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TREN D S IN M ODERN  EXCEPTION  HANDLIN G
Exception handling is nowadays a necessary cornponent of error proof Information systems. 
The paper presents overview of techni ues and models of exception handling, problems con- 
nected with them and potential Solutions. The aspects of implementation of propagation 
mechanisms and exception handling, their effect on semantics and genera  program efhcJen- 
cy are also taken into account. Presented mechanisms were adopted to modern programming 
languages. Considering design area, formal methods and formal verihcation of program pro- 
perties we can notice exception handling mechanisms are weakly present what makes a field 
for futur  research.
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T R E N D Y  W E W SPÓ ŁCZESNEJ O B S ŁU D ZE  W Y JĄ T K Ó W
Obs uga wyj tków jest wspó cze nie nieodzownym sk adnikiem systemów informatycznych 
odpornych na b  dy. W artykule przedstawiono przegl d technik i modeli obs ugi b  dów, 
zwi zane z nimi problemy oraz ich potencjalne rozwi zania. Uwzgl dniono równie  zagad 
nienia dotycz ce implementacji mechanizmów propagacji i obs ugi b  dów, ich wp yw na 
semantyk  oraz ogóln  efektywno   programów. Przedstawione mechanizmy znalaz y zasto 
sowanie we wspó czesnych j zykach programowania. Je li chodzi o dziedzin  projektowania, 
metody formalne oraz formalne dowodzenie w asno ci, to mechanizmy obs ugi wyj tków nie 
s  w nich dostatecznie reprezentowane, co stanowi pole dla nowych bada .

Słowa kluczowe: obs uga b  dów, progagacja wyj tków, semantyka wznawiania, semantyka 
zako czenia

1. Int roduct ion

Analysing modern Computer systems we notice increasing efforts to deal with problem 
of software reliability. This feature becomes crucial in real time systems, where least 
lack of reliability can make them completely useless, even dangerous and significantly 
decides about working costs. Beside regular services olfered by software modules, 
which we can describe as expected and welcome, much attention should be paid to 
other types of services. This article deals with issue of exceptional services e.g. services 
we perceive as unwelcome but expected. The issue of hazards (events unwelcome and 
unexpected) is beyond a scope of the paper. It is also necessary to distinguish two 
kinds of exceptions: synchronous and asynchronous.
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Complex information systems devote mor  than half of cod  to errors handling. 
Exception handling mechanism solves the problem of control flow when unexpected 
event occurs. These mechanisms, although relatively genera , are tightly related to 
error handling and contribute to program reliability. Due to formal re uirements it 
is worth adding that exception mechanisms can be applied to other problems like 
unstructured control flow. This article gives review of ancient exception handling 
techni ues, then presents the newest Solutions in the area of exception handling, 
including description of the models, exception features and issues related to their 
implementation.

2. Tradit ional except ion handling mechanisms

Historically, the first methods to deal with problem of exceptions were status return 
value and status flag techni ues. Status flag techni ue, which is widely known for 
people, who have had even few experiences in C language, uses global variable to 
indicate exceptional State. The second techni ue -  return value techni ue binds error 
with result of function invocation. The set of function return values is divided into two 
subsets: set corresponding to regular use and set corresponding to exceptional use. 
There is remaining problem how to project exception to exceptional return value. It is 
usually addressed by extra definitions by means of pre-processor or creation of special 
interfaces.

Main advantage of traditional techni ues is that they introduce only smali over- 
head to programs’ size or speed. At the same time list of drawbacks prevails (see 
also [4]):

• Unnecessary increase of program complexity. Each error check introduces new 
nested b ock in worst case, ending up with many additional levels of nesting. The 
regular flow and exceptional flow aren’t clearly separated, what makes programs 
difflcult to read and maintain.

• Ease of omitting some errors cause of fine granularity of exception handling (po- 
tentially each called function should be checked for returned value).

• Difficulties in extending a program with new exceptions, because, as mentioned 
earlier, two program flows are interlaced within the same syntax constructs.

• Problematic in concurrent programming in case of usage a status flag techni ue. 
As global variable is used to indicate errors, it can indicate a state that isn’t 
already up-to-date, si ce threads use this variable without synchronisation me 
chanisms. Erom the other hand introducing by users synchronisation mechanisms 
would make error handling excessively complex and would end up with mixing 
program implementation and language implementation.

• Imposes unintuitive changes of functions return values in order to contain spe 
cial error value, for example C function char getchar() must be replaced by int 
getchar(). In the effect documentation of systems using such functions is less 
valuable.



Trends in Modern Exception Handling 43

• Sometimes it is not possible to return appropriate value that would indicate an 
error. Following example, although limited to one programming language (C ++), 
shows potential problems:

Basei: b;

Derived& d = dynamic_cast<Derived&>(b);

The key issue is that reference variable must always refer to some variable, nuli 
references are not possible. Returning value 0 by operator dynamic.cast in case of 
unsuccessful type cast is not appropriate because in that case a temporary object 
is generated and its value is set to 0. A correct approach is to apply new handling 
mechanism, raising bad-cast exception by dynamic-cast when it is impossible to 
perform properly operation.

• Functions like object constructors may be declared to return no values at all 
(including void type), making return value techni ue impossible to apply.

3. Signals

Signal mechanism is appropriate for handling asynchronous events (e.g. arrival of 
alarm) and events related to internal errors caused by program’s faulty execution 
(e.g. segment violation, bus error, floating point overflow). Signals are implemented 
by functions longjmp, setjmp and handled implicitly, without users’ additional checks 
or function calls. The only effort is to install signal handling procedur . This is done 
by means of signal or sigaction functions. Signals can be ignored, or if no signal han 
dling procedur  is provided, default action is executed, according to signal meaning. 
Signals SIGKILL and SIGSTOP can’t be ignored neither its default handling proce 
dur  changed. Signals can be explicitly sent from one process to another or to itself 
(using functions like kill or sigsend). For detailed discussion of signal mechanisms one 
can refer to [6, 13].

Among main difficulties related to signal handling we can encounter:

• Signal set varies with operating system type and release.

• Semantics of each signal is not preserved for all operating systems.

• There is no uniform signal API over operating systems, additionally it is suscep- 
tible to introducing errors like race conditions, lost signals and interrupted slow 
system functions.

• Information other than signal has arrived is not provided.

• Most of the signals are predefined, only few, like SIGUSR1, SIGUSR2, are ava- 
ilable for programmers.

In the effect programs dealing with signals may not be portable even within 
different releases of the same operating system. Due to their natur , signals can’t be 
chosen as a framework for synchronous exception handling.
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Some implementations like Exceptional C adopt the same syntax to handle both 
synchronous exceptions and asynchronous exceptions (called signal exceptions).

4. Modern except ion handling models

The main accent in modern exception handling is put to clearly distinguish two pro 
gram flows: regular flow and exception flow. In this way advanced exception handling 
models addresses mentioned above problems with excessive growth of program com- 
plexity. Although it is possible to bind exception handlers with expressions or opera- 
tors, modern exception handling techni ues use notion of coarser guarded b ock, to 
which exception handler (special routine called when exception occurs within guarded 
b ock) is bound. Larger guarded b ock makes exception handling procedures occur re- 
latively rarely, hence handling design is less burdensome. Another advantage is that 
exception can be handled at place, where we find it convenient, not only where it 
occurred, possibly handling a group of exception at one place. The result of exception 
propagation is that it is not necessary for each function to be error proof, si ce excep- 
tions can be handled higher in cali hierarchy. In this case exception flow is reverse to 
regular control flow. Usually dynamie propagation is used (i.e. invocation hierarchy is 
applied to find a handler). Another concept-static propagation (i.e. lexical hierarchy 
is applied to find a handler) proposed by Knudsen ([8, 9]) was important historically 
but hasn’t turned out to be of huge practical significance.

Next feature is that exceptions can be parameterised and contain as many infor- 
mation as needed to describe exception event, without additional unnecessary efforts, 
overhead or affecting program’s structure. There should be also possibility to raise 
or reraise exceptions explicitly (using keywords like raise, throw, resume). Reraising 
an exception allows functions to be partially error proof, doing some necessary cle- 
anup, at the same time passing the main responsibility higher in program’s hierarchy. 
Finally, modern models allow exceptions safe usage in multithreaded environment.

Following piece of cod  shows usage and essential difference between three main 
exceptions handling models.

void bar(void){

label2: raise e; // here exception is raised

>

void f o o (void){ 

labell : try{ 

bar ();

}catch(Exception e) {
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label4 : . . . I I  here exception is handled
>
la be l3: ...
>

Assuming the exception was thrown at label label2, then handled at label 
label4, next the control flows, depending on handling model, respectively to la 
bel label 1 (retrying model) or label2  (resumption model) or label3  (termination 
model). This distinction is at present perceived as the main classification of handling 
models and is widely reported in literatur  [1, 10, 12, 14].

4.1. Ret ry model

Retry model can be easily mimicked by termination model, as shown below.
Retry b ock (n is number of retries):

try{

}retry(n, Exception e) {
// do necessary cleanup

>

can be replaced to use termination model by:

forCint i = 0; i < n ; i+ + ){ 
try{

br ea k;
}catch(Exception e) {

// do necessary cleanup
>

>

What is very important, such remodelling doesn’t make function less structured, 
as concepts like goto are not needed.

Retry model isn’t supported by programming languages as embedded mechanism 
because:

• Each user can simulate this model by termination model on its own.

• Retry model is slightly mor  error prone than termination model (retry clause 
at the end of the b ock versus try clause at the beginning of the b ock in case of 
termination model).

4.2. Comparison of  terminat ion and resumpt ion semant ics

It remains to consider two most important models: termination and resumption, both 
of them having significant advantages.
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Ter m in at i o n  m o d el  ad van t ag es:

• Simpler in implementation and usage than resumption model.

• Most of software was written by assuming termination model.

• Provides enough strong semantics for all applications.

• Contributes to creation of systems easier for maintenance.

Resu m p t io n  m o d el  ad van t ag es:

• Mor  genera  then termination model (if not implemented, must be mimicked by 
tricks).

• It gives simple solution of problem of resource exhaustion.

• It doesn’t re uire significantly mor  expensive implementation than termination 
model.

• Important for complex systems like OS/2.

Resumption model seems mor  attractive si ce it offers the strongest, most gene 
ra  semantics in comparison to other models. Unfortunately, after analysis of millions 
lines of cod , it has turned out not to be very useful in practice (see also [14]). With 
resumption model it is also possible to create infinite loops, highly undesirable and 
difficult to detect bug. The simplest example of such recursive resuming is shown 
below:

try{
resume e;

} catch(Exception e){ 
resume ;

}

In the example it is easy to preview an incorrect loop, but in complex one such 
loop may appear due to dynamie handler selection, making debugging hard.

Resumption model is mor  expensive in implementation than termination model, 
as in the latter part of the context of program can be destroyed (stack unwinding) 
and simply forgotten. Resumption model re uires context saving when exception oc- 
curs and in the effect applying mor  advanced data structures like cactus stack to 
implementation. Termination model gained mor  popularity over resumption model 
and is implemented in most of the languages.

4.3. Other concepts

We can also imagine coexisting of resumption and termination semantics within one 
language. In this approach we could distinguish three kinds of exceptions:

1) throw-only,

2) resume-only,

3) both thrown or resumed (depending on context).
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With such generalised exceptions following problems arise:

• Resume exception can be overridden to be throw exception (but reverse is not 
true). Such construct introduces potential place for errors, as exceptions can be 
used without an awareness of different model to be tight to exception.

• Exception inheritance becomes  uestionable. Changing kind of derived exceptions 
makes cod  hard to read and analyse si ce control flow can be reckoned at run 
time and depends on exact type of exception.

• Matching exceptions to handlers, e.g. throw exception to resume handler or re 
sume exception to throw handler, is not correct, being another place leading to 
potential errors.

Above problems and Iow usefulness of resumption model cause such construct 
doesn’t seem justified as model is unclear, hardens implementation and usage, leads 
to unintended errors, finally creates mor  problems than solves.

Besides handling model, exceptions can be described by additional features, what 
is summarised in the Table 1.

Table 1
Exception features occurrence depending on language

Scoped naming feature is related rather to language design than exception design 
and exists in almost all important languages. Fiat namespace becomes polluted with 
program growth and then name collision is getting mor  probable. Exceptions should 
profit from scoped naming possibility.

5. Propagat ion depth

Three propagation models are considered:

1) single,

2) multilevel,

3) mixed.
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• Single level model

In single level model exception is propagated only through one active b ock. If 
no handler is provided there program is terminated or exception is converted 
to an error which usually leads to program termination. The only important 
language to implement this model is CLU. The idea behind this model is to esta- 
blish mapping. Caller of function is relaxed from details of exceptions raised by 
functions used in the implementation of called function. Unfortunately, there are 
also important limitations for the model. First, it re uires almost each function 
to handle with errors. The better idea is to deal with exception in a few, well 
defined interfaces. It may be also impossible for function to handle error due 
to language or library limitations and then its only strategy is to propagate it 
further. This concerns multilingual environments like CORBA, DCOM.

• Multilevel model

According to multilevel model exception is propagated through active blocks 
until explicit or implicit exception handler catches it. Because exceptions can be 
propagated through many blocks each function has to decide whether to catch an 
exception (we say that callee function masks exception to caller, because caller 
acts as if no exception took place) or propagate it further.

Let’s suppose a function propagates an exception declared to catch (raised excep- 
tion doesn’t figur  on function’s list of raised exceptions) outside its body. Two 
approaches to problem are possible. In first solution such behaviour is treated 
like a run-time error and a special handler is called (which usually terminates the 
program). This solution is adopted by C ++ . Former behaviour can be considered 
as undesirable. Possibly it is better to reject such cases at compile time, reporting 
an error.

Last solution, in shape adopted by Java, distinguishes two kinds of exceptions: 
checked exceptions and runtime exceptions ([3]). In case of checked exceptions 
each function must catch all such exception raised within its body or explicitly 
declare uncaught exceptions in its signature (control flow analysis and control 
flow graphs judge whether function definitions and calls conform to their specifi- 
cation). However for some exceptions (run-time exceptions) that can be thrown 
almost anywhere, necessity of providing handler would be too cumbersome, so 
above rules don’t apply to them.

It is also not obvious reading signature’s declaration, what is function’s default 
propagation behaviour. In Java signature void foo(void) means that function 
throws no but runtime exceptions (which are raised and handled implicitly). 
Contrarily to Java in C + +  the above signature means that function can throw 
any exception. To assure function cali will always end successfully, function with 
signature void foo(void) throw () should be provided.

• Intermediate model

In this model exception can be propagated if it is specified in function’s header. 
Otherwise it may be transformed to mor  genera  type using exception hierarchy.
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Only the multilevel model turns out to be useful and flexible. With single level 
model we loose possibility of propagating an exception to handle it at convenient pla 
ce, maybe with other exceptions, grouped within one handler. Choosing a multilevel 
model, we have to decide a problem of checked exceptions. A declaration of raised 
exception in function signature is in a way global, si ce affects all functions in chain 
of invocations. Therefore checked exceptions don’t exist in C + + , heterogeneous and 
compiled language. In this way necessity of change of huge parts of cod  and pre- 
compiled libraries is avoided. Pure language like Java can re uire checked exceptions 
without above limitations.

6. Except ion list

In many languages functions can declare that they have possibility to generate or pass 
from invoked functions some exceptions. If there is mor  than one type of uncaught 
exceptions we get exception list which looks like this: 
void foo{void) throw (XException: YException, ZException)\

Sometimes it can be difficult to fix which exceptions are thrown by function as 
in example taken from [1]:

template<typename T> void sort(T items []){
// using bool operator< (const T &, const T &)

}

Authors of [1] state that it is impossible to know what types of exceptions may be 
propagated from sort si ce operator< function is overloaded from each instantiation 
of template. But the problem can be fixed:

template <typename T>
void sort(T items []) throw (XException, YException, Zexception)
{

tryl
// using bool operator< (const T&, const T&)

>
catch(Xexception xe){ throw; } 
catch(Yexception ye){ throw; > 
catch(Zexception ze){ throw; > 
catch(...){ // warn 
}

>

The same trick can be used to handle functions taking function pointer as ar 
gument or functions calling directly or indirectly virtual functions. Additionally in 
languages with strict type control we can make an exception list a part of function 
pointer’s declaration, for example declaration: 

void ( *pf)(void) throw (int, st ng);
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constrains pf to point only to functions which can raise int or st ng exceptions but 
of no other types. In this way we can control exceptions propagation.

// function bar can raise any exception 
void b a r ( void(*pf)(vo id) ) {... >

// function foo can raise only its own exceptions 
// and pf ’ s int and string exceptions
void foo( void(*pf) (void) throw (int, string) ) { . . . }

void f1 (void) { ... >
void f2(void) throw (int) { ... }

foo(fl); // illegal 
foo(f2); // 0.K .

7. Except ion inheritance

It seems natural that in object oriented languages exception handling mechanisms 
profit from ability to create new types. This means that exceptions are represented as 
objects and classes, which don’t differ from general-purpose ones. Languages without 
0 0  support can benefit only from traditional handling techni ues or extensions with 
special exception type must be provided. Introducing new language dialect is  uestio- 
nable and needs special caution. Although some authors (e.g. see [2]) argue that it is 
worth distinguishing them by special keyword (for example exception) for documenta- 
tion purposes, it doesn’t seem reasonable. Such solution leads to unnecessary doubling 
the same functionality e.g. inheritance, operator overloading, polymorphism. It would 
end up with problem known from C ++ , where difference between enum, struct and 
class types becomes biur.

In languages where inheritance is obligatory and inheritance relation is described 
by tree (e.g. Java, C # ) all exceptions can be lead out from one system exception (a ro- 
ot of exceptions tree), exempting a programmer from dealing with forest of hierarchies.

In languages where multiple inheritance is possible it is usually up to programmer 
to handle exceptions in that way that exception having multiple base types (mor  
specific exceptions) are handled before base exceptions. It is always possible because 
cycles are not allowed in inheritance hierarchy, so partial order can be set up in 
inheritance relation. Relaxing from such behaviour would lead to less structured cod .

8. Except ion handling and language design

Introducing exception handling in object oriented approach re uires additional effort 
from compiler creators. Its direct conse uence is necessity of embedding a sort of
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RTTI mechanism as a compulsory language feature. The idea behind this is to enable 
recognition of mor  specific raised exception, when only basie exceptions are declared 
to handler.

Traditionally language ref ection is implemented in the following way (mor  tech- 
nicalities can be found in [10]): each polymorphous type is bound with an instance of 
a special metaclass (the instance is common for all objects of inspected type). This 
metaclass serves as a type descriptor. Type descriptor is implemented as object of a 
special typeJnfo class.

Additionally object exception handling imposes two extensions to RTTI imple- 
mentation:

1. typeJnfo class becomes a root of hierarchy of metaclasses providing mor  informa- 
tion about specific types like pointers, functions etc. Classes like pointer.typeJnfo, 
function.type.info, inheriting from typeJnfo base class, provide information con- 
cerning special features of pointers, function, tables, classes, etc.

2. typeJnfo classes are generated not only for polymorphous types but for nonpo- 
lymorphous and embedded types as well. These classes are useful because raised 
exceptions, which can be of basie types like strings, integer or float numbers, 
must be identified at run time and Identification mechanism should be uniform 
with complex types objects.

9. Impact  of  except ions on semant ics of program

Advanced exception handling mechanisms re uires paying mor  attention to problem 
of program correctness by compiler. Let’s consider following function:

void f o o (void)
{

try{
label1: b a r ();
}  cat ch ( . . . ) {

// do some cleanup
>
label2: bar ();

Point p; 

label3: bar () ;
>

The above example shows three semantically different effects of raising an excep- 
tion in function bar, depending on place it was raised (termination model assumed):

• Exception raised at label la b e ll: the installed default handler catches an excep- 
tion and after some cleanup function foo continues to execute instructions directly 
after catch b ock.
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• Exception raised at label label2: no handler is executed inside function foo, 
instead function is popped of the program stack (stack unwinding is performed).

• Exception raised at label lab  13: function foo is popped of the program stack but 
before that active local objects must be destroyed (destructors to be invoked).

The presence of semantically different regions imposes maintaining by compiler 
or a program a list of current local active objects. This allows to remember program 
State and properly destruct objects at labels label2, label3, when exception occurs. 
Destructors can’t do that work in this case, as it is not possible to put them at compile 
time. Such lists however can be generated at compile time or at run time depending 
on what are our priorities: program size or program speed.

Apart from compiler, programmers also should take into account possibly new 
semantics of program after introduction exception mechanism. Correct piece of cod :

void bar(void) th r o w O ;  
void foo(void) f

key = lock (resour ce ) ;

bar O  ;

unlock(key) ;

}

may become invalid if function bar is redefined not to mask some exception, with new 
signature void bar(void) throw (Exception);. Before popping function’s foo frame from 
stack locked resources must be freed. The same is true for reserved heap memory in 
purpose to avoid leaks. The remedy is to free previously locked resources or allocated 
memory within exception handler b ock, to restore program to correct state. But the 
special attention must be paid. If an exception would occur during resource allocation, 
then this unallocated resource would be freed in exception handler. To avoid such 
incorrectness, resource allocations should take place outside main guarded blocks as 
in following example:

void foo(void){
key = lo ck(resource); 
try{

> catch(...){
unlock(key) ;

>
unlock(key) ;

>
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10. Implementat ion issues

Very good implementation of termination model of exception handling comes from 
works on languages like Clu, Modula 2 and C ++ . To distinguish different areas of 
program from the point of view of exception handling (see labels la b e ll, label2, 
label3  from first example in section 9) some mechanisms should be provided. This 
task is a responsibility of compiler or linker, which e uips program with structures like 
table of ranges of program counter (or its equivalent). The table describes program’s 
State in relation to exception handling and contains, for each rang , exception handling 
procedures and cleanup functions (e.g. destructors). When exception is raised current 
value of program counter is compared to appropriate table of ranges in order to 
distinguish whether exception is raised inside guarded b ock and find address of calling 
function if necessary.

Additional comparisons and data structures effects in program’s size growth and 
speed plunge, use the program exceptions or not. This price is however justified in 
most of the cases by augmented error protection and robustness. From the other side 
exception handling implementation doesn’t impose any changes to object model (me- 
mory arrangement, virtual functions) and its relations like inheritance or composition.

11. Conclusions and considerat ions

In article there were presented vaxious exception handling models. The ancient ones 
like status flag or return value don’t fulfil re uirements imposed to contemporarily 
created systems, consisting even from millions lines of cod . The necessity of better 
handling mechanisms became apparent. Comparing static vs. dynamie propagation 
only the last one turned out to be of practical significance and became synonym of 
propagation mechanism.

Two models: resumption model and termination model have an advantage of elear 
separation of regular and exceptional flow and can be a framework for concrete imple 
mentation. Among them termination model gained mor  popularity over resumption 
model due to easier usage and implementation and despite slightly weaker semantics. 
Exception handling became easier and less burdensome thanks to larger responsibility 
of compiler. Still programmers should pay attention to new problems connected with 
issue of program correctness in presence of exception raising and handling.

Historical concepts like static propagation are of big theoretical importance but 
didn’t enter widely to programming languages. Probably the most precise and close 
to idea  exception handling mechanisms are implemented in Java. Less precise model 
is adopted by C + +  but in terms of time and space efflciency its implementation 
is considered to be the best. Ali mechanisms described above are good enough for 
languages of implementation but in area of design we can observe still lack of advanced 
exception modelling mechanisms e.g. for process algebras and formal verification of 
program properties.
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Formal verification of exception handling correctness remains an area for futur 
work. The presented paper is a first step towards development of new methods of
exception handling analysis and modelling.
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