
Sławomir Samolej*, Tomasz Szmuc**

TIME EXTENSIONS OF PETRI NETS FOR MODELLING
AND YERIFICATION OF HARD REAL-TIME SYSTEMS

C om puter S c ien ce V ol. 4 . 2 0 0 2 519 .1

The main aim o f the paper is a presentation o f time extensions o f Petri nets appropriate for
modelling and analysis o f hard real-time systems. It is assumed, that the extensions must
provide a model o f time flow, an ability to force a transition to fire within a stated timing
constraint (the so-called the strongfiring rule), and timing constraints represented by inte-
rvals. The presented survey includes extensions o f classical Place/Transition Petri nets, as
well as the ones applied to high-level Petri nets. An expressiveness o f each time extension is
illustrated using simple hard real-time system. The paper includes also a brief description
o f analysis and verification methods related to the extensions, and a survey o f software
tools supporting modelling and analysis o f the considered Petri nets.
Keywords: hard real-time systems, time(d) Petri nets, high-level Petri nets

ROZSZERZENIA CZASOWE SIECI PETRIEGO DO MODELOWANIA I WERYFIKACJI
SYSTEMÓW CZASU RZECZYWISTEGO O TWARDYCH WYMAGANIACH CZASOWYCH
Głównym celem pracy jest prezentacja rozszerzeń czasowych sieci Petriego pod kątem przy
datności do modelowania i analizy systemów czasu rzeczywistego o twardych wymaganiach
czasowych. Zakłada się, e rozwa ane rozszerzenia winny spełniać następujące warunki:
modelowania upływu czasu, forsowania odpalenia przejścia w określonych warunkach cza
sowych (tzw. silna reguła odpalania), przedziałowej reprezentacji ograniczeń czasowych.
Przegląd dotyczy zarówno klasycznych sieci miejsc i przejść, ja k równie sieci Petriego
wy szego poziomu. Siła ekspresji poszczególnych rozszerzeń jest ilustrowana na wspólnym
przykładzie systemu o twardych wymaganiach czasowych. Artykuł zawiera równie krótki
opis metod analizy i weryfikacji ograniczeń czasowych oraz przegląd systemów wspomaga
jących modelowanie i analizę rozwa anych sieci Petriego.
Słowa kluczowe: systemy czasu rzeczywistego, twarde wymagania czasowe, czasowe sieci
Petriego wy szego poziomu

1. Introduction
Real-time systems constitute an important part of modem Computer systems. The main
feature of real-time systems is a dependency of their computations not only upon data (events)

* Computer and Control Engineering Chair, Rzeszów University of Technology, Rzeszów, e-mail:
ssamolej@prz-rzeszow.pl

** Institute of Automatics, University of Mining and Metallurgy, Cracow, e-mail: tsz@ia.agh.edu.pl

55

mailto:ssamolej@prz-rzeszow.pl
mailto:tsz@ia.agh.edu.pl

generated by the environment, but also on time of system response. In generał, it is assumed
that real-time system has to react to the behaviour of the environment within a stated time
or it must cyclically provide computed outputs (signals) to its environment.

Taking into consideration the ability to meet timing constraints, real-time systems can
be divided into three classes [31]:

1) hard real-time systems,
2) soft real-time systems,
3) firm real-time systems.

In hard real-time systems, timing reąuirements have to be strictly fulfilled. It means,
that the system has to produce a given output before a stated time interval elapses or, morę
strictly, the output must be produced exactly at the moment of time. In soft real time Sys
tems, it is expected that only an average value of a stated timing constraint should be fulfil
led. In firm real-time systems, time reąuirements are usually a combination of hard and soft
timing constraints. The hard constraints have to be fulfilled in these systems in long time
intervals, whereas the soft ones are defined for short periods. An exhaustive survey of real-
time systems may be found in [31]. The paper concentrates on analysis of applicability of
various time extensions (in Petri nets) for modelling and verification hard real-time Sys
tems.

Before introducing time extensions of Petri nets, we would like to take notę of some
features of classical Place/Transition Petri Nets. We will use informal definition of a Petri
net to focus on the behaviour of the net, as well as on the classical rules of transitions
enabling and firing. A thorough study of classical Petri nets can be found in [21, 22], Infor-
mally, a Petri net is a bipartite graph consisting of "place" nodes and "transition" nodes.
The places, drawn as circles or ellipses, are used to represent conditions; the transitions,
drawn as bars, are used to represent events. The "marking" (m) of a Petri net is a function
ffom the set of places P to the non-negative integers N, i.e. m: P —> N that assigns "tokens"
to the places of the net. Tokens, drawn in the graphical representations as smali dots inside
places, specify State of Petri net. A transition to next State is carried out by a flow of tokens
along arcs (arrows) connected to the transition chosen for execution. For any transition the
places connected by arcs may be classified1' as input or output ones. An arc directed from
place Pi to transition tj classifies the place as an input for the transition. The output classifier
is prescribed when exists an arc from the transition to the place. Multiple inputs to a trans
ition are indicated by multiple arcs from the input places to the transition. Multiple outputs
are represented by multiple arcs correspondingly. Figurę 1 provides a graphical representa-
tion of a fairly simple Petri net.

Changes of marking of a Petri net are caused by "firings" (executions) of transitions. In
a single arc net a transition is "enabled" to fire if and only if at least one token in each input
place exists. In the classical definition of Petri nets, time period between enabling firing of
a transition is indeterminate. Similarly, indeterminate is the order of firing of two or morę
currently enabled transitions. The firing of a transition is an instantaneous event during
which one token is removed from each of transition's input places and one token is deposi-
ted in each of its output places.

!) The classification can divide set of connected places into sets which are not disjoint, i.e. include
places which are of input and output sort for a given transition.

56

If two or morę transitions are currently enabled by the presence of a token at the same
input place (e.g., transitions t2 and t2 in Fig. 1), the firing of any of those transitions removes that
token and disables the remaining transitions. These transitions are said to be "in conflict" and
the place causing the conflict reąuires a "decision" to be madę between multiple output paths.

Fig. 1. A simple marked Petri net

Classical Place/Transition Petri Nets are considered as a powerful formalism for mo-
delling of a wide class of Systems. The main feature of the nets is an ability to model the
flow of information and control in systems, that may be both concurrent and asynchronous.
However, there are many systems that can not be efficiently modelled by classical Perti
nets. A lack of time model in the net semantics is one limitation of the nets applicability.
Her.ce, the basie Petri net formalism could not be directly used in a real-time system mo-
delling, where an adeąuate time model is crucial. Therefore, several authors introduced
time extensions of classical Petri nets. The first extensions were introduced independently
by Merlin [18], and Ramchandani [24]. Both authors proposed to assign of time constraints
to transitions, however, they defined different semantics for their nets, which led to distinct
interpretations of net behaviour. Coolahan and Roussopoulos [8] proposed a consecutive
time extension of Petri net. They assigned an execution time to places of the net. Further-
more, Walter [32] introduced Arc Time Petri Nets. The flow of time in these nets was repre-
sented by time stamps associated with tokens and ares labelled by time intervals.

The three main time extensions of Petri nets mentioned above have been developed by
several authors [23, 17, 2, 15, 29, 12, 13, 10]. Recent research are concerned with time
extensions of high level Petri nets. Ghezzi, et al. [11] proposed Time Environment/Relation-
ship Nets (TER Nets) and Time Basic Nets {TB Nets). Coloured Petri Nets have been modi-
fied by van der Aalst [1] and Jensen [16], which led to development of Interval Timed
Coloured Petri Nets and Timed Coloured Petri Nets, respectively. It is purposeful to men-
tion here about an important case of Statically Timed Petri Nets introduced by Cerone, et al.
[6 , 7], The authors derived a new class of Timed Petri Nets as a consolidation of interval
time extensions used in classical Petri nets. A systematic study of time extensions proposed
for Petri nets can be found in [29, 26, 3, 4, 7].

The aim of the paper is an evaluation of time extensions of Petri nets as a tool suitable
for hard real-time system modelling and verification. It seems that, three basie features
should be taken into consideration when Petri net models are selected. Firstly, a model of
the net has to provide an ability to measure of time flow. It means, that any seąuence of
States of the net can be directly mapped (observed) in a defined time domain. Secondly, the
semantics of the net must ensure that a transition is forced to fire by timing constraints (the
so-called strong timing model). In other words, it is a possibility of time synchronisation
modelling of events in observed system. Finally, time constraints have to be also represent

57

by time interval. Time constraints of Petri nets are usually specified by a single time value
(duration or delay) or a pair of time values (time, interval). Time extensions of Petri nets
with time constraints, modelled only by single values attached to elements of the nets, are
not expressive enough for modelling all time mechanisms, that are crucial for hard real-
time Systems (e.g. time-out) [26, 7], Hence, we shall reject in further considerations all time
extensions of those nets, where time is modelled only by a single value. We claim, that only
net fulfilling all of the aforesaid features could model a hard real-time system efficiently.
Although each time extension of Petri net can model delay of a process, only the nets with
strong time semantics and time constraints represented by intervals are able to model a clas-
sical time-out or synchronisation by an extemal event. In order to meet the hard real-time
reąuirements, the strong time semantics changes classical firing rules of Petri nets. Unlike
in classical Petri nets, a transition under the strong firing rule has to fire before a stated
moment of time if it is enabled. It should be stressed that the strong timing behaviour of the
net (transitions are forced to fire within stated time constraints) has a significant influence
on the generał properties of the net. A study of properties of Petri nets under the strong
firing rules can be found in [5, 28, 29, 7].

Recent research conceming modelling complex systems by means of Petri nets led to
a remarkable development of high-level Petri nets. Environment/Relationship Nets propo-
sed by Ghezzi, et al. [11] and Coloured Petri Nets proposed by Jensen [16] enable to repre-
sent a model of a large system in a concise way. Moreover, time extensions have been pro
posed for both above mentioned high-level Petri nets. Although a strong timing model has
been clearly discussed only for Time Environment/Relationship nets and Time Basic Nets
[11, 9], we have decided to present Timed Coloured Petri Nets as well. We will reveal that
the firing rule of Timed Coloured Petri Nets can be interpreted as the strong firing rule.

Selected time extensions of Petri nets that may be used for modelling and verification
of hard real-time systems will be described in the following sections. An example of hard
real-time system is introduced to examine these extensions using common criterion. The
system will be modelled in every section by means of the discussed time extension.

Fig. 2. Place/Transition Petri net model of a simple embedded system

58

Model of the system (simple embedded controller) specified using classical Petri net
is shown in Figurę 2.

The model includes two independent threads of computations synchronised by a glo-
bal counter. Firing of transition t5 denotes beginning of computation cycle of the controller.
Firing of transitions t2 and f3 may be denoted as an execution of computation stages. Trans-
itions t\ and t4 are in conflict. Firing of /, can be interpreted as a successful accomplishment
of controller timing cycle, whereas firing of transition t4 can be interpreted as a fault-stop in
the system. Taking into consideration the classical rules of enabling and firing of transi
tions, one can not decide which transition tĄ or t\ will fire in a currently executed "cycle" of
the controller.

Therefore, additional rules of firing should be defined in order to model the behaviour
morę precisely. The additional rules should provide an ability to measure and control of
time flow in the modelled system. In the following sections, we shall describe the selected
time extensions of Petri nets appropriate for modelling of all time mechanisms characteri-
stic for hard real-time systems. The proposed model of the system will be executed under
a time-out strategy to conserve a stated cycle time. Section 2 describes Time Petri Nets, for
the first time proposed by Merlin and Farber [18]. This net is considered as the earliest
strong time model of Petri nets and it is still widely used (and modified) for modelling of
systems with strong time reąuirements. Time constraints in Merlin's nets are attached to
transitions and are represented by a pair of time values, defming time interwal. Any such
interval specifies time period where the transition is enabled for firing. Section 3 presents
Arc Time Petri Nets developed by Hanisch [12, 13], where timing constraints are defined
for the incoming arcs of transitions. A pair of values attached to each incoming arc of a trans
ition defines the permeability of the arc. Section 4 includes presentation of Statically Timed
Petri Nets (STPNs) proposed by Cerone, et al. [7]. STPN is a generalisation of basie time
model developed for Place/Transition nets. Time constraints of STPN are time intervals
that may be attached to most of elements of the nets (places, transition's incoming arcs and
transitions). Section 5 describes time extensions proposed for high-level Petri nets. Time
Environment/Relationship Nets [11], Time Basic Nets [11,9] and Timed Coloured Petri Nets
[16] are considered and analysed here. A summary and suggestions for futurę researd conc-
lude the paper in Section 6 .

2. Time Petri nets
Time Petri nets have been developed during research on recoverability of Computer systems
[18], Merlin, who introduced Time Petri Nets, proposed two basie time extensions of classi
cal Petri nets. The first extension consists in an assignment of two time values to every
transition. These values constituted time period when the corresponding transition had to
fire, if it was enabled. In the second extension, a transition was forced to fire before a stated
time interval elapsed or was disabled by the firing of another transition. Merlin's model of
Petri net was developed by several authors [17, 2] and became one of the most popular Petri
net formalisms used for evaluation and modelling of real-time systems.

Informally, the behaviour of a Time Petri Net (according to Berthomieu, et al. [2]) can be
represented as follows. Each transition has associated two values of time a and b, with a < b.

59

Assuming that any transition f, is continuously enabled after it has been enabled, the
time values are interpreted in the following way:

- a (0 < a), is minimal time that must elapse, starting from the time at which transition ć;
is enabled, until this transition can fire;

- b (0 < b), denotes maximal time during which transition t, can be enabled without
being fired.

Times a and b, for transition f„ are related to the moment at witch transition /, is enabled.
Assuming that transition t) has been enabled at time t , then th even if it is continuously ena
bled, cannot fire before time x + a and must fire before or at time x + b, unless it is disabled
before by the firing of another transition. Notę that the Time Petri net may be regarded as
equivalent to a standard Petri net if all transitions have associated time constraints as (0, oo).

Formally, a Time Petri Net (TPN) is a tupie (P, T, B, F, M0, SIM) where:

- P is a finite non-empty set of places p,;
- T is a finite non-empty set of transitions f,;
- B is the backward incidence fimction B: P x T —> N, where N is the set of non-negative

integers;
- F is the forward incidence fimction F: P x T —> N,
- M0 is the initial marking function M0: PN', (P, T, B, F, and M0 together define a Petri

net);
- SIM is a mapping called static interval SIM: T —> Q* x (Q* u oo), where Q* is a set of

positive rational numbers.

A generał form for State 5 of a TPN can be defined as a pair S1 = (M, I) consisting of:
- marking M;
- firing interval set / which is a vector of possible firing times.

Basic properties of Time Petri nets enable to model a wide rangę of real-time systems.
Figurę 3 provides Time Petri net model of simple embedded controller discussed in section 1.
In the initial State of the net only place p 6 is marked and contains one token. As transition t5
is only transition enabled, / has one entry equal to (0 ,0), which means that t5 must fire
immediately. Time constraints attached to transitions t2 and / 3 define the intervals within
which individual threads of computations have to be completed. We assume that the maxi-
mum cycle of computations can not exceed 100 time units (e.g. 100 ps). Consequently,
when transition t\ do not fire before 1 0 0 time units after the beginning of current control-
ler's cycle, firing of transition tĄ (1 0 1 time units after the beginning of current controller's
cycle) disables the ability to fire for transition /]. The controller reaches the fault-stop State
and it does not continue its computations. When transition f, fires before 100 time units
after beginning of controller's cycle, firing of transitions t6 and / 7 ensure 1 0 0 time units
cycle of controller's computations. Due to the ability to estimate the time of the events in
the system and, moreover, the strong timing rule of firing used in Time Petri nets, we have
obtained a elear and suggestive model of a hard-real time system. Yet to obtain a satisfacto-
ry behaviour of system’s model, the basie net, proposed in section 1 , has to be extended by
several additiond places and transitions.

6 0

The extension results from specific properties of Time Petri Nets. Each of time exten-
sions that will be presented in the paper imposes modifications of basie system's model
proposed in Section 1.

Time Petri Nets provide fairly simple and expressive model of time flow. The transi-
tions of the net may fire only if they are enabled by appropriate marking and fulfil stated
timing constraints. The behaviour of the transition may be considered locally. It has a kind
of local virtual clock associated. The clock starts counting at the moment when the transi
tion becomes enabled by the marking. The initial State of the clock is a global simulation
time at which the net reached the marking. The State of the clock with reference to timing
constraints associated to the transition decides when the transition may or must fire. The
basie definition of Time Petri Nets does not provide the ability to construct hierarchical nets.
Conseąuently, the nets do not have enough expressiveness for modelling of large systems.

Fig. 3. Time Petri Net model of a simple embedded system

Merlin's model of time extension for Petri nets, as one of the earliest and popular, is
widely used in most of software Petri nets simulators. The thorough study concerning
software tools for Petri nets analysis and simulation can be found in [30], Two selected
software tools that support Time Petri Nets are ARP (LCMI Lab., Federal University of
Santa Catarina, Brazil) and INA (Integrated Net Analyser - Institut fur Informatik der
Humboldt-Universitat, Berlin, Germany) [25], Most of software tools enable to editing
and simulation of Time Petri Net model, some of them offer selected methods for analysis
of net properties.

61

An analysis of Time Petri Net is usually complicated. An enabled transition may fire in
any moment within a time interval associated with it. Different moments of the firing may
lead to different States of the net. In generał, the amount of States after the firing of a trans
ition may be infinite. The most common way of verification of Time Petri Net model is
simulation. Formal method of the analysis of the nets has been proposed in [2]. The beha-
viour of the net has been described by State classes. A class is a group of ałl possible States
that may appear after firing of transition tr The State classes are nodes in the extended
reachability graph used for formal analysis of the nets.

As it was mentioned in [7], a Time Petri Net model reveals some shortcomings, too.
For example, the semantics of the net that defines initialisation of a time measure after the
enabling of a transition may cause the modelling of some time critical system cumbersome.
It could happen, when we would be interested in a time interval within which a token is
situated in a place, but the transition that it can enable to fire is not enabled.

3.Arc Time Petri Nets
Arc Time Petri Nets have been introduced by Walter [32]. The basie models of the nets were
changed and extended by Hanisch [12, 13], who proposed the extension of the nets by
adding time stamps and the strong firing rule. The nets with timing constraints attached to
the ares were also used and interpreted in [6, 26, 7, 10]. In this section we shall use the
name Arc Time Petri Nets introduced by Starkę [29] for the nets with time constrains asso
ciated with ares. However, it should be mentioned, that the nets with time constraints atta
ched to ares have been also called Timed Place/Transition nets [32], Place/Transition nets
with Timed Ares [12], Timed Link Petri Nets [6], Timestamp nets [13] and Iimed-Arc Petri
Nets [10]. Arc Time Petri Nets developed by Hanisch are the nets where intervals are assi-
gned to the incoming ares of transitions. An interval assigned to an arc (p, t) describes the
permeability of the arc relative to the time stamp of the token on p. A time stamp of each
token denotes the time when the token was put on the place. A transition is enabled if all its
input places carry enough tokens according to the token weight of the arc, and if all the ares
directing to the transition are permeable. The calculation of permeability of the arc starts at
the moment when a token appears in its respective place. An enabled transition must fire
(the strong firing rule) within a time interval defined by timing constraints, or is not longer
enabled, due to the firing of other transitions. However, a marked transition with two or
morę incoming places may not fire under a marking, if only its incoming ares are not per
meable simultaneously.

Formally, an Arc Time Petri Net (Time Stamp Net) is a tupie N = (P, T, F, /), where (P,
T, F) is a Petri net, and / : (i ’ x I ') n F - > Ir assigns a non-negative time interval to each
incoming arc of a transition, describing the permeability of the arc. Given I(p, t) = [r; /],
Ir(p, t) = r denotes the beginning and I/(p, t) = l the end of the permeability of the arc
(p, t) e {P x T) n F, relative to the time when the incoming place is marked. The marking m
of an Arc Time Petri net N = (P, T, F, I) is a function m: P —> ((Rq) u {0}). If m(p) = 0, then
p e P is not marked. If a place p e P is marked and m(p) = (ts), the attribute ts is a time
stamp of the token, indicating at which time the token was put on p.

Figurę 4 provides an Arc Time Petri Net model of the simple embedded controller
introduced in section 1.

62

The time constraints attached to the incoming arcs of transitions and the firing rule of
transitions enable to reduce a number of places and transitions of the net in comparison
with the model proposed in section 2. The timing constraints associated with the incoming
arcs of transitions t2 and f3 model the time intervals within which each thread of controller's
computations must be completed. Thanks to ability to assign timing constraints to inco
ming arcs of the transitions we have obtained a morę natural model of time-out mechani-
sms concentrated around place /?, of the net. The time interval associated with the arc ffom
place p\ to transition t\ ensures synchronisation of the threads of computations as well as
a constant cycle of the modelled controller. The time interval connected to the incoming arc
of transition f4 provides the fault-stop of the system if the computations of the threads exce-
ed the stated 1 0 0 time units cycle of the controller.

Arc Time Petri Nets provide a consistent and continuous model of time thanks to the
initialisation of time measurement at the moment of token's arrival at a place. The State of
a net is described by marking and a set of local clocks denoting the ages of markings of
places. Timing constraints, defined as time intervals attached to the arcs of the nets, offer
asignificant potential in awide rangę of hard real-time Systems modelling [6 , 26, 13]. It
should be noticed that Arc Time Petri Nets enable to model essential real-time mechanisms
in a fairly natural way (in our example we have obtained a simple model of time-out me-
chanism). Similarly to Time Petri Nets, Arc Time Petri Nets do not offer in their basie
definition the ability to construct the hierarchical models of the nets. So, their main applica-
tions are rather medium-scale models of systems.

Several modem software tools support the modelling of time extensions of Petri nets
with timing constraints attached to arcs. First software tool that has been used for Arc Time
Petri Nets modelling was ATNA - Arc Time Net Analyser [12]. Arc Time Petri Net model
proposed by Hanisch also may be constructed and verified by INA (Integrated Net Analyser-
Institut fur Informatik der Humboldt-Universitat, Berlin, Germany) [25],

63

Formal analysis of Arc Time Petri Nets encounters similar restrictions to the analysis
of other time Petri net extensions with timing constraints represented by intervals. In a ge
nerał case, even for bounded Arc Time Petri Nets, the number of clock positions can be
infmite. Software tools usually offer only the ability to model a "token gamę" under a sta-
ted firing rule for the nets. The formal analysis method for Arc Time Petri Nets under the
earliest and maximum firing rule ([28]) has been proposed by Hanisch [12]. The author
introduces the State graph for Arc Time Petri Net, which is an equivalent to the reachability
graph of classical Place/Transition net. The State graph includes the set of all States of Arc
Time Petri Net that are reachable from the initial State. The graph may be used to the perfor
mance analysis and optimisation of the net.

The possibility of so called timewise stuck of Arc Time Petri Nets (an inability of
firing of a transition because its incoming arcs have not been permeable simultaneously)
may be used to verification of time parameters of modelled system, as well [13].

4. Statically Timed Petri Nets
Statically Timed Petri Nets (STPN) have been proposed by Cerone, et al. [6 , 7]. It seems
that, the nets may be treated as a generalisation of time extensions developed for classical
Petri nets with timing constraints defined as static intervals. The main feature of STPN is
that time constraints are intervals statically associated with places, transitions and inco
ming links (arcs). Furthermore, the authors provide strong time semantics for STPN (in fact
the authors consider both strong and weak timing semantics of STPN). Each token in the
nets has an age (time stamp), that is either the time elapsed sińce the token was generated
by a transition firing, or time 0, if its presence in the place is due to the initial marking. As
in STPN time constraints may be associated with places, incoming links/arcs or transitions,
the fireability of transition t may depend not only on the timing constraint that is possibly
associated with t itself, but also on those that are possibly associated with its incoming
places or its incoming links/arcs.

Statically Timed Petri Net can be defined formally as follows:
Let £ be a finite alphabet, and X be an empty seąuence on A Statically Timed Petri

Net (STPN) is a tupie N - (SN, TN, LN, lN, 8 W, AiV, MN), where:

- SN is a finite set of places, TN is a finite set of transitions, with SNr\ TN = 0 , and LN =
= IN u On is a finite set of links (arcs), where INęzSNx TN is a set of incoming links
(arcs), 0 Nę ,T N x SN is a set of outgoing links;

- In - Tn -> £ u {X,} is labelling function;

- the functions:
5n - Ln —> R+,
An: Sn ^J Tjy u Ln —> R+ u {co},
called the lower and upper timing function, respectively, are such that:
(a) for each x e SN u Tn u Ln, &n(x) - A/v(x):
(b) for each t e TN, if there exists no s e SN such that (s, t) e IN, then:
5N(t) = 0 and AN(t) = oo,

- Mn\ Sn -» N is the initial marking.

64

Fig. 5. A Statically Timed Petri Net model of a simple embedded system

The State of STPN may change because of two different reasons:
1) increase in the time,
2) firing of transitions.

The Statically Timed Petri Net presented in Figurę 5 is a model of the simple embed
ded system discussed in the paper.

Although the discussed model of an embedded system may be represented by a drasti-
cally reduced STPN, we decided to preserve the "classical" shape of the net to focus on the
flexibility of accessing time constraints to elements of the net. The durations of computa-
tions are represented by timing constraints attached to places p 2 and p 2, whereas the time
synchronisation of the threads of computations and the time-out are represented identicaly
as in Are Time Petri Nets. The firing of transitions may be controlled by timing constraints
similar to those used in Time Petri nets. It should be noticed that all the timing constraints
affect the behaviour of STPN simultaneously. Moreover, each timing constraint influences
a separate set or tupie of tokens. For example, the timing constraint associated with transi-
tion t\ in Figurę 5 is concemed with a tupie of tokens from the places p \,pĄ, and p 5, whereas
the timing constraints attached to the links determine the behaviour of individual tokens
situated in the respective places.

Notę that the possibility of associating timing constraints with any element of the net
offers significant flexibility in modelling a wide rangę of systems. Most timing mechani-
sms used in hard real-time systems may be modelled by means of STPN in a fairly natural
way. However, the combination of a set of timing constraints may lead to complicated me-
thods of the net analysis. So far, only the results of the research conceming expressivity of
STPN have been presented [7], Additionally, the authors who proposed STPN, did not point
to any software tools, that may be used for developing and verification of STPN models.
Simultaneously, STPN do not provide the ability to construct hierarchical models of Sys
tems. Hence, their practical application is bounded to modelling and simulating medium-
scale models of real-time systems.

65

5. Time extensions of high-level Petri nets
Over the past few years, real-time Computer systems were being increasingly used in time
critical applications. Simultaneously, real-time systems, even hard real-time systems, beca-
me morę complex. Hence, recent research concerning real-time systems modelling by
means of extended Petri nets have been focused not only on the development of adeąuate
time extensions, but also on enhancement of functional capabilities of the nets. The most
representative functional enhancements of Petri nets are Environment/Relationship Nets
(ER Nets) [11, 9] and Coloured Petri Nets (CP-nets) [16]. Both of the aforesaid enhance
ments have time extensions that can be used in a simulation of a time flow in a modelled
system. The functional extension of the nets lies in the development of the idea of classical
tokens, transitions and arcs. The token in extended Petri nets (or high-level Petri nets) may
be represented by a record, mathematical expression or a function. Moreover, the firing of
the transition may be executed as a calculation of stated mathematical formulas (ER nets),
or as an interpretation of programming language formulas (CP-nets). Additionally, CP-nets
provide the arc expressions that may be attached to the arcs of the net, as well as an ability
to construct a hierarchical model of the net (Hierarchical Coloured Petri nets). Generally,
high-level Petri nets enable to model complex systems in a concise way without losing minute-
ness of detail. Besides, high-level Petri nets provide new capabilities of representing time in
a modelled system. The following subsections present the time extensions of ER nets (Time ER
Nets and Time Basic Nets) [11, 9] and Timed Coloured Petri Nets [1, 16], respectively.

5.1. Time Environment/Relationship Nets, Time Basic Nets
Time Environment/Relationship Nets (TER Nets) proposed by Ghezzi, et al. [11] are
time extensions of Environment/Relationship Nets (ER Nets). Before we introduce TER
Nets and Time Basic Nets (TB Nets), we will briefly present the most important proper-
ties of ER Nets [11].

ER Nets are high-level Petri nets where tokens are functions associating values to
variables, called environments. Additionally, each transition has an action associated. The
action describes which input tokens can participate in a firing and which possible tokens
are being produced during the firing.

Formally, a ER Net [11] is a net where:
- Tokens are environments on ID and V, i.e., possibly partial, functions: ID -» V, where ID

is a set of identifiers and V a set of values. Let ENV = V10 be the set of all environments.

- Each transition t is associated with an action. The action is a relationship a(t) ęr ENVk^ x
x E N V Here k(t) and h(t) denote cardinalities of the preset and postset of the trans
ition t, respectively (we consider only arcs with weight 1). It is intended that a(t) refers
to each input and output place of transition t. The projection of a(t) on ENVk(i) is
denoted by n(t) and is called the predicate of transition t.

- A marking m is an assignment of multi-sets of environments to places.

- A transition t is enabled in a marking m iff, for every input place p, of t, there exists at
least one token envt such that < envu ..., envk̂ > e n(t). < env{, ..., envk(t) > is called an
enabling tupie for transition t.

66

- A firing is a triple x = < enab, t, prod >, such that < enab, prod > e a(t). The enab is
called the input tupie, while prod is called the output tupie.

- The occurrence of a firing < enab, t, prod > in a marking m consists of producing
a new marking w ' for the net. Marking m' is obtained from the marking m by removing
the enabling tupie enab from the input places of transition t and storing the tupie prod
in the output places of transition t.

In Time ER Nets, it is assumed that each environment contains a variable, called chro-
nos, whose value is of numerical type, representing the time stamp of the token. The actions
associated with the transitions are responsible for producing time stamps for the tokens that
are inserted in the output places, based on the values of the environments of the chosen
input enabling tupie. The basie idea is that a time stamp represents the time when the token
was produced. Both weak and strong timing models have been developed for TER Nets.
Our further considerations will be concemed with the behaviour of TER Nets under the
strong timing semantics (However, it should be noted that Ghezzi, at al. [11] provide an
interesting interpretation of the weak time model of the nets.). In the strong time model of
TER Nets it is assumed that if transition is enabled and remains enabled for all the possible
time values at which it can fire, then it must fire. Moreover, a global timer Controls the
firing of the transitions, so each subseąuently fired transition produces tokens with inere-
ased time stamp. Generally, in Strong TER Nets (STER Nets) the enabled transitions must
fire when they are enabled and all firing seąuences must be time ordered.

Time Basic Nets (TP Nets) are a particular case of TER Nets where each token (an
environment) is associated only with a time stamp (a chronos variable), representing the
time at witch the token has been created by a firing. Each transition is associated with
a time-function, which describes the relation between the time stamps of the tokens remo-
ved by the firing and the time stamps of the tokens produced by the firing.

A formal definition of a TB Net according to Felder, et al. [9] can be formulated as
follows.

A TB Net is a 6 -tuple (P, T, ©, F, tf, m0), where:
- P, T, and F are the sets of places, transitions, and ares of a net, respectively;
- 0 is a numerical set, whose elements are the timestamps that can be associated with

the tokens; a timestamp of the token represents the time at which it was created;
- t f is a function that associates the function tf, (called the time function) with each trans

ition t; let en denote a tupie of tokens, one for each place in the preset of transition t\
function tf, associates with each tupie en a set of values 0 (0 e 0), such that each value
in 0 is not less than the maximum of the time stamps associated with the token belon-
ging to tupie en. 0 = tft(en) represents the set of possible times at which transition t can
fire, if enabled by tupie en; when transition t fires, the firing time of t under tupie en is
arbitrarily chosen from the set of values 0 ; the chosen firing time is a value of the time
stamps of all the tokens produced;

- m0, the initial marking, is a function associating a (finite) multi-set of tokens with each
place; in generał, we use function m to denote a generic marking of nets, i.e., m{p)
denotes the multi-set of tokens associated with place p by marking m.

Like in TER Nets, TB Nets can be analysed under strong or weak time semantics. Our
further consideration will be concemed with strong time semantics, which means that a transit-

67

ion must fire if it reaches its maximum firing time unless it is disabled earlier by firing of
the other transition.

Figurę 6 provides a TB net under the strong time semantic which models the behavio-
ur of the simple embedded controller discussed in the paper. Timing constraints, presented
in TB Nets in the form of mathematical formula, define possible time intervals (or time
sets) within which the transitions must fire. It should be noticed that the formula uses time
stamps of the tokens, as well as a set of mathematical functions associated to the transitions
of the net, to determine the time when a transition can or finally must fire. For example, the
computations one of the threads must last between 80 time units and 105 time units after the
arriving of the token in place p 2- Although timing constraints are attached only to the trans
itions of TB Nets, the ability to formulate a fairly advanced mathematical formula repre-
senting the time flow in the system enable to reduce the Time Petri Net model of the discus
sed system without losing its functionality (Compare Time Petri Nets - section 2). The
firing of transition fi depends on the time stamps of the tokens that reside in places p u p A
andp$. The conjunction of two mathematical formulas included in time function tfa ensures
the time synchronisation of the modelled system.

Fig. 6. TB Petri Net model of a simple embedded system

The ability to formulate time constraints by means of mathematical formulas is a very
important feature of TB Nets. The time constraints influence on the behaviour of the local
part of the net. The crucial factor is the timestamp of a token that denotes the moment at
which the token was created. However, strong time semantics for TB Nets assumes global
time synchronisation for the firings of transitions. According to [11, 9] the semantics of TB
Nets enables successfully model time extensions of Petri nets with timing constraints asso
ciated with transitions or places. Basic Time ER Net and TB Net models did not provide to
construct hierarchical models, however latest research led to development of Hierarchical
Timed ER Nets [33].

Apart ffom the simulation, the formal verification and analysis of Time ER Nets and
TB Nets may relay on the construction of the Time Reachability Tree (TRT) [9], A TRT is
a (generally infinite) tree that describes all possible reachable markings. The procedurę that

68

builds it is based on symbolic execution. A symbolic State is defined by sym bolic values for
token tim estam ps and by predicate specifying a constraint on the sym bolic values. The
symbolic State stands for all actual States where the tim estamps satisfy the constraint. The
Time Reachability Tree enables to derive the firing set o f possible values for a tim estam p in
a form o f set o f ineąualities and algebraic formulas.

Hierarchical Time ER Nets may be modelled and analysed by CABERNET [33] (Poli-
tecnico di Milano, Italy) software tool. The modelling and analysis of TB nets is supported
by MERLOT [34] (Politecnico di Milano, Italy) programme. The aforesaid software tools
enable to model Time ER and TB nets and implement the reachability analysis algorithm
based on the Time Reachability Tree.

Recent research conceming Time ER Nets and TB Nets that led to development of the
software tools as well as the hierarchical nets allows the application of the nets in the mo
delling and verification of a wide rangę of hard real-time systems.

5.2. Timed Coloured Petri Nets

Timed Coloured Petri nets are time extensions of Coloured Petri Nets. A thorough study
conceming Coloured Petri Nets, as well as Timed Coloured Petri Nets, can be found in [16].
Before we introduce Timed Coloured Petri Nets, we will informally present basie concepts
of Coloured Petri Nets.

Coloured Petri Nets (CP-Nets) are high-level nets where each token is eąuipped with
an attached data value - the token colour. The data value may be freely complex (e.g.
integer number or record of data). For each place, a colour set is defined which characteri-
ses acceptable colours of the token in the place. All declarations conceming the behaviour
of the net and colours of tokens are written in the CPN ML language. The distribution of
tokens in the places is called marking. The initial marking determines the initial State of the
net and is specified by initialisation expressions. The marking of each place is a multi-set
over the colour set attached to the place. Moreover, arc expresśions (the expressions that
may be attached to ares) decide on the token flow in the net. Arc expressions may denote
the number and the colour set of flowing tokens, as well as may be functions that manipula-
te tokens and their colours. Before the occurrence of a transition, the variables defined in
the net are bounded to colours of corresponding types, which is called a binding. A pair (/, b)
where t is a transition and b a binding for t is called a binding element. For each binding, it
can be checked if the transition is enabled to fire in a current marking. An enabled transi
tion may occur. The transitions of the net may have guards attached to them. The guards are
boolean expressions attached to a transition that may define additional constraints that must
be fulfilled before the transition is enabled. For the effective modelling Coloured Petri Net
enable to distribute parts of the net across multiple subnets. The ability to define the subnets
enables to construct a large Hierarchical CP-Net by composing a number of smaller nets.
Hierarchical CP-Nets offer two mechanisms for interconnecting CP-Net structure on diffe-
rent layers: substitution transitions and fusion places. A substitution transition is a transi
tion that stands for a whole subnet of net structure. A fusion place is a place that has been
eąuated with one or morę other places, so that the fused places act as a single place with
a single marking. Each hierarchical CP-Net can be translated into behaviourally equivalent
non-hierarchical CP-Net, and vice versa. Thanks to the ability to handle additional informa-

69

tion or data in a Coloured Petri Net structure and thanks to introduction of the hierarchy, the
nets manage to model complex systems in a consistent way.

Two main time extensions of Coloured Petri Nets have been proposed. Van der Aalst
introduced Interval Timed Coloured Petri Nets [1]. Each transition in an Interval Timed Colo
ured Petri Net may contain a statically associated time interval, which was interpreted as
a possible firing delay of the transition. Firing of a transition incremented a time stamp of the
token by a value from the interval associated with the transition. An enabled transition might
occur at time x if all the tokens to be consumed had a time stamp not later than time x.

The second time extension of Coloured Petri Nets (called Timed Coloured Petri Nets) has
been proposed by Jensen [16]. Jensen introduced aglobal clock whose values represent the
model time. Tokens may carry a time value, also denoted as a time stamp. The time stamp
represents the earliest model time at which the token can be used. Hence, to occur, a transition
must be both colour enabled and ready. It means that the transition must fulfil the usual enabling
rule and all the time stamps of the removed tokens must be less than or eąual to the current
model time. When a token is created, the time stamp is specified by an expression. This means
that it is possible to specify all kinds of delays (e.g. constant, interval, or probability distribu-
tion). Moreover, the delay may depend upon the binding of the transition that creates the token.
In the following part of the subsection we will concentrate on Jensen's model of Timed Colo
ured Petri Nets, which seems to be morę generał than the model proposed by van der Aalst.

Although for nonę of time extensions of Coloured Petri Nets elear strong or weak time
semantics has been proposed, we would like to take notice of the execution of a Timed
Coloured Petri Net published in [16, 19, 20]. The system remains at a given model time, as
long as there are colour enabled binding elements that are ready for execution. When no
morę binding elements can be executed at the current model time, the system inerements
the clock to the next model time at which binding elements can be executed. Each marking
exists in a closed interval of the model time (which may be a point, i.e., a single moment).
The occurrence of a binding element is instantaneous. Hence, a Timed Coloured Petri Net
may be interpreted as the net that is executed under the earliest and maximum occurrence
(firing) rule (The rule seems to be similar to the one proposed by Starkę in [28]). The
aforesaid occurrence rule, in our opinion, enables to construct time mechanisms that can
successfully model hard real-time systems.

According to [16] Timed Coloured Petri Nets can be defined formally as follows.
A Timed Coloured Petri Net is a tupie TCPN = (£ , P, T, A, N, C, G, E, I, R, r0) satisfy-

ing the reąuirements below:
- 2] is a finite set of non-empty types, called colour sets;
- P is a finite set of places;
- T is a finite set of transitions;
- A is a finite set of ares such that:

P n T = P n A = T n A = ®\
- N is a node fiinction; it is defined ffom A into P x f u T x P;
- C is a colour function; it is defined ffom P into 2!;
- G is a guard function; it is defined from T into expressions such that:

V? e T: [Type(G) = B a Type(Var(G(t))) ę £] ;

70

- E is an arc expression function; it is defined from A łnto expressions such that:
Va e A: [Type(£(a)) = C{p{a))MS a Type(Var(£(a))) cz X], where p(a) is the place of
N(a) and C{p(a)) is timed or untimed multi-set over C(p(a));

- I is an initialisation function; it is defined from P into closed expressions such that:
\/p e P\ [Type(/(p)) = C(p)MS], where C(p) is timed or untimed multi-set over C(p);

- R is a set of time values, also called time stamps; it is a subset of ̂ .closed under + and
containing 0 ;

- r0 is an element of R, called the start time.

The behaviour of the net is specified by a pair (M , r), where M is a marking (a timed
multi-set over the set of all token elements) and r is a time value.

Figurę 7 provides a Hierarchical Timed Coloured Petri Net model of the embedded con-
troller discussed in the paper. Tokens taskl and task2 denote two separate control tasks that
are executed simultaneously in the system. Tokens timl, tim2 and tim3 denote three elements
of the timer subsystem that all ensure the 1 0 0 or 1 0 1 cycle period of the modelled system or
cause the firing of transition "Process time-out fault-stop" which places token timeout_err in
place "Time-out error". Tokens get time stamps via expressions called delay expressions.
A delay expression has the form: @+ expression where "@+" appears literally, and expression
is an arithmetic expression. A delay expression may be associated with a transition (e.g. "Pro
cess tasks") or can be appended to an arc inscription (e.g. the output arc of transition "Process
timer 1"). The occurrence of transition "Process tasks" may be interpreted as an execution of
computations by the tasks. The time period associated with the execution of the taskl and
task2 is determined by the result of the function ran'tl_delay() or ran't2 _delay(), respectively.
Probabilistic distribution of time stamps is used to realistically determine possible delays. The
control task and the timer task co-operation are simulated by the occurrence of transition
"Synchronise". The occurrence of transition "Process time-out timers 2, 3" removes unused
tokens tim2 and tim3 in case of a successfully accomplished cycle of the controller.

The current marking of the net presented in Figurę 7 enables the occurrence of a bin-
ding elements: b\ = <"Synchronise", (1'tim l, 1'taskl, l'task2) >, b2 = <"Process time-out
fault-stop", (l 'tim l, 1 'tin > or = <" Process time-out timers 2, 3", (l'tim 2, l'tim3)>.
The time stamp associated with the token in place "Timer 1 executed" is eąual to the model
time (200 time units). When we assume the earliest and maximum rule of occurrence of the
net, transition "Synchronise" must occur at the current State of the system. Simultaneously,
the time stamps of tokens tim2 and tim3 (201 and 202 time units) are higher than the current
time model what prevents from the occurrence of transition "Process time-out fault-stop".
Transition "Process time-out fault-stop" occurs only if the time stamp of token taskl or
task2 is higher than the time stamp of token timl, what means that the execution of at least
one of the control tasks exceeded a stated controller's cycle of computations.

The Timed Coloured Petri Net model of the embedded controller differs from the
models previously presented in the paper. On one hand the part of the net that models the
computations of the tasks became reduced, on the other hand the part of the net that
models the timer had to be extended. The reduction results from an ability to define the
colours of the tokens. The extension results from the time model of the nets.

71

Fig. 7. Timed Coloured Petri Net model of a simple embedded system1)

') The net was edited using CPN/Desing tool

72

The time stamps of the tokens are naturally interpreted as the duration of the com-
putation, whereas in the previously presented nets (sections 2, 3, 4, 5.1) the timing con-
straints were interpreted as the enabling duration (the time interval within which the
transition must occur or fire) [3, 4]. However, the hierarchical approach to representa-
tion of the system permits hiding the extended time synchronisation model into one
substitution transition ("Process synch.") (Fig.7). As a result we have obtained a fairly
simple high-level model of the system supplemented by low-level sub-net, which imple-
ments a time-out fault-stop mechanisms.

Timed Coloured Petri Nets seem to be one of the most flexible and generał time exten-
sions of high-level Petri nets. The nets combine the ability to represent large systems in
a concise way (the possibility to construct hierarchical model of a system) with a simple
and flexible model of the time.

Timestamps associated with the tokens influence on the local behaviour of the net with
respect on the State of global clock. The time model of Timed CP-Nets assumes global
synchronisation of occurrences. Systematically developed and easy to obtain "CPN/De-
sign" [19, 20] and "CPN Tools" programs enable to provide tools for analysis and simula-
tion of Coloured Petri Net models of developed systems.

The main method of verification of Timed CP-Net models is the construction of timed
occurrence graph [16]. Each node of the graph contains a time value with timed marking
and each arc denotes occurring binding element. For a non-cyclic CP-Net, a timed occur
rence graph will often be much smaller than the corresponding untimed occurrence graph,
because the time constraints limit the possible orders in which binding elements may occur.
However, if we use non-deterministic time delays, with a large number of possible time
values, we may get a larger occurrence graph. For a cyclic system a timed occurrence graph
usually become infinite. The way of solving the explosion of States in the graph is a con
struction of subgraphs that enable to analyse parts of modelled system.

6. Conclusions
In this paper we have discussed the abilities to specify and verify hard real-time systems by
means of time extensions of Petri nets. Ali presented time extensions of the nets meet requ-
irements fixed in the first section of the paper: the so-called strong firing semantics and the
ability to represent time as time intervals within which events must occur. Conseąuently,
we omitted several published time extensions of the nets as Timed Petri Nets or Stochastic
Petri Nets that, in our opinion, can not successively be used for hard real-time system speci-
fication. (However, some of them were successively used in the hard real-time system per
formance evaluation, e.g. [8].)

The strong firing semantics and hard timing constraints that influence on the firing of
transitions in the nets cause that the nets must be considered under the global mechanism of
time synchronisation. The local firing or occurrence rules of transitions are always globally
synchronised in the time domain. Hence, we can always obtain strict State of modelled
system with respect to the executing or fulfilled tasks as well as the time.

The introduction of time extensions of Petri nets led to a significant development of real-
time system modelling methodologies. However, the greater experssivity of the nets result in
difficulties in formal verification of systems modelled. The enabling time of transition cha-

73

racterised by a time interval may cause the infinite amount of States of the net after the trans-
ition firing. Conseąuently, the new methods of analysis had to be proposed for the nets. Most
of them were pointed out in the paper. In generał, the analysis methods of time extensions of
Petri nets use the idea of extended reachability graph. In comparison with classical Petri net
reachability graph, the extended one usually includes the information about the time domain
of the net and sets of possible markings after the firing of the transition. Additionally, for some
extensions of the nets, place or transition invariant methods of analysis were proposed [2 , 16].

For almost all presented in the paper time extensions of Petri Nets (except from Statically
Timed Petri Nets) adeąuate software tools were developed. The tools manage to simulate
behaviour of the modelled net as well as provide a possibility to formally analyse and verify
the net by means of selected analysis methods. Even if the net cannot be successively analysed
by means of the formal method, the visualised and registered by software tool execution of the
net may bring significant information about the properties of modelled system or object.

At present, time extensions of Petri Nets are used as a specification semi-language for
real-time system developing. The Petri Net models enable the simulation and the partial
formal analysis of developed Systems. As the modem real-time Systems become seriously
complicated, only the net semantics that provide the possibility to construct the hierarchical
nets seems to be applicable enough. Hence, Time Hierarchical ER/TB Nets and Timed
Hierarchical Coloured Petri Nets seem to be the most adeąuate time extensions for modem
real-time system modelling. However, it should be mentioned that the most popular hierar
chical time extension of the nets are Timed Coloured Petri Nets. Additionally, high-level
Petri nets provide a new approach to time modelling.

Table 1
Basic properties of time extensions of Petri nets for hard real-time systems specification and verification

Property Time Petri
Nets

Arc Time
Petri Nets

Statically Timed
Petri Nets

Time ER/TB
Nets

Timed Coloured
Petri Nets

Firing rule Strong Strong Strong/Weak Strong/Weak
Strong, earliest,

maximum
Timing

constraint tvne
Static
interval

Static
interval

Static
interval

Mathematical
formula

Single constant/
stochastic value

Timing
constraint

attachment
Transition

Transition’s
incoming

arc

Transition,
place,

incoming arc
Transition

Transition,
transition's
outgoing arc

Timing
constraint
meaning

Enabling
duration

Enabling
duration

Enabling
duration

Enabling
duration

Firing
duration

Time
synchronisation

Global Global Global Global Global

Formal
analysis
method

Extended
reachability

graph

State
graph

-
Time

Reachability
Tree

Timed
occurrence

graph
Software tools
for simulation
and analysis

INA, ARP ATNA, INA - CABERNET/
MERLOT

CPN/Design,
CPN Tools

Ability to construct
hierarchical models Yes No No No Yes

74

The ability to use mathematical or programming language formulas to model the time
in the nets enables to construct morę complex and flexible models of a wide rangę of real-
time systems.

A breakdown of the basie properties of time extensions of Petri nets presented in the
paper is included in Table 1.

We can conclude that the modem time extensions of Petri nets with the strong firing
semantics may be designed to model and verify hard real-time systems. Apart from time
extensions of classical Place/Transitions Nets, time/timed high-level Petri nets seem to pro-
vide a very promising methodology of time modelling. However, it must be noted that time
extensions lead to significant complexity in mathematical analysis of the net behaviour. Hen-
ce, in our opinion, futurę research conceming time extensions of Petri nets will concentrate on
the following problems. Firstly, an adeąuate methodology of hard real-time systems model
ling by means of time extensions of Petri nets should be proposed. The methodology might
provide the rules of hard real-time system specification as well as the net models of adeąuate
time mechanisms cmcial for a system development. Secondly, formal approach to the com-
plex analysis and verification of Petri net models of the systems should be developed. The
approach might enable to formally prove selected properties of modelled systems.

References
[1] van der Aalst W.M.P.: Interwal Timed Coloured Petri Nets and their Analysis. Application and

Theory of Petri Nets 1993, Proc. of the 14th International Petri Net Conference, Chicago
1993, Lecture Notes in Computer Science, vol. 691, Springer-Verlag 1993, 452—427

[2] Berhtomieu B., Diaz M.: Modeling and Verification of Time Dependent Systems Using Time
Petri Nets. IEEE Transactions on Software Engineering, vol. 17, No. 3, March 1991, 259-273

[3] Bowden F.D.J.: Modelling Time in Petri Nets. Proc. of the Second Australia-Japan Workshop
on Stochastic Models in Engineering, Technology and Management, Gold Coast, Australia,
July 1996

[4] Bowden F.D.J.: A Brief Survey and Synthesis of the Roles ofTime in Petri Nets. Mathematical
and Computer Modelling, 1999

[5] Burkhard H.D.: Ordered Firing in Petri Nets. Journal of Information Proc. and Cybemetics
EIK, 17, 1981, 71-86

[6] Cerone A.: A Net-Based Approach for Specijying Real-Time Systems. Dipartamento di Infor-
matica, Universita di Pisa 1993 (Ph.D., Thesis, TD-16/93)

[7] Cerone A., Maggiolo-Shettini A.: Time-Based Expressivity of Time Petri Nets for System Spe
cification. Theoretical Computer Science, vol. 216, 1999, 1-53

[8] Coolahan J.E. Jr., Roussopoulos N.: Timing Reąuirements for Time-Driven Systems Using Au-
gmented Petri Nets. IEEE Transactions on Software Engineering, vol. SE-9, No. 5, September
1983, 603-616

[9] Felder M., Ghezzi C., Pezze M.: Formal Specyfication and Timing Analysis of High-Integrity
Real-Time Systems. Real Time Computing, NATO ASI Series, vol. 127, 1992, 187-211

[10] de Frutos-Escrig D., Ruiz V.V., Alonso O.M.: Decidability of Properties of Timed-Arc Petri
Nets. Application and Theory of Petri Nets 2000,21 st International Conference, ICATPN 2000,
Aarhus, Denmark, June 26-30, 2000, 187-206

[11] Ghezzi C., Mandrioli D., Morasca S., Pezze M.: A Unified High-Level Petri Net Formalism
for Time-Critical Systems. IEEE Transactions on Software Engineering, vol. 17, No. 2, Febru-
ary 1991, 160-172

75

[12] Hanisch H.M.: Analysis of Place/Transition Nets with Timed Ares and its Application to Batch
process Control. Application and Theory of Petri Nets 1993, Proc. of the 14th International
Petri Net Conference, Chicago 1993, Lecture Notes in Computer Science, vol. 691, Springer-
-Verlag 1993, 282-299

[13] Hanisch H.M., Thieme J., Lautenbach K., Simon C.: Timestamp nets in technical applica-
tions. Proc. IEEE Int. Conf. on Systems, Man, and Cybemetics (SMC'98), San Diego, CA,
11-14 October 1998, 119-124

[14] Halang W.A., Sacha K.M.: Real-Time Systems. London, World Scientific Publishing Co. 1992
[15] Holliday M.A., Vemon M.K.: A Generalized Timed Petri Net Model for Performance Analy

sis. IEEE Transactions on Software Engineering, vol. SE-13, No. 12, December 1987,
1297-1310

[16] Jensen K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. vol. 1-3.
Berlin, Springer-Verlag 1995/96

[17] Leveson N.G., Stolzy J.L.: Safety Analysis Using Petri Nets. IEEE Transactions on Software
Engineering, vol. SE-13, No. 3, March 1987, 386-397

[18] Merlin P.M., Farber D.J.: Recoverability o f Communication Protocols - Implications of a The-
oretical Study. IEEE Transactions on Communications, September 1976, 1036-1043

[19] Meta Software Corporation: Design/CPN Tutorial for X-Windows. Meta Software 1993
[20] Meta Software Corporation: Design/CPN Reference Manuał for X-Windows. Meta Software

1993
[21] Murata T.: Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE, vol. 77, No.

4, 1989, 541-580
[22] Peterson J.L.: Petri Net Theory and The Modelling of Systems. Englewood Cliffs, Prentice-

-Hall, 1981
[23] Ramamoorthy C.V., Ho G.S.: Performance Evaluation of Asynchronous Concurrent Systems

Using Petri Nets. IEEE Transactions on Software Engineering, vol. SE-6, No. 5, September
1980, 440-449

[24] Ramchandani C.: Analisys of Asynchronous Concurrent Systems by Petri Nets. Project MAC,
MAC-TR 120, MIT 1974 (Ph.D. Thesis)

[25] Roch S., Starkę H.P.: INA Integrated Net Analyzer, Yersion 2.2, Manuał. Berlin, Humboldt-
-Universitat zu Berlin, Institut fur Informatik, Lehrstuhl fur Automaten und Systemtheorie 1999

[26] Sacha K.: Projektowanie oprogramowania systemów wbudowanych. Warszawa, Politechnika
Warszawska 1996 Prace Naukowe Elektronika, z. 115,

[27] Sifakis J.: Performance Evaluation of Systems Using Nets. Net Theory and Applications, Proc.
of the Advanced Course on General Net Theory of Processes and Systems, Hamburg, October
1979, Lecture Notes in Computer Science, vol. 84, Springer 1980, 307-319

[28] Starkę P.H.: Some Properties of Timed Nets under the Earliest Firing Rule. Lecture Notes in
Computer Science, vol. 424, Advances in Petri Nets 1989, Germany, Springer-Verlag 1990,
418-432

[29] Starkę P.H.: A Memo on Time Constraints in Petri Nets. Informatik-Bericht, Nr 46
[30] Stórrle H.: An Ealuation of High-End Tools for Petri-Nets. Ludwig-Maximilians-Universitat

Miinchen, Institut fur Informatik, June 1998
[31] Szmuc T.: Zaawansowane metody tworzenia oprogramowania systemów czasu rzeczywistego.

Kraków, Cracow Centre for Advanced Training in Information Engineering, vol. 15, 1998
[32] Walter B.: Timed Petri Nets for Modelling and Analysis Protocols with Real-Time Characteri-

stics. Proc. 3rd IFIP Workshop on Protocol Specification, Testing, and Verification, North-
-Holland, Amsterdam 1983, 149-159

[33] http://www.daimi.au.dk/PetriNets/classification/tools/cabemet.html
[34] http://www.daimi.au.dk/PetriNets/classification/tools/merlot.html

http://www.daimi.au.dk/PetriNets/classification/tools/cabemet.html
http://www.daimi.au.dk/PetriNets/classification/tools/merlot.html

