
Computer Science • Vol. 5 • 2003

Marcin Kuta*

TREN D S IN M ODERN EXCEPTION HANDLIN G
Exception handling is nowadays a necessary cornponent of error proof Information systems.
The paper presents overview of techni ues and models of exception handling, problems con-
nected with them and potential Solutions. The aspects of implementation of propagation
mechanisms and exception handling, their effect on semantics and genera program efhcJen-
cy are also taken into account. Presented mechanisms were adopted to modern programming
languages. Considering design area, formal methods and formal verihcation of program pro-
perties we can notice exception handling mechanisms are weakly present what makes a field
for futur research.

Keywords: exception handling, exception propagation, resumption model, terrnination model

T R E N D Y W E W SPÓ ŁCZESNEJ O B S ŁU D ZE W Y JĄ T K Ó W
Obs uga wyj tków jest wspó cze nie nieodzownym sk adnikiem systemów informatycznych
odpornych na b dy. W artykule przedstawiono przegl d technik i modeli obs ugi b dów,
zwi zane z nimi problemy oraz ich potencjalne rozwi zania. Uwzgl dniono równie zagad
nienia dotycz ce implementacji mechanizmów propagacji i obs ugi b dów, ich wp yw na
semantyk oraz ogóln efektywno programów. Przedstawione mechanizmy znalaz y zasto
sowanie we wspó czesnych j zykach programowania. Je li chodzi o dziedzin projektowania,
metody formalne oraz formalne dowodzenie w asno ci, to mechanizmy obs ugi wyj tków nie
s w nich dostatecznie reprezentowane, co stanowi pole dla nowych bada .

Słowa kluczowe: obs uga b dów, progagacja wyj tków, semantyka wznawiania, semantyka
zako czenia

1. Int roduct ion

Analysing modern Computer systems we notice increasing efforts to deal with problem
of software reliability. This feature becomes crucial in real time systems, where least
lack of reliability can make them completely useless, even dangerous and significantly
decides about working costs. Beside regular services olfered by software modules,
which we can describe as expected and welcome, much attention should be paid to
other types of services. This article deals with issue of exceptional services e.g. services
we perceive as unwelcome but expected. The issue of hazards (events unwelcome and
unexpected) is beyond a scope of the paper. It is also necessary to distinguish two
kinds of exceptions: synchronous and asynchronous.

‘ Faculty of Electrical Engineering, Automatics, Computer Science and Electronics AGH Uni-
yersity of Science and Technology, Cracow, Poland, mkuta@agh.edu.pl

41

mailto:mkuta@agh.edu.pl

42 Marcin Kuta

Complex information systems devote mor than half of cod to errors handling.
Exception handling mechanism solves the problem of control flow when unexpected
event occurs. These mechanisms, although relatively genera , are tightly related to
error handling and contribute to program reliability. Due to formal re uirements it
is worth adding that exception mechanisms can be applied to other problems like
unstructured control flow. This article gives review of ancient exception handling
techni ues, then presents the newest Solutions in the area of exception handling,
including description of the models, exception features and issues related to their
implementation.

2. Tradit ional except ion handling mechanisms

Historically, the first methods to deal with problem of exceptions were status return
value and status flag techni ues. Status flag techni ue, which is widely known for
people, who have had even few experiences in C language, uses global variable to
indicate exceptional State. The second techni ue - return value techni ue binds error
with result of function invocation. The set of function return values is divided into two
subsets: set corresponding to regular use and set corresponding to exceptional use.
There is remaining problem how to project exception to exceptional return value. It is
usually addressed by extra definitions by means of pre-processor or creation of special
interfaces.

Main advantage of traditional techni ues is that they introduce only smali over-
head to programs’ size or speed. At the same time list of drawbacks prevails (see
also [4]):

• Unnecessary increase of program complexity. Each error check introduces new
nested b ock in worst case, ending up with many additional levels of nesting. The
regular flow and exceptional flow aren’t clearly separated, what makes programs
difflcult to read and maintain.

• Ease of omitting some errors cause of fine granularity of exception handling (po-
tentially each called function should be checked for returned value).

• Difficulties in extending a program with new exceptions, because, as mentioned
earlier, two program flows are interlaced within the same syntax constructs.

• Problematic in concurrent programming in case of usage a status flag techni ue.
As global variable is used to indicate errors, it can indicate a state that isn’t
already up-to-date, si ce threads use this variable without synchronisation me
chanisms. Erom the other hand introducing by users synchronisation mechanisms
would make error handling excessively complex and would end up with mixing
program implementation and language implementation.

• Imposes unintuitive changes of functions return values in order to contain spe
cial error value, for example C function char getchar() must be replaced by int
getchar(). In the effect documentation of systems using such functions is less
valuable.

Trends in Modern Exception Handling 43

• Sometimes it is not possible to return appropriate value that would indicate an
error. Following example, although limited to one programming language (C ++),
shows potential problems:

Basei: b;

Derived& d = dynamic_cast<Derived&>(b);

The key issue is that reference variable must always refer to some variable, nuli
references are not possible. Returning value 0 by operator dynamic.cast in case of
unsuccessful type cast is not appropriate because in that case a temporary object
is generated and its value is set to 0. A correct approach is to apply new handling
mechanism, raising bad-cast exception by dynamic-cast when it is impossible to
perform properly operation.

• Functions like object constructors may be declared to return no values at all
(including void type), making return value techni ue impossible to apply.

3. Signals

Signal mechanism is appropriate for handling asynchronous events (e.g. arrival of
alarm) and events related to internal errors caused by program’s faulty execution
(e.g. segment violation, bus error, floating point overflow). Signals are implemented
by functions longjmp, setjmp and handled implicitly, without users’ additional checks
or function calls. The only effort is to install signal handling procedur . This is done
by means of signal or sigaction functions. Signals can be ignored, or if no signal han
dling procedur is provided, default action is executed, according to signal meaning.
Signals SIGKILL and SIGSTOP can’t be ignored neither its default handling proce
dur changed. Signals can be explicitly sent from one process to another or to itself
(using functions like kill or sigsend). For detailed discussion of signal mechanisms one
can refer to [6, 13].

Among main difficulties related to signal handling we can encounter:

• Signal set varies with operating system type and release.

• Semantics of each signal is not preserved for all operating systems.

• There is no uniform signal API over operating systems, additionally it is suscep-
tible to introducing errors like race conditions, lost signals and interrupted slow
system functions.

• Information other than signal has arrived is not provided.

• Most of the signals are predefined, only few, like SIGUSR1, SIGUSR2, are ava-
ilable for programmers.

In the effect programs dealing with signals may not be portable even within
different releases of the same operating system. Due to their natur , signals can’t be
chosen as a framework for synchronous exception handling.

44 Marcin Kuta

Some implementations like Exceptional C adopt the same syntax to handle both
synchronous exceptions and asynchronous exceptions (called signal exceptions).

4. Modern except ion handling models

The main accent in modern exception handling is put to clearly distinguish two pro
gram flows: regular flow and exception flow. In this way advanced exception handling
models addresses mentioned above problems with excessive growth of program com-
plexity. Although it is possible to bind exception handlers with expressions or opera-
tors, modern exception handling techni ues use notion of coarser guarded b ock, to
which exception handler (special routine called when exception occurs within guarded
b ock) is bound. Larger guarded b ock makes exception handling procedures occur re-
latively rarely, hence handling design is less burdensome. Another advantage is that
exception can be handled at place, where we find it convenient, not only where it
occurred, possibly handling a group of exception at one place. The result of exception
propagation is that it is not necessary for each function to be error proof, si ce excep-
tions can be handled higher in cali hierarchy. In this case exception flow is reverse to
regular control flow. Usually dynamie propagation is used (i.e. invocation hierarchy is
applied to find a handler). Another concept-static propagation (i.e. lexical hierarchy
is applied to find a handler) proposed by Knudsen ([8, 9]) was important historically
but hasn’t turned out to be of huge practical significance.

Next feature is that exceptions can be parameterised and contain as many infor-
mation as needed to describe exception event, without additional unnecessary efforts,
overhead or affecting program’s structure. There should be also possibility to raise
or reraise exceptions explicitly (using keywords like raise, throw, resume). Reraising
an exception allows functions to be partially error proof, doing some necessary cle-
anup, at the same time passing the main responsibility higher in program’s hierarchy.
Finally, modern models allow exceptions safe usage in multithreaded environment.

Following piece of cod shows usage and essential difference between three main
exceptions handling models.

void bar(void){

label2: raise e; // here exception is raised

>

void f o o (void){

labell : try{

bar ();

}catch(Exception e) {

Trends in Modern Exception Handling 45

label4 : . . . I I here exception is handled
>
la be l3: ...
>

Assuming the exception was thrown at label label2, then handled at label
label4, next the control flows, depending on handling model, respectively to la
bel label 1 (retrying model) or label2 (resumption model) or label3 (termination
model). This distinction is at present perceived as the main classification of handling
models and is widely reported in literatur [1, 10, 12, 14].

4.1. Ret ry model

Retry model can be easily mimicked by termination model, as shown below.
Retry b ock (n is number of retries):

try{

}retry(n, Exception e) {
// do necessary cleanup

>

can be replaced to use termination model by:

forCint i = 0; i < n ; i+ +){
try{

br ea k;
}catch(Exception e) {

// do necessary cleanup
>

>

What is very important, such remodelling doesn’t make function less structured,
as concepts like goto are not needed.

Retry model isn’t supported by programming languages as embedded mechanism
because:

• Each user can simulate this model by termination model on its own.

• Retry model is slightly mor error prone than termination model (retry clause
at the end of the b ock versus try clause at the beginning of the b ock in case of
termination model).

4.2. Comparison of terminat ion and resumpt ion semant ics

It remains to consider two most important models: termination and resumption, both
of them having significant advantages.

46 Marcin Kuta

Ter m in at i o n m o d el ad van t ag es:

• Simpler in implementation and usage than resumption model.

• Most of software was written by assuming termination model.

• Provides enough strong semantics for all applications.

• Contributes to creation of systems easier for maintenance.

Resu m p t io n m o d el ad van t ag es:

• Mor genera then termination model (if not implemented, must be mimicked by
tricks).

• It gives simple solution of problem of resource exhaustion.

• It doesn’t re uire significantly mor expensive implementation than termination
model.

• Important for complex systems like OS/2.

Resumption model seems mor attractive si ce it offers the strongest, most gene
ra semantics in comparison to other models. Unfortunately, after analysis of millions
lines of cod , it has turned out not to be very useful in practice (see also [14]). With
resumption model it is also possible to create infinite loops, highly undesirable and
difficult to detect bug. The simplest example of such recursive resuming is shown
below:

try{
resume e;

} catch(Exception e){
resume ;

}

In the example it is easy to preview an incorrect loop, but in complex one such
loop may appear due to dynamie handler selection, making debugging hard.

Resumption model is mor expensive in implementation than termination model,
as in the latter part of the context of program can be destroyed (stack unwinding)
and simply forgotten. Resumption model re uires context saving when exception oc-
curs and in the effect applying mor advanced data structures like cactus stack to
implementation. Termination model gained mor popularity over resumption model
and is implemented in most of the languages.

4.3. Other concepts

We can also imagine coexisting of resumption and termination semantics within one
language. In this approach we could distinguish three kinds of exceptions:

1) throw-only,

2) resume-only,

3) both thrown or resumed (depending on context).

Trends in Modern Exception Handling 47

With such generalised exceptions following problems arise:

• Resume exception can be overridden to be throw exception (but reverse is not
true). Such construct introduces potential place for errors, as exceptions can be
used without an awareness of different model to be tight to exception.

• Exception inheritance becomes uestionable. Changing kind of derived exceptions
makes cod hard to read and analyse si ce control flow can be reckoned at run
time and depends on exact type of exception.

• Matching exceptions to handlers, e.g. throw exception to resume handler or re
sume exception to throw handler, is not correct, being another place leading to
potential errors.

Above problems and Iow usefulness of resumption model cause such construct
doesn’t seem justified as model is unclear, hardens implementation and usage, leads
to unintended errors, finally creates mor problems than solves.

Besides handling model, exceptions can be described by additional features, what
is summarised in the Table 1.

Table 1
Exception features occurrence depending on language

Scoped naming feature is related rather to language design than exception design
and exists in almost all important languages. Fiat namespace becomes polluted with
program growth and then name collision is getting mor probable. Exceptions should
profit from scoped naming possibility.

5. Propagat ion depth

Three propagation models are considered:

1) single,

2) multilevel,

3) mixed.

48 Marcin Kuta

• Single level model

In single level model exception is propagated only through one active b ock. If
no handler is provided there program is terminated or exception is converted
to an error which usually leads to program termination. The only important
language to implement this model is CLU. The idea behind this model is to esta-
blish mapping. Caller of function is relaxed from details of exceptions raised by
functions used in the implementation of called function. Unfortunately, there are
also important limitations for the model. First, it re uires almost each function
to handle with errors. The better idea is to deal with exception in a few, well
defined interfaces. It may be also impossible for function to handle error due
to language or library limitations and then its only strategy is to propagate it
further. This concerns multilingual environments like CORBA, DCOM.

• Multilevel model

According to multilevel model exception is propagated through active blocks
until explicit or implicit exception handler catches it. Because exceptions can be
propagated through many blocks each function has to decide whether to catch an
exception (we say that callee function masks exception to caller, because caller
acts as if no exception took place) or propagate it further.

Let’s suppose a function propagates an exception declared to catch (raised excep-
tion doesn’t figur on function’s list of raised exceptions) outside its body. Two
approaches to problem are possible. In first solution such behaviour is treated
like a run-time error and a special handler is called (which usually terminates the
program). This solution is adopted by C ++ . Former behaviour can be considered
as undesirable. Possibly it is better to reject such cases at compile time, reporting
an error.

Last solution, in shape adopted by Java, distinguishes two kinds of exceptions:
checked exceptions and runtime exceptions ([3]). In case of checked exceptions
each function must catch all such exception raised within its body or explicitly
declare uncaught exceptions in its signature (control flow analysis and control
flow graphs judge whether function definitions and calls conform to their specifi-
cation). However for some exceptions (run-time exceptions) that can be thrown
almost anywhere, necessity of providing handler would be too cumbersome, so
above rules don’t apply to them.

It is also not obvious reading signature’s declaration, what is function’s default
propagation behaviour. In Java signature void foo(void) means that function
throws no but runtime exceptions (which are raised and handled implicitly).
Contrarily to Java in C + + the above signature means that function can throw
any exception. To assure function cali will always end successfully, function with
signature void foo(void) throw () should be provided.

• Intermediate model

In this model exception can be propagated if it is specified in function’s header.
Otherwise it may be transformed to mor genera type using exception hierarchy.

Trends in Modern Exception Handling 49

Only the multilevel model turns out to be useful and flexible. With single level
model we loose possibility of propagating an exception to handle it at convenient pla
ce, maybe with other exceptions, grouped within one handler. Choosing a multilevel
model, we have to decide a problem of checked exceptions. A declaration of raised
exception in function signature is in a way global, si ce affects all functions in chain
of invocations. Therefore checked exceptions don’t exist in C + + , heterogeneous and
compiled language. In this way necessity of change of huge parts of cod and pre-
compiled libraries is avoided. Pure language like Java can re uire checked exceptions
without above limitations.

6. Except ion list

In many languages functions can declare that they have possibility to generate or pass
from invoked functions some exceptions. If there is mor than one type of uncaught
exceptions we get exception list which looks like this:
void foo{void) throw (XException: YException, ZException)\

Sometimes it can be difficult to fix which exceptions are thrown by function as
in example taken from [1]:

template<typename T> void sort(T items []){
// using bool operator< (const T &, const T &)

}

Authors of [1] state that it is impossible to know what types of exceptions may be
propagated from sort si ce operator< function is overloaded from each instantiation
of template. But the problem can be fixed:

template <typename T>
void sort(T items []) throw (XException, YException, Zexception)
{

tryl
// using bool operator< (const T&, const T&)

>
catch(Xexception xe){ throw; }
catch(Yexception ye){ throw; >
catch(Zexception ze){ throw; >
catch(...){ // warn
}

>

The same trick can be used to handle functions taking function pointer as ar
gument or functions calling directly or indirectly virtual functions. Additionally in
languages with strict type control we can make an exception list a part of function
pointer’s declaration, for example declaration:

void (*pf)(void) throw (int, st ng);

50 Marcin Kuta

constrains pf to point only to functions which can raise int or st ng exceptions but
of no other types. In this way we can control exceptions propagation.

// function bar can raise any exception
void b a r (void(*pf)(vo id)) {... >

// function foo can raise only its own exceptions
// and pf ’ s int and string exceptions
void foo(void(*pf) (void) throw (int, string)) { . . . }

void f1 (void) { ... >
void f2(void) throw (int) { ... }

foo(fl); // illegal
foo(f2); // 0.K .

7. Except ion inheritance

It seems natural that in object oriented languages exception handling mechanisms
profit from ability to create new types. This means that exceptions are represented as
objects and classes, which don’t differ from general-purpose ones. Languages without
0 0 support can benefit only from traditional handling techni ues or extensions with
special exception type must be provided. Introducing new language dialect is uestio-
nable and needs special caution. Although some authors (e.g. see [2]) argue that it is
worth distinguishing them by special keyword (for example exception) for documenta-
tion purposes, it doesn’t seem reasonable. Such solution leads to unnecessary doubling
the same functionality e.g. inheritance, operator overloading, polymorphism. It would
end up with problem known from C ++ , where difference between enum, struct and
class types becomes biur.

In languages where inheritance is obligatory and inheritance relation is described
by tree (e.g. Java, C #) all exceptions can be lead out from one system exception (a ro-
ot of exceptions tree), exempting a programmer from dealing with forest of hierarchies.

In languages where multiple inheritance is possible it is usually up to programmer
to handle exceptions in that way that exception having multiple base types (mor
specific exceptions) are handled before base exceptions. It is always possible because
cycles are not allowed in inheritance hierarchy, so partial order can be set up in
inheritance relation. Relaxing from such behaviour would lead to less structured cod .

8. Except ion handling and language design

Introducing exception handling in object oriented approach re uires additional effort
from compiler creators. Its direct conse uence is necessity of embedding a sort of

Trends in Modern Exception Handling 51

RTTI mechanism as a compulsory language feature. The idea behind this is to enable
recognition of mor specific raised exception, when only basie exceptions are declared
to handler.

Traditionally language ref ection is implemented in the following way (mor tech-
nicalities can be found in [10]): each polymorphous type is bound with an instance of
a special metaclass (the instance is common for all objects of inspected type). This
metaclass serves as a type descriptor. Type descriptor is implemented as object of a
special typeJnfo class.

Additionally object exception handling imposes two extensions to RTTI imple-
mentation:

1. typeJnfo class becomes a root of hierarchy of metaclasses providing mor informa-
tion about specific types like pointers, functions etc. Classes like pointer.typeJnfo,
function.type.info, inheriting from typeJnfo base class, provide information con-
cerning special features of pointers, function, tables, classes, etc.

2. typeJnfo classes are generated not only for polymorphous types but for nonpo-
lymorphous and embedded types as well. These classes are useful because raised
exceptions, which can be of basie types like strings, integer or float numbers,
must be identified at run time and Identification mechanism should be uniform
with complex types objects.

9. Impact of except ions on semant ics of program

Advanced exception handling mechanisms re uires paying mor attention to problem
of program correctness by compiler. Let’s consider following function:

void f o o (void)
{

try{
label1: b a r ();
} cat ch (. . .) {

// do some cleanup
>
label2: bar ();

Point p;

label3: bar () ;
>

The above example shows three semantically different effects of raising an excep-
tion in function bar, depending on place it was raised (termination model assumed):

• Exception raised at label la b e ll: the installed default handler catches an excep-
tion and after some cleanup function foo continues to execute instructions directly
after catch b ock.

52 Marcin Kuta

• Exception raised at label label2: no handler is executed inside function foo,
instead function is popped of the program stack (stack unwinding is performed).

• Exception raised at label lab 13: function foo is popped of the program stack but
before that active local objects must be destroyed (destructors to be invoked).

The presence of semantically different regions imposes maintaining by compiler
or a program a list of current local active objects. This allows to remember program
State and properly destruct objects at labels label2, label3, when exception occurs.
Destructors can’t do that work in this case, as it is not possible to put them at compile
time. Such lists however can be generated at compile time or at run time depending
on what are our priorities: program size or program speed.

Apart from compiler, programmers also should take into account possibly new
semantics of program after introduction exception mechanism. Correct piece of cod :

void bar(void) th r o w O ;
void foo(void) f

key = lock (resour ce) ;

bar O ;

unlock(key) ;

}

may become invalid if function bar is redefined not to mask some exception, with new
signature void bar(void) throw (Exception);. Before popping function’s foo frame from
stack locked resources must be freed. The same is true for reserved heap memory in
purpose to avoid leaks. The remedy is to free previously locked resources or allocated
memory within exception handler b ock, to restore program to correct state. But the
special attention must be paid. If an exception would occur during resource allocation,
then this unallocated resource would be freed in exception handler. To avoid such
incorrectness, resource allocations should take place outside main guarded blocks as
in following example:

void foo(void){
key = lo ck(resource);
try{

> catch(...){
unlock(key) ;

>
unlock(key) ;

>

Trends in Modern Exception Handling 53

10. Implementat ion issues

Very good implementation of termination model of exception handling comes from
works on languages like Clu, Modula 2 and C ++ . To distinguish different areas of
program from the point of view of exception handling (see labels la b e ll, label2,
label3 from first example in section 9) some mechanisms should be provided. This
task is a responsibility of compiler or linker, which e uips program with structures like
table of ranges of program counter (or its equivalent). The table describes program’s
State in relation to exception handling and contains, for each rang , exception handling
procedures and cleanup functions (e.g. destructors). When exception is raised current
value of program counter is compared to appropriate table of ranges in order to
distinguish whether exception is raised inside guarded b ock and find address of calling
function if necessary.

Additional comparisons and data structures effects in program’s size growth and
speed plunge, use the program exceptions or not. This price is however justified in
most of the cases by augmented error protection and robustness. From the other side
exception handling implementation doesn’t impose any changes to object model (me-
mory arrangement, virtual functions) and its relations like inheritance or composition.

11. Conclusions and considerat ions

In article there were presented vaxious exception handling models. The ancient ones
like status flag or return value don’t fulfil re uirements imposed to contemporarily
created systems, consisting even from millions lines of cod . The necessity of better
handling mechanisms became apparent. Comparing static vs. dynamie propagation
only the last one turned out to be of practical significance and became synonym of
propagation mechanism.

Two models: resumption model and termination model have an advantage of elear
separation of regular and exceptional flow and can be a framework for concrete imple
mentation. Among them termination model gained mor popularity over resumption
model due to easier usage and implementation and despite slightly weaker semantics.
Exception handling became easier and less burdensome thanks to larger responsibility
of compiler. Still programmers should pay attention to new problems connected with
issue of program correctness in presence of exception raising and handling.

Historical concepts like static propagation are of big theoretical importance but
didn’t enter widely to programming languages. Probably the most precise and close
to idea exception handling mechanisms are implemented in Java. Less precise model
is adopted by C + + but in terms of time and space efflciency its implementation
is considered to be the best. Ali mechanisms described above are good enough for
languages of implementation but in area of design we can observe still lack of advanced
exception modelling mechanisms e.g. for process algebras and formal verification of
program properties.

54 Marcin Kuta

Formal verification of exception handling correctness remains an area for futur
work. The presented paper is a first step towards development of new methods of
exception handling analysis and modelling.

References

[1] Buhr P., Mok R.: Advanced Exception Handling Mechanisms. IEEE Transactions
on Software Engineering, vol. 26(9), September 2000

[2] Buhr P., MacDonald H.: Synchronous and Asynchronous Handling of Abnormal
Events in the iSystem. Software-Practice and Experience, vol. 22(9), September
1992

[3] Eckel B.: Thinking in Java. Prentice Hall Inc. 1997

[4] Gehani N. H.: Exceptional C or C with Exceptions. Software-Practice and Expe-
rience, vol. 22(10), October 1992

[5] Goodenough J.B.: Exception Handling: Issues and A proposed Notation. Com
munications ACM, vol. 18(12), December 1975

[6] Goodheart B., Cox J.: The Magie Garden Explained. The Intemals of UNIX
System V Release 4 An Open System Design. Prentice Hall of Australia Pty.
Ltd. 1994

[7] Górski J.: In ynieria oprogramowania w projekcie informatycznym. Warszawa,
Wydawnictwo Informatyki Mikom 2000

[8] Knudsen J.: Exception Handling - A Static Approach. Software-Practice and
Experience, vol. 14(5), May 1984

[9] Knudsen J.: Better exception handling in b ock structured systems. IEEE Softwa
re, vol. 4(3), May 1987

[10] Lippman S.: Inside the C ++ Object Model. Addison-Wesley Publishing Company
1996

[11] Lippman S., Lajoie J.: C ++ Primer. Addison-Wesley Publishing Company 1998

[12] Mok R.: Concurrent Abnormal Exception Handling Mechanisms. Water-
loo, Canada, Univ. of Waterloo, N2L3G1, September 1997, internet:
ftp://plg.uwaterloo.ca/pub/uSystem/MokThesis.ps.gz (master thesis)

[13] Stevens R.: Unix Network Programming. Prentice Hall 1990

[14] Stroustrup B.: The Design and Enolution of C++. Addison-Wesley Publishing
Company 1994

[15] Stroustrup B.: The C++ Programming Language. Addison-Wesley Publishing
Company 2000

ftp://plg.uwaterloo.ca/pub/uSystem/MokThesis.ps.gz

