use

FB15k6 which includes 14,951 entities and 1,345 relationships.

For the RNN-based experiments, we employ OpenNMT-py7 model [24] on top

of PyTorch which is based on a bi-directional 2-layer LSTM encoder-decoder with

attention [7]. Training uses a batch size of 32 and the Stochastic Gradient Descent

(SGD) [38] with an initial learning rate of 0.01. We set the size of word embeddings

as well as hidden layers to 500. We also set dropout to 0.1. We use a maximum

sentence length of 50 words and shuffle mini-batches as we proceed.

Following Jean et al., (2015), we limit our vocabulary to be the top 50 most

frequent words for both languages [23]. Words that are not in these shortlisted vo-

cabularies are converted into a universal token <UNK>. We also set a beam size of 5

and λ to 1. During the training, we set α to 0.001, 0.01, 0.1 for both monolingual and

bilingual constraints. The model continues for 20 epochs (both training and testing)

on a single GPU. In all experiments, we used an EL system introduced by Moussallem

et al., (2017) [34].

Recent comparisons between neural network architectures and RNNs have yielded

different conclusions for different Natural Language Processing (NLP) tasks [28, 54].

Tran et al., (2018) concluded that RNNs perform better than Transformers on

a subject-verb agreement task [49], but Tang et al., (2018a) also found that Transfor-

mer models surpass RNN models only under high-resource conditions [46]. Trans-

formers were compared favorably to RNNs for a Word Sense Disambiguation (WSD)

task [47] (determined by scoring contrastive translation pairs) with the conclusion

that Transformers are better at extracting semantic features. As such, we employ

both architectures for evaluating KGs within NMT. For the PyTorch implementation

of the Transformer8 [50], we use a 6-layer encoder-decoder and a batch size of 2048.

We set hidden layers as well as word embeddings of size 512. We set the rest of

4http://www.statmt.org/wmt18/translation-task.html
5https://developers.google.com/freebase
6https://everest.hds.utc.fr/doku.php?id=en:transe
7https://github.com/OpenNMT/OpenNMT-py
8https://github.com/SamLynnEvans/Transformer

http://www.statmt.org/wmt18/translation-task.html
https://developers.google.com/freebase
https://everest.hds.utc.fr/doku.php?id=en:transe
https://github.com/OpenNMT/OpenNMT-py
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the values to be the same as in the OpenNMT-py setting. Our evaluation metric is

BLEU [37]9.

5. Results analysis and evaluation

Table 1 shows the results of the monolingual embedding constraint employing

OpenNMT-py (RNN-based) and Transformer-based architectures on the newstest

datasets 2012 and 2013. The KG systems (RNN-KG and Transformer-KG) containing

our monolingual embedding constraint lead to BLEU improvements over their corre-

sponding baselines (RNN, Transformer). For newstest2012, RNN-KG outperforms

RNN by around +0.51 and Transformer-KG outperforms Transformer by around

+0.47. Similar increases were found for newstest2013, +0.55 and +0.49, respectively.

Table 1
BLEU scores for the English-Spanish translation task using monolingual embedding con-

straint using RNN and Transformer

Models newstest12 newstest13

RNN 17.62 18.06

Transformer 19.46 19.94

RNN-KG 18.13 18.61

Transformer-KG 19.93 20.43

Table 2 shows the results of the bilingual embedding constraint using

OpenNMT-py (RNN-based) and Transformer-based architectures on the newstest

datasets 2012 and 2013. KG systems (RNN-KG and Transformer-KG) containing

our bilingual embedding constraint also lead to BLEU improvements over their corre-

sponding baselines (RNN, Transformer). For newstest2012, RNN-KG outperforms

RNN by around +0.74 and Transformer-KG outperforms Transformer by around

+0.67. Similar increases were found for newstest2013, +0.89 and +0.73, respectively.

Table 2
BLEU scores for the English-Spanish translation task using bilingual embedding constraint

using RNN and Transformer

Models newstest12 newstest13

RNN 19.55 20.18

Transformer 20.29 21.05

RNN-KG 20.29 21.07

Transformer-KG 20.96 21.78

Furthermore, we observed that our approach achieves a significant decrease in the

number of <UNK> tokens in both monolingual and bilingual embedding constraints.

9BLEU scores are computed with multi-bleu.perl
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The reason behind this improvement is that modeling the relations provides sufficient

training for low-frequency entities that were difficult to handle before and without

KG. Tables 3 and 4 show the statistics for this improvement with respect to <UNK>

words in the proposed embedding constraints:

Table 3
Statistics for the improvement in handling <UNK> tokens employing monolingual embed-

ding constraint.

Models newstest12 [%] newstest13 [%]

RNN-KG 27.48 33.51

Transformer-KG 29.72 36.52

Table 4
Statistics for the improvement in handling <UNK> tokens employing bilingual embedding

constraint.

Models newstest12 [%] newstest13 [%]

RNN-KG 18.12 20.66

Transformer-KG 23.47 26.08

Compared to the results of prior similar work [29, 33], our approach employing

TransR improves upon the performance of methods described in the section of Related

Work. For example, the HyTE approach combines entities and relations into a single

semantic space, whereas ours uses distinct semantic spaces for entities and relations

with bridging between them.

Employing Transformer-based architecture introduces more controlling knobs

than RNN-based architecture, which controls the flow and mixing of inputs as per

trained weights. So, the Transformer model gives us the most control-ability and

thus, better results than the RNN model.

A detailed study of our results shows that the number of OOV words decrease

considerably with the KG embedding augmentation. Many OOV words are in fact

entities contained in the KG. We consider two cases from newstest2013 here: (1) In

the sentence The US president is represented in the European Parliament, the term

“US” is not translated by the RNN baseline. However, it is correctly translated into

Spanish as “Estados Unidos” by both KG embeddings models. Additionally, the

Transformer baseline is capable of translating “US” to “Estados Unidos.” (2) In the

excerpt Bill to increase prime minister’s powers added to EU law, the Transformer-

KG model translates the word “prime minister” correctly to “primer ministro” with

the correct gender.

As another example, the entity “air force” in the sentence The Army Air Force

is equipped with new air defense equipment (extracted from newstest2012 ), is not

translated correctly by baseline models, whereas both KG embeddings models are

able to translate it correctly as “fuerza aerea.” This evaluation suggests that the
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RNN-KG models, as well as the Transformer-KG models, are able to correctly learn

the translation of entities through the relations found in KG embeddings.

Several options are available for capturing KG embeddings. Our primary moti-

vation for selecting TransR is its adaptability to the MT problem in light of the range

of challenges we have identified in this paper (e.g., OOVs and disambiguation).

Another option is TransE [9], which requires h+ r ≈ t when (h, r, t) holds. This

requirement indicates that t is ideally the neighbor of (h+r). Hence, TransE assumes

the score function below:

fr(h, t) = ‖h+ r − t‖22 (15)

which is low if (h, r, t) holds, and high otherwise. TransE applies well to 1-to-1

relations but is not designed for N-to-1, 1-to-N and N-to-N relations.

TransH [51] addresses this relational issue by allowing an entity to have distinct

distributed representations when involved in different relations. For a relation r,

TransH models the relation as a vector r on a hyperplane with wr as the normal vector.

For a triple, the entity embeddings h and t are first projected to the hyperplane of

wr, denoted as h⊥ and t⊥. Then the score function is defined as follows:

fr(h, t) = ‖h⊥ + r − t⊥‖22 (16)

If we restrict ‖wr‖2 = 1, we will have:

h⊥ = h− w>r hwr (17)

t⊥ = t− w>r twr (18)

By projecting entity embeddings into relation hyperplanes, TransH allows enti-

ties to play different roles in different relations. However, the relational complexity

imposed by this hyperplane approach is not amenable to the design we have chosen

because an entity may have multiple aspects, and various relations focus on different

aspects of entities. Hence, it is intuitive that some entities are similar and thus close

to each other in the entity space, but are comparably different in some specific aspects

and thus far away from each other in the corresponding relation spaces.

Both TransE and TransH assume embeddings of entities and their relations within

the same space despite that these are completely different objects. TransH affords

more flexibility by employing relation hyper-planes, but does not perfectly lift this

representational restriction. Given these representational issues, we have elected to

apply the TransR technique, which provides the best of both worlds, i.e., modeling

of entities and relations in distinct spaces (relation-specific entity spaces alongside

multiple relation spaces) and performing translation in the corresponding relation

space.

6. Conclusions and future work

In this paper, we used Freebase as a source of KG information for NMT models and we

employed TransR technique to represent entities and their relations. We also utilized
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EL to align triples in the KG with the source sentences. During NMT model training

through both OpenNMT-py and Transformer, we applied monolingual embedding

constraints to ensure that the embeddings of the source words hold the semantic

relations provided by the KG. We also used bilingual embedding constraints to force

the semantic relationship between the source words to be exactly maintained by their

corresponding translations. Our results show improvements over the NMT baselines.

Our next step is to investigate the influence of a range of different KGs on MT

such as Google Knowledge Vault and others with multilingual support (DBpedia and

YAGO).
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