Computer Science Vol. 4. 2002 004.43:519.712

Adam Drozdek*

HIRSCHBERG’S ALGORITHM FOR APPROXIMATE
MATCHING

The Hirschberg algorithm was devised to solve the longest common subsequence problem.
Thepaper discusses the way o fadopting the algorithm to solve the string matching problem
in linear space to determine edit distancefor two strings and their alignment.

Keywords: pattern matching, string processing, edit distance, Hirschberg § algorithm

ALGORYTMHIRSCHBERGA DLA PROBLEMUPRZYBLI ONEGO WYSZUKIWANIA
WZORCA

Algorytm Hirschberga zostat podany w celu rozwigzania problemu najdiu szego wspolnego

podciqgu. Niniejszy artykut prezentuje sposob zaadoptowania tego algorytmu do rozwiqza
nia przy liniowych wymogach pamieciowych problemu wyszukiwania wzorca w celu znale
zienia odlegtosci edycyjnej dwdch tekstow i ich wyréwnania.

Stowa kluczowe: wyszukiwanie wzorca, przetwarzanie tekstow, odleglos¢ edycyjna, algo
rytm Hirschberga

1. Introduction

For two strings * and s2 a common subseguence is the seguence of characters that occur in
both strings, not necessarily in consecutive order. For example, es, ece and ee are common
subseauences inpredecessor and descendant. There exists a connection between the longest
common subseguence (/es) and edit distance expressed by the formula

d(si,s2) =N +hl- 2lcs(sus2)

where d(su s2) is a restricted Levenshtein edit distance which refers only to deletion and
insertion with the cost egual to 1, so that substitution is, in effect, replaced by deletion
followed by an insertion and therefore, the cost of substitution is egual to 2 ([1], 240-241,
already suggested in [5], 173). Sometimes the Hirschberg algorithm is presented in the con-
text of discussing Levenshtein edit distance, with any cost of edit operations, without any
attempt to adopt it to this situation ([4], 57-62). One author makes an effort to adopt the
Hirschberg algorithm to fmd the edit distance with the cost of all the three edit operations
eagual to 1 ([2], 258). In this paper a version of the Hirschberg algorithm is presented to the
fmd edit distance of two strings and determine an alignment.

Department of Mathematics and Computer Scince, Duguesne University, Pittsburgh

91

2. The Wagner - Fisher algorithm

A classical algorithm to find edit distance was presented by Wagner and Fischer [5], The
algorithm relies on the following defmitions. Let D{7,j) =¢(.2|(1 s2{\..j)) be the edit distan
ce between the prefixes Si(l..7)) of ands21-j) ofs2 Then

D(i,f) =min(€>(i- \J)+1,D(i,j- D)¥1,D(i- 1J - 1) +c(ij))

where: c(i,j) =0if Sij =s2 and 1otherwise, D(i, 0) =i, and D(0,y) =/.

The algorithm itselfis as follows:
WagnerFischer(D, sl, s2)

for i = 0 to |sl]
D (i,0) := i;

for j := 0 to |s2 |
D(0,j) = j;

for i =1 to [sl |
for j :=1 to |s2|

x :=D(i-1,j)+1; /Aspper
y :=D(@i,j-1)+1; //left
z = D (i-1,j-1); //diagonal
if sli* s2j

z = z+1;

D (i,j) = min(x(y(z);

For example, fors |= Capital and s2 =apple the algorithm produces the following edit matrix:

ap
012
11
21
32
43
54
65
76

—_® =T e o
DR W =N
DA WD WWWo
AW WWRABRPBS—~
LA BRADRAROLVOUOO

N

so that d(capital, apple) =D(l, 5) = 5. It is elear from the use of nested for loops that the

algorithm runs in 0(|51||j 2|) time and space. With an additional algorithm
WagnerFisherPrint(D, sl, s2)
i = 1sl|;
i = Is2];
while i * 0 or j w0
outputpair (i, j);
ifi >0 and D (i - 1, j) <D (i, j) //up

92

ssl.push (sli);
ss2.push ('—);

i =1 - 1;
else if j > Oand D (i, j - 1) < D@, j) //1eft
ssl.push
ss2.push (s2j) ;
=01
else // if i >0 and j >0 and //diagonally
// D @G -1, j - 1) =D (i, j) and sli = s2j or

II DG -1,jj -1 < D(i, j) and sli * s2j)
ssl.push (sli);
ss2.push (s2j);
i ;= i-1;
Jo=gsg
printstack ssl;

printstack ss2;

one possible alignment can be printed:

path: [7 51 [6 5] [5 4] [4 3] [3 2] [2 1] [1 O]
Capital

-apple-

Since at least one of the indexes i andj is decremented in each iteration of the while
loop, the algorithm runs in o (].sil+s2]) time.

The algorithm WagnerFischer () can be improved by using only linear space 0(|s2):

WagnerFischerlD (current, previous, following, sl, s2, il, i2, jl, j2)
n =12 - il+l; m :=j2-jl1+1;
for j = 0 fom
previous [j] = j;
for i := lton + 1

if i = n+l
following[0] := i;
else current[0] := i;
for j = 1 fom
if i = n+l
X = current[j] + 1;

>

= following[j - 1] + 1;

B

z := current [j - 1];
else x := previous[j] + I;
= current[j - 1] + 1;
z := previous[j - 1];

93

if s2jH11 * sli+i!-!
z =z + 1
if i =n+1
following[j] := min (Xx,y,z);
else current[j] :=min (Xx,y,z);
if i < n //don't overwriteprevjowj from last iteration;
for j = 0to m

previous[j] := current[j];

This improvement, however, gives only the edit distance, but does not produce the
alignment and that is what Hirschberg's algorithm does[3].

3. The Hirshberg algorithm

The Hirschberg algorithm recursively divides a string s, into two even (or almost even) parts
sn and s 12 and for each part it finds a prefix s21 and suffix s22 ofs2 so that concatenation of
alignments fors21 and S], and then for reverse(si2) and reverse{s22) renders an alignment for
S| and s2. If needed, the algorithm is reapplied to the two halves of and two halves ofs 2
and is continued until |su| <2 and (~1 <2 at which point the generating of subalignments
cannot be delayed any longer.

String s {is bisected, but the procedur¢ of dividing s2relies on the following statement.
For any i dividing * into two parts,

d(sl,s)=mm{d(sl(l..i),s2(1..j)) +d(reverse(si(i+ l..|si|)), reverse(s2(j + 1..]j2]))):1<y<|s2|} (1)

That is, the edit distance for the entire strings s, and s2eauals the minimum among all
combined edit distances for the first two parts of these strings and their second parts. If the
minimum edit distance for the entire strings is known, then an alignment corresponding to
the edit distance can be constructed; for aj dividing s2 the alignment can be divided into two
subalignments, one for strings SjO ..J) and.v2(1../) and one for strings reverse(s\(i+ 1..|j1))) and
reverse(s2(j + 1..1"2)). By the definition ofthe minimum edit distance d(su s2), the combined
edit distance corresponding to the two subalignments MNW)) + d(reverse{sx(i +
1-kiD), reverse(s2(j+ 1..N)) =< ,,s2).

The thrust ofthe algorithm is in finding an index j that renders eauation (1) true. That is,
our task is to find aprefixs2(l..j) ofs2that can be matched with the first halfof.?, - and thereby
the suffix s2(j + 1..52)) ofs2that can be matched with the second halfofsi so that the combined
match is minimum. Because the position (i, /) contains the minimum edit distance for the two
strings, the edit distance is included in the path of edit distances ffom (|j||, |s2) to (0, 0).

Here is the algorithm:

Hirschberg (s1, s2, il, i2, jl, j2)
if j1 =32 // onecolumn case;
for i :=1il to i2

94

push thepair (i, j2) onto output;

return;
if il = 12 //onerowcase;
for j :=jl to j2

push thepair (i2, j) onto output;
return;
row :=(i2 + i1)/2;//bisectsubstrings2(il,.i2)\
n = j2 - jl;
if jl1 >0
n :=n + 1;

WagnerFischerlD(currentl,previousl,following sl,s2,max (1,il) , row, max
(L,j1),j2);

if 11 + 1 =12 //two rows case;
i =12
b =1]2
while (1)
i -+
if i2 =1 // ifrows 0 or I;
x :=previousl [jj]; / Jjl j2
y :=currentl[jj - 1]; //O: e .. “p-ji) -previous\
z =previousl[jj - 1];// 1=row\ e2ed... eXj jit) -currentl
else x:= currentl [jj] // jl j2
y = followingtjj - 1]; Hil=row. eM. .. -currentl
z := currentl [jj - 1}; ///1+1: e2e4... aj\+\)-following
push thepair (i, j) onto tmpStack;
if j =jl
break;

if(x § yorz<y) and (i = i2)
i =1 - 1;

if z§ x ory <x

jom-j - L
transfer tmpStack to output;
return;
sil = sl(row+1..i2 - row+l);

$s22 := s2(max (1, j1)..j2 - max(l, jl));

95

WagnerFischerlD (current2, dummy, dummy, reverse (sil) , rever-
se(s22),1,Isil|,1, Is22]);

Min := currentl[0] + current2[n];
col = 0;
for k == 1 to n

if Min > currentl[k] + current2[n - k]

Min := currentl[k] + current2[n - k];
col := k;
x := previousl[max(l,col)]; /] up

y = currentl[max(l,col) - 1]; // left
z := previousl[max(l, col) -1]; II upper left diagonal

if x <y or z"y // choose diagonal neighbor over left
neighbor
rowl := row - 1; // to have one less row to process
in the nextrecursive cali;
else rowl := row;
col := col + jl;
if j1 >0
col :=max(jl,col - 1); // don't go into the area already
processed;
ifz<xory”"x II choose diagonal neighbor over upper
neighbor
coli := col - 1; II to have one less column to
process;
else coli = col; i

Hirschberg(sl, s2, il, rowl, gl, max(jl, coli));
Hirschberg (sl, s2, row, i2, col, j2);

The algorithm is called twice for each halfofSi(ii..i2), so that it is called 21gJs,| times in
total and in each iteration it finds (i2- il)(j2-j\) edit distances. At the first level ofrecursion
(very first cali), the number of edit distances found is |j 1]js2]; at the second level ofrecursion,
the number eguals;\sx/2 + (|j 2 -j)s\\/2 = |si||j2|/2 ; at the third level ofrecursion, it isyj j|/
4 + (M -y'D)ki|/4 + (j2-y")ki|/4 + (h! -y2)ki|/4 = kilk2|/4, etc., which is

A -A JL=2hIN li- —)<2hIN

*=0 '

in total, that is, about twice the number ofoperations required by WagnerFischer (). Howe-
ver, the latteruses 0 (|j1]|i2]) space, whereas Hirschberg () reauires O (|j2)) space.

96

The algorithm uses a stack output to stor¢ all path positions generated by Hirsch-
berg (). The stack is used later to generate an alignment.

3. An example

Letus apply Hirschberg () to strings = Capitalands2- apple by calling Hirschberg(ca-
pital, apple, 0, 7, 0, 5). First, Capital is bisected into cap and ital (row =0 + 7 = 3) and
WagnerFischerlD (currentl,previousl,following, cap, apple, 1, 3, 1, 5) initializes arrays.
Along the way, it generates values that WagnerFischer () puts in the upper half ofthe 2D
array D; a fuli tracg ofexecution of WagnerFischer ID () is as follows:

apple
0 123 45
c 1 123 45
a 2 123 45
p 3212 3 4 =currentl!

Next, reverses of strings tal and apple are processed with the cali WagnerFischerlD
(icurrentl, dummy, dummy, lat, elppa, 1,3,1,5):

e 1l ppa
01 2345
11112 3 4
a 22 21233

t 33 33 34
1 4 4 4 4 4 4 = current2

To find the position co/ of edit distance that meets the condition (1), we use only arrays
current! and currentl, as in:

k 0 12 3 45
3 21 2 3 4 = currentl
4444 4 4 = peverse(currentl)
7 65 6 7 8 = currentl[&+ current2[n-k\ - currentl [K]+

+ reverse(currentlfk])

We find that Min - 5 and col= 2.

At that point we know that one path to generate an alignment leads through number 1
shown in bold face in position 2 of currentl. Having still access to previous 1, we can deter-
mine with the same rules as used in WagnerFisherPrint () thatthis path leads to number 1
in position (2, 1). The remaining parts of the path are still undetermined. Therefore, we
continue processing for strings ca and @ with number 1, the first part of the path, in the lower
right comer of the part of the edit matrix that corresponds to these strings (marked with
pluses) and then forpital andpple with number 1, the second part ofthe path, in the upper left

97

right comer ofthe edit submatrix associated with the two strings (marked with asterisks); the
other parts ofthe matrix can be disregarded ffom further processing:

a pp 1l e
+ o+
c + +
a + 1
P [* * %

Processing of ca and a, with row = 2, gives col = 0 and Min = 1. This means that the
sought path goes through position (1, 0):

a pp 1 e
+
c 1 +
+ 1
p R
*
N
on ok x ok

From this, the cali Hirschberg (Capital, apple, 0, 0, 0, 0) amounts to the one
column case and to including position(0, 0) in the path. Also, position (2, 1) marks the
lower right comer and position(l, o) marks the upper left comer ofedit submatrix for next
recursive invocation of Hirschberg (), Hirschberg (Capital, apple, 1, 2, 0, 1), for-
strings ca and a. This is another base case: the two rows case. For this case, we know that
the path leads through the upper left and lower right comer, so the problem is in determi-
ning the part ofthe path between these corners. We must start from the lower right comer.
Along the way, the positions are stored on a temporary stack and after reaching the upper
left comer, they are transferred to the stack output. This case utilizes the arrayfollowing
which Stores edit distances corresponding to the second row (the first row is in current1).
It should be also elear why two rows case is a base case and it is not reduced to two
applications of the one row case: the upper left comer has been determined by Wagner-

FischerlD () in a previous cali to Hirschberg () and it will also be chosen in the
current cali leading to an infmite loop.

Now, recursion retums to strings pital and pple. This leads to processing ofpi and p,
another one column base case, and thus to outputting positions (3, 2) and (4, 2).

98

Also, Hirschberg () is called for the same string ta/ and stringpple:

appl e

S =g o® o

This, in tum, results in the cali of Hirschberg () for/andp, and outputting (5, 2), and
to the cali for a/ and ple:

appl e
0
c 1
a 1
P 1
i 2
t 3
a 4**
2_

This is also a two rows case that produces now positions (s, 3), (7, 4), and (7, 5). This
concludes the processing by Hirschberg ().Now, stack output holds all the positions ofa
path corresponding with an alignment. The alignment is generated by another routine quite

similar to WagnerFischerPrint ().
In effect, the path:

[7 5] [7 4] r6 3] [5 2] [4 2] [3 2] [2 1] [1 0] [0 0]

that represents the situation:

appl e
0
c 1
a 1
P 1
i 2
t 3
a 4
1 4 5

is used to generate the alignment:

capital-
-ap—ple

929

References

(1]
(2]
(3]

(4]
(5]

Crochemore M., Rytter W.: Text algorithms. New York, Oxford University Press 1994

Gusfield D.: Algorithms on strings, trees, and sequences. New York, Cambridge University Press 1997
Hirschberg D.S.: 4 linear-space algorithmfor computing maximal common subsequences. Com
munications ofthe ACM, 18, 1975, 341-343

Stephen G.A.: String searching algorithms. Singapore, World Scientific 1994

Wagner R.A., Fischer M.J.: The string-to-string correction problem. Journal of the ACM, 21,
1974, 168-173

