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Adam Drozdek*

HIRSCHBERG’S ALGORITHM FOR APPROXIMATE 
MATCHING

The Hirschberg algorithm was devised to solve the longest common subsequence problem. 
The paper discusses the way o f  adopting the algorithm to solve the string matching problem 
in linear space to determine edit distance for two strings and their alignment.
Keywords: pattern matching, string processing, edit distance, Hirschberg ’s algorithm

ALGORYTM HIRSCHBERGA DLA PROBLEMU PRZYBLI ONEGO WYSZUKIWANIA 
WZORCA
Algorytm Hirschberga został podany w celu rozwiązania problemu najdłu szego wspólnego 
podciągu. Niniejszy artykuł prezentuje sposób zaadoptowania tego algorytmu do rozwiąza 
nia przy liniowych wymogach pamięciowych problemu wyszukiwania wzorca w celu znale 
zienia odległości edycyjnej dwóch tekstów i ich wyrównania.
Słowa kluczowe: wyszukiwanie wzorca, przetwarzanie tekstów, odległość edycyjna, algo 
rytm Hirschberga

1. Introduction
For two strings ^  and s2, a common subseąuence is the seąuence of characters that occur in 
both strings, not necessarily in consecutive order. For example, es, ece and ee are common 
subseąuences in predecessor and descendant. There exists a connection between the longest 
common subseąuence (les) and edit distance expressed by the formula

d(s i, s2) = N  + h l  -  2  lcs(su s2)

where d(su s2) is a restricted Levenshtein edit distance which refers only to deletion and 
insertion with the cost eąual to 1 , so that substitution is, in effect, replaced by deletion 
followed by an insertion and therefore, the cost of substitution is eąual to 2 ([1], 240-241, 
already suggested in [5], 173). Sometimes the Hirschberg algorithm is presented in the con- 
text of discussing Levenshtein edit distance, with any cost of edit operations, without any 
attempt to adopt it to this situation ([4], 57-62). One author makes an effort to adopt the 
Hirschberg algorithm to fmd the edit distance with the cost of all the three edit operations 
eąual to 1 ([2], 258). In this paper a version of the Hirschberg algorithm is presented to the 
fmd edit distance of two strings and determine an alignment.
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2. The Wagner -  Fisher algorithm
A classical algorithm to find edit distance was presented by Wagner and Fischer [5], The 
algorithm relies on the following defmitions. Let D{i,j) = ć/(.?|(1 s2{\..j)) be the edit distan 
ce between the prefixes Si(l ..i) of and s2( 1 -j) of s2. Then

D(i,f) = min(£>(i-  \ J ) + l , D ( i , j -  1)+1 ,D ( i -  1J - 1 ) + c(i,j)) 

where: c ( i,j)  = 0 if Si j  = s2j  and 1 otherwise, D(i, 0) = i, and D(0,y) = j.

The algorithm itself is as follows:
W a g n e r F i s c h e r ( D ,  s l ,  s2)  

f o r  i  := 0 to | s l  |

D ( i , 0) := i ;  

f o r  j  : = 0 to | s2  |

D ( 0 , j )  := j ;  

f o r  i  : = 1 to | s l  |

f o r  j  : = 1 to | s2  |

x := D(i-l,j)+l; //upper 
y  : = D ( i , j  - 1 )  +1;  // left 

z := D ( i - l , j - l ) ;  //diagonal 

i  f  s 1 i * s2j
z := z + 1 ;

D ( i , j ) := m i n ( x (y ( z ) ;

For example, for 5 ] = Capital and s2 = apple the algorithm produces the following edit matrix:

a  p p 1 e
0 1 2 3 4 5

c 1 1 2 3 4 5
a 2 1 2 3 4 5
p 3 2 1 2 3 4
i  4 3 2 2 3 4
t  5 4 3 3 3 4
a 6 5 4 4 4 4
1 7 6 5 5 4 5

so that d(capital, apple) = D(l,  5) = 5. It is elear from the use of nested f o r  loops that the 
algorithm runs in 0(|51||j 2|) time and space. With an additional algorithm

W a g n e r F i s h e r P r i n t ( D ,  s l ,  s2)  

i  = 1s l  | ; 

j  = I s 2 | ;

w h i l e  i  * 0 or j  *■ 0 

output pair (i, j);

i  f  i  > 0  and D (i  -  1 ,  j ) < D ( i , j ) //up
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s s l . p u s h  ( s l i ) ;  
s s 2 . p u s h  ( ' —• ) ;  
i  := i  -  1;

e l s e  i f  j  > O and D ( i ,  j  -  1) < D ( i ,  j )  / / left
s s l . p u s h  
s s 2 . p u s h  ( s2 j)  ;

j  := j  -  1;
e l s e  / /  i f  i  > 0  and j  > 0  and //diagonally

/ /  (D ( i  -  1,  j  -  1) = D ( i ,  j )  and s l i  = s2j  or
I I  D ( i  -  1,  j  -  1) < D ( i ,  j )  and s l i  *  s2 j )  
s s l . p u s h  ( s l i ) ;  
s s 2 . p u s h  ( s 2 j ) ; 
i  ;= i - 1 ;  

j  := j - i ;
printstack s s l ;  

printstack s s 2 ;

one possible alignment can be printed:
p a t h :  [7 5] [6 5] [5 4] [4 3] [3 2] [2 1] [1 0]
C ap ita l
- a p p l e -

Since at least one of the indexes i and j  is decremented in each iteration of the w h i l e  
loop, the algorithm runs in 0 (|.sil+|s2|) time.

The algorithm W a g n e r F i s c h e r  () can be improved by using only linear space 0(|s2|):

W a g n e r F i s c h e r l D  ( c u r r e n t ,  p r e v i o u s ,  f o l l o w i n g ,  s l ,  s 2 ,  i l ,  i 2 ,  j l ,  j 2 )  

n := i 2  -  i l + 1 ;  m : = j 2 - j l + l ;  

f o r  j  := 0 to m

p r e v i o u s  [ j ]  := j ;

f o r  i  : = 1 to n + 1 

i f  i  = n+1
f o l l o w i n g [0] := i ;  

e l s e  c u r r e n t [0] := i ;  

f o r  j  := 1 to m 
i f  i  = n+1

x := c u r r e n t [ j ]  + 1; 
y := f o l l o w i n g [ j  -  1] + 1; 
z := c u r r e n t  [ j  -  1 ] ;  

e l s e  x := p r e v i o u s [ j ]  + 1; 
y := c u r r e n t [ j  -  1] + 1; 
z := p r e v i o u s [ j  -  1 ] ;
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i f  s2j+j1_1 *  sli+i!-!
z : = z + 1; 

i f  i  = n + 1
fol lowing[j]  := min (x ,y ,z ) ;  

e l s e  c u r r e n t [j ] :=min (x ,y ,z ) ;  
i f  i  < n / / don't overwriteprevjowj from last iteration; 

fo r  j := 0 to  m
prev ious [ j ]  := c u r r e n t [ j ] ;

This improvement, however, gives only the edit distance, but does not produce the 
alignment and that is what Hirschberg's algorithm does[3].

3. The Hirshberg algorithm
The Hirschberg algorithm recursively divides a string s , into two even (or almost even) parts 
sn and 5 12 and for each part it finds a prefix s21 and suffix s22 of s2 so that concatenation of 
alignments for 5 21 and S], and then for reverse(sl2) and reverse{s22) renders an alignment for 
S\ and s2. If needed, the algorithm is reapplied to the two halves of and two halves of s 12 

and is continued until |su| < 2  and [ ^ 1  < 2  at which point the generating of subalignments 
cannot be delayed any longer.

String s { is bisected, but the procedurę of dividing s2 relies on the following statement. 
For any i dividing ^  into two parts,

d(sl,s2)=mm{d(sl(l..i),s2(l..j)) + d(reverse(sl( i+ l..|si|)), reverse(s2( j+ l..|j2 |))):l<y< |s2 |}(l)

That is, the edit distance for the entire strings s, and s2 eąuals the minimum among all 
combined edit distances for the first two parts of these strings and their second parts. If the 
minimum edit distance for the entire strings is known, then an alignment corresponding to 
the edit distance can be constructed; for a j  dividing s2, the alignment can be divided into two 
subalignments, one for strings SjO ..i) and.v2(l../) and one for strings reverse(s\(i + l.. |j1|)) and 
reverse(s2(j + 1.. |̂ 2|). By the definition of the minimum edit distance d(su s2), the combined 
edit distance corresponding to the two subalignments ^ (W )) + d(reverse{sx(i +
1 -kiD), reverse(s2(j+  1..N )) = </(j , , s 2).

The thrust of the algorithm is in finding an index j  that renders eąuation (1) true. That is, 
our task is to find aprefixs2(l..j) ofs2 that can be matched with the first half of.?, -  and thereby 
the suffix s2( j  + 1 ..|5 2|) of s2 that can be matched with the second half of s i so that the combined 
match is minimum. Because the position (i, j )  contains the minimum edit distance for the two 
strings, the edit distance is included in the path of edit distances ffom (|j||, |s2|) to (0 , 0 ).

Here is the algorithm:
Hirschberg ( s l ,  s2, i l ,  i2 ,  j l ,  j 2) 

i  f  j 1 = j 2 // one column case;
fo r  i  := i l  to  i2
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push thepair ( i ,  j 2 )  onto o u t p u t ;  

r e t u r n ;

i f  i l  = i 2  / /onerowcase;  

f o r  j  := j l  t o  j 2

push thepair ( i 2 ,  j )  onto o u t p u t ;  

r e t u r n ;

row : = ( i 2  + i  1) / 2 ; / / bisectsubstrings2(il,.i2)\ 

n := j 2  -  j l ;  

i f  j l  > 0

n := n + 1;

W a g n e r F i s c h e r l D ( c u r r e n t l , p r e v i o u s l , f o l l o w i n g  s l , s 2 , m a x  (1, i l )  , row,  max 
(1, j  1 ) ,  j  2) ;

i f  i l  + 1 = i 2  / / two rows case; 

i  := i 2 ;  

j  = = j  2 ; 

w h i l e  (1)

j j  :=  j  -  j l  + 1;

i f  i 2  = 1 // if rows 0 or 1;

x := p r e v i o u s l  [ j  j ]  ; // j \  j 2

y := c u r r e n t l [ j j  -  1 ] ;  //O: e ^ . . .  ^(p-ji) -previous\

z := p r e v i o u s l [ j j  -  1 ] ;  // 1 = row\ e2e4 ... e2(j2 ji+i) -currentl

e l s e  x := c u r r e n t l  [ j j ]  // j l  j 2

y := f o l l o w i n g t j j  -  1 ] ;  H i\= row . e ^ . . .  -currentl

z := c u r r e n t l  [ j j  -  1} ;  ///1+1: e2e4 ... 2-j\+\)-following

push thepair ( i ,  j )  onto tm p S t a c k ;  

i f  j  = j l

b r e a k ;

i f ( x  ś  y or z < y) and ( i  = i 2 )  

i  := i  -  1; 

i f  z ś  x or y < x

j  ■- j  -  l ;
transfer t m p S t a c k  to o u t p u t ;  

r e t u r n ;

s i l  := s l ( r o w + l . . i 2  -  ro w+1) ;

s22  := s2 (ma x  (1,  j 1 ) . . j  2 -  m a x (1,  j 1 ) ) ;
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W a g n e r F i s c h e r l D  ( c u r r e n t 2 ,  d u m m y ,  d u m m y ,  reverse ( s i l )  , rever- 
se ( s 2 2 ) , 1 , I s i l | , 1 ,  I s 2 2 | ) ;

Min := c u r r e n t l [ 0 ]  + c u r r e n t 2 [ n ] ;

c o l  := 0;

f o r  k := 1 t o  n

i f  Min > c u r r e n t l [ k ]  + c u r r e n t 2 [ n  -  k]

Min := c u r r e n t l [ k ]  + c u r r e n t 2 [ n  -  k] ; 

c o l  := k;

x := p r e v i o u s l [ m a x ( 1 , c o l ) ] ;  / /  up

y := c u r r e n t l [ m a x ( 1 , c o l )  -  1 ] ;  / /  l e f t

z := p r e v i o u s l [ m a x (1,  c o l )  - 1 ] ;  I I  u p p e r  l e f t  d i a g o n a l

i f  x < y  o r  z ^  y / /  ch oo se  d i a g o n a l  n e i g h b o r  o v e r  l e f t
n e i g h b o r

r o w l  := row -  1;  / /  t o  h a v e  one l e s s  row t o  p r o c e s s
i n  t h e  n e x t  r e c u r s i v e  c a l i ;

e l s e  r o w l  := row;

c o l  := c o l  + j l ;  

i f  j l  > 0

c o l  : = m a x ( j l , c o l  -  1 ) ;

i f z < x o r y ^ x  

c o l i  := c o l  -  1;

/ /  d o n ' t  go i n t o  t h e  a r e a  a l r e a d y  

p r o c e s s e d ;

I I  ch oo se  d i a g o n a l  n e i g h b o r  o v e r  u p p e r  
ne i gh b or

I I  t o  h av e  one  l e s s  column t o  

p r o c e s s ;

e l s e  c o l i  := c o l ;  i

H i r s c h b e r g ( s l ,  s 2 ,  i l ,  r o w l ,  g l ,  m a x ( j l ,  c o l i ) ) ;  

H i r s c h b e r g  ( s l , s 2 ,  row,  i 2 ,  c o l ,  j 2 )  ;

The algorithm is called twice for each halfofSi(ii..i2), so that it is called 21g|s,| times in 
total and in each iteration it finds (i2 -  i\)(j2 -  j \)  edit distances. At the first level of recursion 
(very first cali), the number of edit distances found is |j 1||s 2|; at the second level of recursion, 
the number eąuals j\sx\!2 + (|j 2| -j)\s\\!2 = |s i ||j 2 |/2 ; at the third level of recursion, it is y j j |/ 
4 + (/' -y'i)ki|/4 + (j2-y')ki|/4 + (h ! -y 2)ki|/4 = kilk2 |/4, etc., which is

^ - ^ JL= 2 h lN l i - — )< 2h|N
*=o ' 11

in total, that is, about twice the number of operations reąuired by W a g n e r F i s c h e r  ( ) .  Howe- 
ver, the latteruses 0 ( | j 1||i2|) space, whereas H i r s c h b e r g  () reąuires O (|j2|) space.
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The algorithm uses a stack o u t p u t  to storę all path positions generated by H i r s c h -  
b e r g  (). The stack is used later to generate an alignment.

3. An example
Let us apply H i r s c h b e r g  () to strings = Capital and s2 -  apple by calling H i r s c h b e r g ( c a -  
pital, apple, 0, 7, 0, 5). First, Capital is bisected into cap and ital (row = 0  + 7 = 3) and 
WagnerFischerlD(currentl,previousl,following, cap, apple, 1, 3, 1, 5) initializes arrays. 
Along the way, it generates values that W a g n e r F i s c h e r  () puts in the upper half of the 2D 
array D; a fuli tracę ofexecution of Wagner  F i s c h e r  ID () is as follows:

a p p l e  
0 1 2 3 4 5

c 1 1 2 3 4 5
a 2 1 2 3 4 5
p 3 2 1 2 3 4 = currentl

Next, reverses of strings tal and apple are processed with the cali W a g n e r F i s c h e r l D  
(icurrentl, dummy, dummy, lat, elppa, 1,3,1,5):

e 1 p p a

0 1 2 3 4 5
1 1 1 1 2  3 4 

a 2 2 2 2 3 3
t  3 3 3 3 3 4
1 4 4 4 4 4 4  = current2

To find the position col of edit distance that meets the condition (1), we use only arrays 
currentl and currentl, as in:

k 0 1 2 3 4 5

3 2 1 2 3 4 =
4 4 4 4  4 4  =
7 6 5 6 7 8 =

currentl
reverse(currentl)
currentl [&] + current2[n-k\ -  currentl [k] + 
+ reverse(currentl[k])

We find that Min -  5 and col = 2.

At that point we know that one path to generate an alignment leads through number 1 
shown in bold face in position 2 of currentl. Having still access to previous 1, we can deter- 
mine with the same rules as used in W a g n e r F i s h e r P r i n t  () that this path leads to number 1 
in position (2, 1). The remaining parts of the path are still undetermined. Therefore, we 
continue processing for strings ca and a with number 1, the first part of the path, in the lower 
right comer of the part of the edit matrix that corresponds to these strings (marked with 
pluses) and then for pital and pple with number 1 , the second part of the path, in the upper left
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right comer of the edit submatrix associated with the two strings (marked with asterisks); the 
other parts of the matrix can be disregarded ffom further processing:

a  p  p  1 e

+ + 

c  + + 

a  + 1

p l  * * *
       
       

^        
       

Processing of ca and a, with row = 2, gives col = 0 and Min = 1. This means that the 
sought path goes through position ( 1, 0 ):

a p p 1 e
+

c 1 + 
a + 1
p 1  * * *

*      
       

^        
2̂ *  * * *

From this, the cali H i r s c h b e r g  (Capital, apple, 0, 0, 0, 0) amounts to the one 
column case and to including position(0, 0) in the path. Also, position (2, 1) marks the 
lower right comer and position(l, 0 ) marks the upper left comer of edit submatrix for next 
recursive invocation of H i r s c h b e r g  (), H i r s c h b e r g  (Capital, apple, 1, 2, 0, 1), for- 
strings ca and a. This is another base case: the two rows case. For this case, we know that 
the path leads through the upper left and lower right comer, so the problem is in determi- 
ning the part of the path between these corners. We must start from the lower right comer. 
Along the way, the positions are stored on a temporary stack and after reaching the upper 
left comer, they are transferred to the stack o u tp u t. This case utilizes the array following 
which Stores edit distances corresponding to the second row (the first row is in current 1). 
It should be also elear why two rows case is a base case and it is not reduced to two 
applications of the one row case: the upper left comer has been determined by W a g n e r -  
F i s c h e r l D  () in a previous cali to H i r s c h b e r g  () and it will also be chosen in the 
current cali leading to an infmite loop.

Now, recursion retums to strings pital and pple. This leads to processing of pi and p, 
another one column base case, and thus to outputting positions (3, 2) and (4, 2).
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A lso , H i r s c h b e r g  () is ca lled  for the sam e string ta l  and str in gp p le :

a p p 1 e
0

c 1 
a  1
P 1
i  2
t  3 * * *
^        
2_        

This, in tum, results in the cali of H i r s c h b e r g  () for / andp, and outputting (5, 2), and 
to the cali for al and ple:

a p p 1 e
0

c 1 
a  1
P 1
i  2
t  3
a 4 * *
2_      

This is also a two rows case that produces now positions (6 , 3), (7, 4), and (7, 5). This 
concludes the processing by H i r s c h b e r g  ( ) . Now, stack o u t p u t  holds all the positions of a 
path corresponding with an alignment. The alignment is generated by another routine quite 
similar to W a g n e r F i s c h e r P r i n t  ().

In effect, the path:

[7 5] [7 4] [ 6  3] [5 2] [4 2] [3 2] [2 1] [1 0] [0 0]

that represents the situation: 

a p p 1 e
0

c 1 
a 1 
P 1
i  2
t  3
a 4
1 4 5

is used to generate the alignment:

c a p i t a l -
- a p — p l e
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