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Abstract The Chinese remainder theorem is widely used in many modern computer ap-
plications. This paper presents an efficient approach to the calculation of the
rank of a number, a principal positional characteristic that is used in the residue
number system. The proposed method does not use large modulo addition op-
erations as compared to a straightforward implementation of the Chinese re-
mainder theorem algorithm. The rank of a number is equal to the sum of an
inexact rank and a two-valued correction factor that only takes on values of
0 or 1. We propose a minimally redundant residue number system that pro-
vides a low computational complexity of the rank calculation. The effectiveness
of the novel method is analyzed regarding a conventional non-redundant residue
number system. Owing to the extension of the residue code, the complexity of
the rank calculation goes down from O(k2) to O(k) by adding the extra residue
modulo 2 (where k equals the number of non-redundant residues).
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1. Introduction

Since the mid-1950s, the residue number system (RNS) has attracted the continuous
attention of researchers in computer technology, numerical methods, cryptography,
communications, digital signal processing, and other fields [2, 3, 23, 24, 27, 31, 32].
An RNS, which is based on the standard topics of abstract algebra and number
theory [6, 11], has natural internal parallelism. The main advantage of an RNS is its
unique ability to decompose long word-length numbers into a set of independent short
word-length residues (which are processed in parallel).

In a conventional non-redundant RNS with set {m1,m2, . . . ,mk} of k pairwise
relatively prime moduli, integer number X is represented by ordered set of residues
(χ1, χ2, . . . , χk) that are called the residue code, where χi = |X|mi (i = 1, 2, . . . , k),
|Y |m denotes the least non-negative residue of integer Y modulo m; i.e., |Y |m ∈
{0, 1, . . . ,m− 1}.

The carry-free nature of the modular operation is one of the primary and most
attractive features of RNS arithmetic. Modular operation ◦ ∈ {+,−,×} on integers
A = (α1, α2, . . . , αk) and B = (β1, β2, . . . , βk) is carried out independently for each
modulus; i.e., by the following rule:

A ◦B = (α1, α2, . . . , αk) ◦ (β1, β2, . . . , βk) =

=
(
|α1 ◦ β1|m1 , |α2 ◦ β2|m2 , . . . , |αk ◦ βk|mk

)
where αi = |A|mi βi = |B|mi , i = 1, 2, . . . , k.

Thus, the addition, subtraction, and multiplication operations are performed
in parallel by decomposition into independent modular channels that correspond to
moduli m1,m2, . . . ,mk in RNS arithmetic.

At the same time, the critical problem of an RNS consists of the fact that the
integer value of number X depends on all of its residues together. In an RNS, the
evaluation of the number value underlies all so-called non-modular operations. The
problem of the effective implementation of non-modular operations is constantly re-
ceiving considerable attention [7, 19, 23, 24, 27].

Unfortunately, the yet-to-be-resolved problem concerning high-performance com-
puting in an RNS consists of the substantial computational complexity of non-modular
operations. It is precisely this fact that explains why the RNS arithmetic is for the
most part only used in cases when the modular addition and multiplication operations
make up the bulk of the required computation, while the number of non-modular op-
erations is relatively small. This circumstance restricts a broad application of RNS
arithmetic to a narrow class of specific tasks.
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Therefore, the design of effective methods and algorithms for performing non-
modular operations is an urgent problem at the current development stage of RNS
arithmetic as well as its application in the field of high-performance computing. In
particular within this scope, the main topical task consist of the optimization of
non-modular operations from the standpoint of computational complexity, realization
time, and residue code redundancy.

As is known, the so-called positional characteristics of the residue code are used
for performing non-modular operations. In general, all positional characteristics rep-
resent certain numerical functions that, by some method or another, allow for the
estimation of the integer value of RNS number X. These characteristics depend on
part or all of the residues in k-tuple (χ1, χ2, . . . , χk). At the same time, the compu-
tational complexity of the calculation of applied positional characteristics ultimately
determines the efficiency of the RNS arithmetic constructed on their basis.

The non-modular operations in RNS arithmetic is based on the reverse conversion
from residues back to an integer. The canonical conversion technique is a straightfor-
ward method based on the Chinese remainder theorem (CRT) [9, 23, 24, 27].

In recent decades, the CRT has been intensively studied, especially in connec-
tion with its application in high-performance computing. The applied initial efforts
consisted of reducing the computational complexity of the CRT algorithm. There is a
sufficiently broad class of specific methods that are allowed to replace a slow addition
modulo (which is a significant product of the RNS moduli) by simpler operations.
All of these methods are based on the use of various positional characteristics of the
residue code. Along with the rank of a number, some of the generally accepted char-
acteristics are core function, interval index, parity, diagonal and quotient functions,
etc. [2, 3, 7, 20, 23, 24, 27].

The main drawback of the known approaches to the implementation of non-
modular operations is a significant computational complexity of the calculation of
the used positional characteristics. Consequently, these methods and algorithms are
not commonly suitable for designing efficient variants of RNS arithmetic for high-
performance computing (especially for large word-length numbers).

The rank of a number is, in essence, a CRT reconstruction coefficient; it rep-
resents a positional characteristic of primary importance in RNS arithmetic. The
CRT algorithm finds its application in the most various fields of modern science
and high-tech industry; for example, computing, coding, cryptography, digital signal
and image processing, communication, etc. As a confirmation of the above, we can
cite several recent scientific publications devoted to the use of the CRT; for exam-
ple, [1, 4, 5, 8, 10, 12–15, 17, 21, 22, 25, 28, 34].

In this paper, we propose a new variant of a minimally redundant RNS as well
as an efficient approach that provides a low computational complexity of the rank
calculation and allows us to improve the performance of non-modular operations
based on the CRT algorithm.
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2. Rank of a number

As is known, in the RNS with the set m1,m2, . . . ,mk of k pairwise relatively prime
moduli, it is possible to represent at most Mk =

∏k
i=1mi integers according to

CRT [18, 30]. At the same time, the following rule is valid:

X =

∣∣∣∣∣
k∑
i=1

Mi,kχi,k

∣∣∣∣∣
Mk

(1)

where Mi,k = Mk/mi, χi,k =
∣∣∣M−1i,k χi∣∣∣

mi
(i = 1, 2, . . . , k),

∣∣Y −1∣∣
m

denotes the multi-

plicative inverse of integer Y modulo m. The set ZMk = {0, 1, . . . ,Mk − 1} is usually
used as a dynamic range of the RNS.

Equation (1) shows how the position value of number X is obtained from its
residues χ1, χ2, . . . , χk. The arithmetic requirements for the CRT implementation
include:

1) k modular multiplications of small residues
∣∣∣M−1i,k ∣∣∣

mi
and χi for the calculation

of normalized residue χi,k;
2) k full non-modular multiplications of Mi,k and χi,k;
3) large word-length addition operations of summands Mi,kχi,k modulo Mk

(i = 1, 2, . . . , k).
It is clear that, along with the large multiplications in the second step, the pri-

mary difficulty consists of the need for the modular reduction concerning potentially
large modulus Mk.

Thus, the straightforward application of (1) as a primary form for integer re-
construction by a residue code is time-consuming and practically unacceptable for
high-performance computing due to its computational complexity, especially in the
case of a large Mk.

At the same time, the relevant form of integer representation that possesses
excellent implementing properties can be obtained on the base of (1), allowing us to
circumvent the problem of slow addition operations modulo Mk.

As follows from (1), difference:

k∑
i=1

Mi,kχi,k −X

is a multiple of Mk. Then, to circumvent the problem of slow addition operations
modulo Mk, Equation (1) can be rewritten as an exact integer equality

X =
k∑
i=1

Mi,kχi,k − ρk (X)Mk (2)

where the unknown ρk (X) is a positive integer called a normalized rank (or briefly,
rank) of number X [2, 3].
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Equation (2) is called the rank form (or CRT-form) of integer X. In essence,
rank ρk (X) is a CRT reconstruction coefficient indicating how many times the RNS
dynamic range Mk was exceeded when converting k-tuple (χ1, χ2, . . . , χk) to integer
X according to (2).

From (2), it follows that the following inequality holds for rank ρk (X):

0 ¬ ρk (X) ¬ k − 1

since the rank ρk (X) is an integer part of a sum of k proper fractions:

ρk (X) =

⌊
1
Mk

k∑
i=1

Mi,kχi,k

⌋
=

⌊
k∑
i=1

χi,k
mi

⌋

where bxc denotes the largest integer less than or equal to x.

In the RNS, the rank is a positional characteristic of primary importance since
all non-modular operations can be implemented on its basis. As is seen, Equation (2)
does not contain addition operations modulo Mk. Therefore, the decoding mapping
on the base of rank ρk (X) is more effective than straightforward implementations of
the CRT (1).

The essential content of the rank calculation in a conventional RNS consists of
the following theorem, which follows from [7, 19, 20]:
Theorem 1. (About the calculation of the rank of a number) Let an arbitrary
RNS be defined as an ordered set of k pairwise relatively prime moduli m1,m2, . . . ,mk
(ml ­ l−2, l = 1, 2, . . . , k, k ­ 2). Then, rank ρk (X) of integer X = (χ1, χ2, . . . , χk)
(X ∈ ZMk) can be computed as follows:

ρk (X) = ρ̂k (X) + ∆k (X) (3)

where

ρ̂k (X) =

⌊
1
mk

k∑
i=1

Ri,k (χi)

⌋
(4)

while

Ri,k (χi) =

∣∣∣∣∣∣∣−
∣∣∣M−1i,k−1χi∣∣∣

mi

mi

∣∣∣∣∣∣∣
mk

(i 6= k) (5)

Rk,k (χk) = χk,k =
∣∣M−1k−1χk∣∣mk (6)

and integer ∆k (X) is a two-valued number that only takes on values of 0 or 1.
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Thus, rank ρk (X) is the sum of two small numbers; namely, inexact rank ρ̂k (X)
and rank correction ∆k (X). As follows from Theorem 1 (see (4)), inexact rank ρ̂k (X)
is equal to the number of occurred overflows when computing the sum of k residues
R1,k (χ1), R2,k (χ2), . . ., Rk,k (χk) modulo mk. Thus, inexact rank ρ̂k (X) is calculated
quickly and easily.

At the same time (as follows from [7, 19, 20]), the calculation of rank correction
∆k (X) reduced to the independent and concurrent summations of residues R1,l (χ1),
R2,l (χ2), . . ., Rl,l (χl) modulo ml (l = 2, 3, . . . , k) along with the counting of the
modular overflows, while integers Rj,l (X) (j = 1, 2, . . . , l) are calculated according to
(5) and (6) in the case when k = l. These modular operations are easily pipelined
within the framework of a lookup table computing technique.

The corresponding costs for rank calculation are NMO =
(
k2 + 3k − 8

)
/2 mod-

ular addition operations and NLUT =
(
k2 + k − 2

)
/2 lookup tables for storing the

required residues. Therefore, the process of calculating ρk (X) requires O
(
k2
)

modular
operations so that it can become computationally expensive for large values of k, for
example, in the cryptographic applications commonly encountering large word-length
numbers (of a 1024 bit-length and higher).

Thus, one needs to optimize and speed up the calculation of rank ρk (X) for the
efficient implementation of the CRT algorithm as well as the non-modular operations
on its basis.

3. Relationship between rank correction ∆k (X)
and parity of RNS number

The fact that ∆k (X) ∈ {0, 1} (see Theorem 1) allows us to consider it as the residue
modulo 2.

According to CRT-form (2) and taking into account (3), we have:

X = X̂ −∆k (X)Mk (7)

where:

X̂ =
k∑
i=1

Mi,kχi,k − ρ̂k (X)Mk (8)

Since RNS moduli m1,m2, . . . ,mk are prime integers, then |Mk|2 = 1.
Therefore, taking into account the fact that |a− b|2 = |a+ b|2 (a, b ∈ Z), we

have:

|X|2 =
∣∣∣X̂ −∆k (X)Mk

∣∣∣
2

=
∣∣∣∣∣∣X̂∣∣∣

2
+ ∆k (X)

∣∣∣
2

(9)

Thus, for rank correction ∆k(X), the following equality is true:

∆k (X) =
∣∣∣|X|2 − ∣∣∣X̂∣∣∣2∣∣∣2 (10)
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Hence, the calculation of ∆k (X) is reduced to a parity comparison of numbers
X and X̂:

∆k (X) =

 0, if |X|2 =
∣∣∣X̂∣∣∣
2

1, if |X|2 6=
∣∣∣X̂∣∣∣
2

(11)

According to (8) and taking into account the fact that |Mi,k|2 = 1
(i = 1, 2, . . . , k), the calculation of the parity of number X̂ is reduced to perform-
ing trivial operations modulo 2:

∣∣∣X̂∣∣∣
2

=

∣∣∣∣∣
k∑
i=1

χ
(0)
i,k − ρ̂

(0)
k

∣∣∣∣∣
2

(12)

where:

χ
(0)
i,k = |χi,k|2 =

∣∣∣∣∣∣∣M−1i,k χi∣∣∣
mi

∣∣∣∣
2

(13)

and:

ρ̂
(0)
k = |ρ̂k (X)|2 (14)

are the least significant bits of the binary representation of normalized residue χi,k
(i = 1, 2, . . . , k) and an inexact rank ρ̂k (X), respectively.

As follows from Theorem 1, the value of inexact rank ρ̂k (X) and, hence, its parity
ρ̂
(0)
k is calculated quickly as a result of the summation of corresponding residues

modulo mk (see (4)-(6)). Thus, the calculation of the parity of number X̂ has no
difficulties according to (12).

As for the parity check of number X, this operation in an RNS is a complicated
non-modular operation requiring high computational costs of the order of O

(
k2
)

modular operations. Therefore, we must overcome the difficulty with the need to
compute parity |X|2 of a number X for the fast calculation of correction ∆k (X).

Below, we proposed a computationally efficient approach for the calculation of
rank correction ∆k (X), which consists of adding redundant modular channel modulo
2 to the used k channels corresponding to primary moduli m1,m2, . . . ,mk.

4. Rank calculation in minimally redundant RNS

The proposed method assumes the extension of residue code (χ1, χ2, . . . , χk) of num-
berX in the conventional non-redundant RNS with the k-moduli set {m1,m2, . . . ,mk)
and dynamic range ZMk by excess residue χ0 = |X|m0 with respect to redundant mod-
ulus m0 = 2; i.e., by adding the parity of number X to its residue representation.
Thus, in the redundant RNS, number X ∈ ZMk is represented by extended residue
code (χ0, χ1, . . . , χk).
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This residue representation is, of course, minimally redundant since the total
code length increases by only one bit. The redundancy is estimated by the following
index:

RRNS = 1− log2Mk
log2 (m0Mk)

=
1

1 + log2Mk
.

As can be seen, the code redundancy decreases as the number k of non-redundant
moduli m1, m2, . . ., mk, and, consequently, dynamic range Mk increases.

The main advantage of a minimally redundant RNS as compared to a non-
redundant RNS consists of a significantly simplified calculation of rank correction
∆k (X) and, accordingly, rank ρk (X).

The following statement reveals the essence of such an approach:
Theorem 2. (About the calculation of the rank of a number in a minimally
redundant RNS) Let a minimally redundant RNS be defined by an ordered set of
pairwise relatively prime moduli m0,m1, . . . ,mk, where m0 = 2; ml ­ l − 2, l =
1, 2, . . . , k; k ­ 2. Then, rank ρk (X) of integer X = (χ0, χ1, . . . , χk) from dynamic
range ZMk can be computed as follows:

ρk (X) = ρ̂k (X) + δk (X) (15)

where ρ̂k (X) is calculated according to Theorem 1:

δk (X) = |χ0 + χ̂0|2 (16)

χ̂0 =

∣∣∣∣∣
k∑
i=1

χ
(0)
i,k + ρ̂

(0)
k

∣∣∣∣∣
2

(17)

χ
(0)
i,k and ρ̂(0)k are calculated in accordance with (13) and (14), respectively.

The proof of this theorem follows directly from Equations (7)–(14).
According to Theorem 2, the transition from non-redundant to minimally redun-

dant residue coding allows replacing rank correction ∆k (X) requiring time-consuming
calculations by a trivially calculated two-value attribute δk (X) ∈ {0, 1} in (3).

At the same time, the calculation of the rank ρk (X) are reduced to a set of quickly
implemented modular operations modulo mk (calculation of inexact rank ρ̂k (X)) and
m0 (estimation of the correction δk (X)) according to (15). Also, the calculation of
inexact rank ρ̂k (X) can be performed in parallel with the calculation of the following
value (as follows from [16] and [17]):

δ0 =

∣∣∣∣∣χ0 +
k∑
i=1

χ
(0)
i,k

∣∣∣∣∣
2

whose correction using ρ̂(0)k at the last stage of the calculations gives us the resulting
value of δk (X).
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Because of the use of a minimum-redundancy residue code, the complexity of cal-
culating rank ρk (X) is significantly reduced as compared to non-redundant analogs.
First of all, this is due to the need to perform the modular operations only modulo
mk instead of all moduli m1,m2, . . . ,mk in the case of a conventional non-redundant
RNS. Therefore, the computational complexity decreases from O

(
k2
)

to O (k) mod-
ular operations.

The corresponding costs for calculating rank ρk (X) in a minimally redundant
RNS are N (R)MO = k modular addition operations, including the correction of inexact
rank ρ̂k (X), and N (R)LUT = k lookup tables for storing the required residues. Here, it is

assumed that, to the ith lookup table, one records a pair of residues
〈
Ri,k (χi) , χ

(0)
i,k

〉
that, calculated according to Equations (5), (6), and (13), Ri,k (χi) ∈ Zmk , χ

(0)
i,k ∈ Z2

(i = 1, 2, . . . , k). Thus, the bit-width of the used lookup tables is l = dlog2mke + 1,
where dxe denotes the smallest integer greater than or equal to x.

Therefore, the reduction factors of the computational complexity of calculat-
ing rank ρk (X) in a minimally redundant RNS as compared to a conventional non-
redundant RNS are represented by the following fractions:

CMO =
NMO

N
(R)
MO

=
k2 + 3k − 8

2k
(18)

for the number of modular addition operations, and:

CLUT =
NLUT

N
(R)
LUT

=
k2 + k − 2

2k
(19)

for the number of required lookup tables.
Equations (18) and (19) show that reduction factors CMO and CLUT increase

with the number k of non-redundant moduli m1,m2, . . . ,mk.
For example, take the number k of non-redundant RNS moduli as a multiple of 5:

k = 5, 10, 15, 20, 25, 30

Then, for reduction factors (18) and (19), we have the following values depending
on the number of modules k, respectively:

CMO = 3.2, 6.1, 8.73, 11.3, 13.84, 16.37

and:

CLUT = 2.8, 5.4, 7.93, 10.45, 12.96, 15.47

Thus, the proposed approach for the rank calculation in a minimally redundant
RNS with length k of primary residue code from 5 to 30 digits compared to a con-
ventional non-redundant RNS allows us to reduce computational costs by 3.2–16.37
times in terms of the required modular addition operations and by 2.8–15.47 times in
terms of the lookup table memory.
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To illustrate the calculation of rank ρk (X) in a minimal redundant RNS based
on that which is mentioned above, we present a simple numerical example. For con-
venience, we consider a sample RNS with four moduli in the primary moduli set.
Example 1. Let us consider an RNS with moduli m1 = 5, m2 = 7, m3 = 9, and
m4 = 11 and excess modulus m0 = 2. Suppose we wish to calculate rank ρk (X) of
number X = 13 having minimally redundant residue code (1, 3, 6, 4, 2).

The primitive constants in this RNS are:

M4 = 3465

M1,4 = 693,
∣∣M−11,4 ∣∣m1 =

∣∣693−1
∣∣
5 = 2

M2,4 = 495,
∣∣M−12,4 ∣∣m2 =

∣∣495−1
∣∣
7 = 3

M3,4 = 385,
∣∣M−13,4 ∣∣m3 =

∣∣385−1
∣∣
9 = 4

M4,4 = 315,
∣∣M−14,4 ∣∣m4 =

∣∣315−1
∣∣
11 = 8∣∣m−11 ∣∣m4 =

∣∣5−1∣∣11 = 9∣∣m−12 ∣∣m4 =
∣∣7−1∣∣11 = 8∣∣m−13 ∣∣m4 =
∣∣9−1∣∣11 = 5

First, residues Ri,4 (χi) and χ(0)i,4 calculated according to (5), (6), and (13), respectively
(i = 1, 2, 3, 4). As a result, we have:

R1,4 (χ1) = |− |2 · 3|5 · 9|11 = 2

R2,4 (χ2) = |− |5 · 6|7 · 8|11 = 6

R3,4 (χ3) = |− |8 · 4|9 · 5|11 = 8

R4,4 (χ4) = |8 · 2|11 = 5

and:
χ1,4 = |2 · 3|5 = 1, χ

(0)
1,4 = |1|2 = 1

χ2,4 = |3 · 6|7 = 4, χ
(0)
2,4 = |4|2 = 0

χ3,4 = |4 · 4|9 = 7, χ
(0)
3,4 = |7|2 = 1

χ4,4 = |8 · 2|11 = 5, χ
(0)
4,4 = |5|2 = 1

Furthermore, we find the number of overflows when summing the residues of the set:

〈R1,4 (χ1) , R2,4 (χ2) , R3,4 (χ3) , R4,4(χ4)〉 = 〈2, 6, 8, 5〉

modulo m4 = 11; i.e., we calculate inexact rank:

ρ̂4 (X) = b(2 + 6 + 8 + 5) /11c = b21/11c = 1
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Therefore, ρ̂(0)4 = |ρ̂4 (X)|2 = 1.
Then, taking into account the fact that redundant residue χ0 = 1, according to

(15), we calculate two-valued correction:

δ4 (X) = |1 + (1 + 0 + 1 + 1) + 1|2 = |5|2 = 1

As a result, we get rank:

ρ4(X) =ρ̂4(X) + δ4(X) = 1 + 1 = 2

To verify the obtained result, using (2), we find:

X =
4∑
i=1

Mi,4χi,4 − ρ4 (X)M4 =

= 693 · 1 + 495 · 4 + 385 · 7 + 315 · 5− 2 · 3465 = 6943− 6930 = 13

5. Discussion

The known methods for reducing the complexity of the CRT implementation di-
rected both the reduction of the complexity of the inner multiplications as well
as the substitution of the additions modulo Mk by the simpler operations in (1)
[2, 3, 7, 20, 23, 24, 27].

For the first time, a positional characteristic called the rank r(X) of a number
X was studied in [2] and later in [3]. The rank computation consists of a slow k-
step iterative procedure of the sequential additions of specific constants, which are
determined by the RNS moduli-set {m1,m2, . . . ,mk}, modulo Mk. Moreover, the up-
per bound of rank r(X) depends on the values of weights µ1,k, µ2,k, . . . , µk,k (see (1))
and can be sufficiently large for most moduli-sets that are suitable for practical use.

In [29], a well-known method for obtaining a positional value of an integer number
in an RNS is proposed. This is based on the calculation of an integer correction factor
for the CRT implementation in the form of an exact integer equation. Thus, the slow
and challenging addition modulo Mk is replaced by subtraction and multiplication.
At that, the efficient calculation of the correction factor is critical. In this method,
redundant modulus mk+1 adds to the primary RNS moduli set {m1,m2, . . . ,mk}. At
the same time, the redundant modulus must satisfy two conditions for the proper
calculation of the correction factor: first, mk+1 ­ k; and second, gcd (mk+1,Mk) = 1.
Thus, we have an extra modular channel. Nevertheless, this method cannot be used
to find the correction factor of a number resulting from a subtraction. Therefore, it
is not sufficient to a sign determination nor, consequently, a magnitude comparison
of two numbers in the RNS, but it can be used for the base extension operation.

In [16, 26, 33], a different approach to the evaluation of the CRT reconstruction
coefficient was proposed. The main idea of the considered method consists of the
representation of reconstruction coefficient r (i.e., a rank ρk (X) in our case) as an
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integer part of a sum of at most k proper fractions. The value of r is recursively
estimated by approximating χi,k and mi at fraction χi,k/mi (i = 1, 2, . . . , k). To avoid
a division in the fraction by modulus mi, denominator mi is replaced by 2n, while
numerator χi,k is approximated by its most significant υ bits, where n is common
to all moduli, mi < 2n, n = dlog2me, m = max1¬i¬k {mi}, υ < n (i = 1, 2, . . . , k).
Since the division by powers of 2 is equivalent to simple shifts, then the calculation of
reconstruction coefficient r can be realized by addition only. The main drawbacks of
this method consist of the following reasons. First of all, full precision fractional
computations are required. On the other hand, the iterations are on the order of the
bit-length needed. For example, the method described in [33] uses a very high precision
of dlog2(kMk)e bits. As for the method proposed in [16, 26], it uses a sequential bit-by-
bit manner for the evaluations of reconstruction coefficient r. Therefore, the fractional
domain methods are prolonged in the case of large word-length numbers (for example,
of the 1024 bit-length commonly used in cryptographic applications). At the same
time, these methods, of course, are crucial for high-performance applications in the
field of digital signal processing, where the used dynamic range is covered by the use
of small moduli of 4–6 bit-lengths.

The main advantage of the proposed minimally redundant RNS over non-
redundant analogues consists of a significant simplification of the calculation of rank
ρk (X). First of all, the transition from a non-redundant to a minimally redundant
residue representation of numbers allows us to replace correction coefficient ∆k(X)
by two-valued characteristic δk (X), which has a trivial computational structure and
can be calculated in one modular clock cycle by means of a lookup tables technique
or by using the simplest combination logic circuit. As for an inexact rank ρ̂k (X) (see
Theorem 1), this is calculated by counting the occurred overflows when summing k
specified residues modulo mk, both in the case of a non-redundant and minimally
redundant RNS.

In accordance with (18) and (19), the computational complexity of the rank
calculation is significantly reduced as compared with non-redundant analogues due
to the use of minimum code redundancy. At the same time, efficiency factors CMO
and CLUT show significant gains with respect to the number of required modular
addition operations and lookup tables for storing the required constants depending
on the number of used modules and, accordingly, the dynamic range of the RNS.

6. Conclusion

This paper presents a computationally efficient approach that allows us to improve
the implementation of the CRT algorithm based on the use of the rank of a number,
which is a positional characteristic of primary importance in an RNS. The use of the
minimum-redundancy residue code enables the optimization of the rank computation
and, consequently, the performance of the non-modular operations based on the CRT.

In contrast to a straightforward implementation of the CRT algorithm, the new
method (which is based on the modified form of the CRT represented as exact integer
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equality) does not use a large word-length modular addition operations modulo Mk
representing a product of k relatively prime moduli m1,m2, . . . ,mk. Moreover, the
proposed method also does not require arithmetic operations in the fractional domain
for the rank calculation.

We investigated the structure of rank ρk (X) and proposed a novel method for the
fast calculation of rank correction ∆k (X) to inexact rank ρ̂k (X). This method used
the fact that rank correction ∆k (X) is a two-value number: ∆k (X) ∈ {0, 1}. This
allows for a significant reduction in the computational complexity of the rank calcu-
lation to O (k) instead of O

(
k2
)
, owing to the extension of primary non-redundant

moduli-set {m1,m2, . . . ,mk} by redundant extra modulus m0 = 2. In essence, two-
valued excess residue χ0 determines the parity of an RNS number.

The reduction factors of computational complexity of the rank ρk (X) calculation
concerning the numbers of required modular addition operations and lookup tables
in a minimally redundant RNS are presented. As shown, these factors increase with
the number k of non-redundant RNS moduli. For example, the use of a minimally
redundant RNS with length k of primary residue code from 5 to 30 digits enables us
to reduce computational costs by 3.2-16.37 times in terms of the required modular
addition operations and by 2.8-15.47 times in terms of the lookup table memory.

This circumstance allows us to simplify the implementation of the CRT and,
consequently, to construct variants of RNS arithmetic that are faster and optimal in
cost by improving the performance of the non-modular procedures.

Therefore, the minimally redundant RNS proposed in this paper takes priority
over a conventional non-redundant RNS in the field of high-speed computing, espe-
cially in the case of a large dynamic range computation, for example, for implementing
various complex cryptographic algorithms. Thus, the considered approach coincides
with the development vector of modern methods and algorithms for high-performance
computing.
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