
Zbigniew Skolicki*

SEMIGROUPS, GROUPS AND GRAMMARINFERENCE
PROBLEM

C om puter S c ien ce Vol. 4 . 2 0 0 2 81 ’3 2 :5 12 .5 3 /.5 4

In the paper we analyse a problem o f inferring a grammar from a given sample o f a langu-
age. We try to present an algebraic formalism capable o f describing the issue. We consider
two cases: a case o f inferring canonical finite-state grammars, and a case o f inferring
generał grammars. In both cases we define a semigroup structure. Finally we look at the
possibility o f getting a structure o f a group.
Keyword: grammar inference, semigroup, group

PÓŁGRUPY, GRUPYI ZAGADNIENIE WNIOSKOWANIA GRAMATYCZNEGO
Praca omawia problem wnioskowania gramatycznego na podstawie próbki języka. Pro
blem przedstawiony jest w kontekście algebraicznym, poprzez próbę stworzenia adekwatne
go formalizmu opisującego to zagadnienie. W pracy rozwa one są dwa przypadki - kano
nicznej gramatyki regularnej oraz ogólnej gramatyki. Dla obu podproblemów stworzony
został opis u ywający półgrup. W końcowej części pracy rozwa amy mo liwość opisania
wnioskowania gramatycznego przy u yciu grup.
Słowa kluczowe: wnioskowanie gramatyczne, półgrupy, grupy

1. Introduction
Grammars and formal autom ata are the basie objects o f formal linguistics theory. Research,
classification and trials o f m athem atical description leads to a later practical usage. There
is a lot o f applications. From a w ide rangę o f fields, where they are used, let us only say
about the high energy physics, satellite photography analysis, applications in m edicine (trials
o f automatic preliminary diagnosis based on the ECG and EEG charts), com pilators gene-
rating, speech recognition and artificial intelligence [1, 2]. W hen we start from having
a grammar, we can analyse the corresponding language, we can bulid the autom ata for this
gramm ar and we can describe it in a formal way to m athem atically test its properties [5],
These problem s are very well known in Computer science [3, 4], However, m uch m orę
intriguing concept is the one o f reversing the problem . In reality we often com e across

Institute of Computer Scence, Jagiellonian University, Cracow, e-mail: skolicki@ii.uj.edu.pl

39

mailto:skolicki@ii.uj.edu.pl

a situation when we have a language which we want to describe. We need to bulid the
proper grammar which would be able to generate the language. The process of creating the
grammar is the main issue here [1]. The basie reąuirement on the inferred grammar is that it
was compatible with the sample of the language presented. Moreover, it should be relative-
ly easy to construct and of a reasonable size. (By size we understand the number of nonter-
minals and productions). Optimally, we would have an automata that would get a language
sample on the input and produce the proper grammar on the output. Unfortunately, con-
struction of such an automata in the generał case seems to be very difficult and therefore
there is a lot of algorithms saying what to do in specific cases (we can put restrictions on the
form of the inferred grammar, for example we can reąuire it to be regular). We hope that
transferring the problem into the field of mathematics would give us a different view on the
issue and would enable us to get results of notable implications in formal linguistics. This
would defmitely improve our practical skills in automatic data transforming. In this paper
we will present a trial of a generał, mathematical formulation of the problem.

2. Problem definition
Let us have the language L, for which we want to bulid the grammar. At first we will
introduce some definitions.

Definition 1

S* (L) (a positive sample) o f the language L is a set o f words o f which we know that they
belong to L. We omit (L) i f it is known which language we mean.

s+ = {+ v i,.... +yn}, e v r*.

5“ (L) (a negative sample) o f the language L is a set o f words o f which we know that they
do not belong to L. We omit (L) i f it is known which language we mean.

S~= {-Ti, V, y, e Vr*.

S(L) (a sample) o f the language L is a pair o f the positive and the negative sample. We
omit (L) i f it is known which language we mean.

S = (S+,S-).
Definition 2

The grammar G is compatible with the sample S i f the following inclusions hołd:

S + e L(G),

S-cz Vt *\L(G).

In the definition 2 by Vr* we denote all the words over the terminal alphabet VT, which
consists of all the terminals found in S.

Let us show on a simple diagram the relationships between the sample S, the grammar
G and the language L (Fig. 1).

4 0

Fig. 1. Relationships between the sample S, the grammar G and the language L

Naturally we would like to generate such a grammar G that would produce a language
compatible with the sample 5. To describe these processes we have introduced two func-
tions: y that leads from the set of all possible samples into the set of all possible grammars,
and <|> that leads from the set of grammars into the set of all possible languages. Obviously,
we have (|>(G) = L(G) and therefore this function is precisely defmed. The problem is to fmd
the adeąuate function y.

3. Canonical finite-state grammars and semigroups
Let us first present the simplest algorithm of getting canonical definite finite-state gram
m ar Gc = (VN, VT, P, S0) from the positive sample

S += {xu ..., xn).

Algorithm la [1]

Step 1. Scan all the words in S*, indentify all the used signs and the set of them ascribe to
Yp

Step 2. For each word xt = a,1 a " e SP create (n - 1) non-terminals (let us cali them
Z,1, Z"'1) and create a distinctive set of new productions following the pattem:

S —> a Z / ,

Zi a?Z?,

Z F X -> a/1.

Step 3. Assign:
VN - the set of all nonterminals created in the step 2 .
P - the set of all productions created in the step 2.
S - the start symbol.

41

It is not difficult to notice that a canonical grammar for each word has a separate seąuence
of productions, which applied one after another derive the word.The language generated by
such a grammar is eąual to S*. Hence, the first condition of compatibility is fulfilled. Be-
cause S~ is empty in this case, automatically also the second condition is true and therefore
the algorithm is sound.

In the above example we thought about the sample as of something that we are given
before we start to construct the language. However this is not always the case and, in fact, it
is morę often that we leam seąuentially about the consecutive words. We have to build the
grammar on-line, and modify it according to the new information about each word.

Definition 3
An information seąuence co fo r the language L is a series o f words o f which we know
whether they belong or not to L. It can be infinite.

The words in information seąuence are presented one by one and the process is exten-
ded in time. Therefore we have to modify slightly the Algorithm la. to operate on-line.

Algorithm lb
Step 1. Assign:

VN = 0 ,
VT = 0 ,
P = 0 ,
S - the start symbol.

Step 2. For each word x,= a,1,..., a" from the information seąuence do:
Step 2.1. Scan the word x, and identify all the signs used. Add the new ones to VT

VT= VTu {a/ , ..., ar}\

Step 2.2. Create (n - 1) non-terminals (let us cali them Z,1, ..., Z,"-1) and create a di-
stinctive set of new productions following the pattem:

P ' : S —r a ^ Z f

P ł : Z,-1 -> a?Z?,

Pr : Z r x -> a,";

Step 2.3. Update the non-terminals and productions sets

VN= V N<j{Z> , . . . ,Z r ' } ,

P = P v { P > ,.. . , P/1}.
Definition 4
We denote by S, (L) the sample o f the language L that is created by taking the words from
information seąuence co presented until time t.

If we assume that we get information about one word in each time unit then St(L) is built
from the first t words of the information seąuence for the language L. The difference between G,
and Gff! corresponds to the modification madę upon receiving the (tf-l)-th word on the input.

4 2

Let us assume that we have a universal set V of all terminals and nonterminal symbols
from grammars, and a set D of all possible grammars (we have the inclusion £>c 2V x 2 v x
x 2V'* v x V, because each grammar can be presented as a ąuadruple (VN, VT,P , S) and for
each component the proper inclusion holds.)

These additional sets are needed to introduce a transition function 8 , which describes
the change of the grammar that must be done when we get information on the next word
from the information seąuence. The 8 function takes a grammar and a word from the langu-
age and retums the new grammar that generates both the words accepted by the grammar on
the input as well as the new word. It is worth noticing that we don't have to built the new
grammar from the beginning. It is enough to modify the already existing one. The definition
of such a function for the process of building a canonical fmite-state grammar is given below.

Definition 5
The 8 function is defined in the following way:

8 : D x

8 ((F„, VT, P, S0), a ',+1... a* f ' 1) = (V'N, V'T, P \ S0),

S((VN, VT, P, S0), X) = (VN, VT, P u { S 0 -> X), S0),
where:

b/+il -i|
V'n =Vn u U i {Z/+I},

V't = V t u U=i {a/+1},

|x,+i|-l|
P ' = P u {Ą -> a',+1 ZV,} U U {Z/+1 -> a /tiz /;!) u Z & " -> a f t * .

The following statement holds

8 (G„ Xf+i) = Gf+1,

Xf+\ - the new word presented in time <+l,
G, - the grammar generated in time t, it accepts the words X\, ..., x„
Gf+i - the grammar generated in time t + 1 , it accepts the words x u x,+\.

It is not difFicult to expand this function to the function 8 2% which takes on its input
a grammar and a seąuence of words (instead of one word) and retums the grammar that
accepts both previous as well as new words. We can give a recursive

Definition 6
The function 8 2 : D x (F*)* -> D , is defined in the following way:

8 2(G, x,) = 8 (G, x,),

8 2(G, x,... x„) = 8 (82(G, x {... x„_,), xn),

where ... xn is the input seąuence o f words.

43

Further, we can construct a set of functions 8 m describing the change of the grammar
upon receiving the word seąuence co.

Definition 7

For each seąuence o f words co = *,... the function SM : D —> D is defined in the
following way

&m(G) - S2(G, co).

The following statement holds for the catenation of these functions with every gram
mar G as an argument

(8 <o2 ° 8 <o,)(G) = Stojka),(G1)) = 52(82(G, co,), co2) = 82(52(G, 0J1) ,x 2 1...x2l<°2l) =

= S(S2(8 2(G, co,), x 2 ' . . jc2KH), x 2W) = ... = 8 (...8 (8 2(G, co,), x2')..., x2W) =

= 8 (... 8 2(G, co,jc2')..., x 2W) = ... = 8 2(G, co,x2‘... x 2W) = 52(G, co,co2) = S ^ /G) .

And therefore the catenation is associative

8a>3 ° (8<o2 0 8(0,) — 8ot>3 ° 8<o , io2 — 8 o>,co2<03 — 8(d2id 3 0 8(o, — (8ft>3 0 8co2) 0 8<o,-

Putting all of the above together we notice that functions 8 0) with catenation constitute
a semigroup. What's morę, this is a commutative semigroup, because the resulting gram
mar built for an information seąuence co is always the same, indepedently of the order in
which the words appear in co (we allow permutations on nonterminals). This is a result of
the fact that for each word there are separate productions created.

(8<o2 ° 8(o,) (G) = (So,, o 8^) (G).

Of course, we have to fmd the neutral element for this semigroup. However, contrary to
what we might think, is not the one, because if the input grammar doesn't produce the
empty word, then it will be modified on applying so that it generates it. Therefore we have
to put 8 0 (this corresponds to the situation when in time unit t there is no word presented). It
holds that 8 0 = id \ 5 . The seeming inconsistency results from the fact that 8 0 corresponds to
the empty word of the monoid (V *)* and X is the empty word of the monoid V *.

Let us define the starting grammar for the inference process to be

Go=({So} ,0 , 0 , So).

Different information seąuences may result in equivalent grammars. We can use this
for creating equivalence classes on information seąuences. For example, we can have one
of the following definition of equivalence relation:

- co,iHo)2 <=> 8W1(G0) = Sm2 (G0) (s if grammars eąual).

- ra,5Rco2 <=> Z.(8o),(G0)) = L (8m2 (G0)) {= if languages eąual).

4 4

If we think about how a canonical finite-state grammar is constructed we ąuickly noti-
ce that in both cases we have the same relation 9* (allowing for permutation of nonterminals
in productions of the grammars). The following condition holds

coi5Rco2<=> V Tj, t 2 e (K*)*

and therefore the relation 91 is a congruence. Instead of using the information seąuences we
could use the equivalence classes of them. Because two canonical finite-state grammars
produce exactly the words that were given in the information seąuence they are eąual if and
only if the set or words presented are the same. Therefore an equivalence class of a sequen-
ce to consists of all the sequences that possess the same words, maybe in different order.
Simply saying, the order of words is unimportant and therefore we can use sets of input
words (samples) instead of information sequences. The 8 m functions can be redefmed to bA
functions, where A is a set of words.

Now we can define the function y in the following way

yCT) = 8S+(G0).

It seems that constructing the analogous functions for the so-called derived grammars
should not be much harder. A derived grammar is created ffom a canonical grammar by
groupng the non-terminals into equivalence classes and taking these classes as new non
terminals (and, obviously, exchanging the non-terminals in all the productions and in the
start State). One could probably create these equivalence classes already in the process of
the grammar constructing. When analysing a word one wouldn't necessary introduce as
many new non-terminals as the length of the word. Instead we could use some of the alre
ady existing non-terminals. The equivalence class to which a new non-terminal would be-
long, if created, would be the right substitution.

Canonical finite-state grammars are very 'reliable' structures. They depend very close-
ly and strictly on samples and therefore we have the implications:

5 t c ^ = > y (5 t) = G1 c G 2 = y (^ 2),

S +\ (z S 2 => L (G,) c L (G2).

4. General grammars and semigroups
Up to this point we have analysed the situation in which we have the empty negative sam-
ple. In other words, all the words on the input were supposed to be examples of the words
constituing the language L. It is interesting to see what we can say in the situation when the
grammar is affected by both a positive and a negative sample.

The algorithm of building a canonical finite-state grammar is a good example of gram
mar inference, but in reality it leads to huge and impractical grammars (it doesn't generalize
the language it gets on the input). Therefore in practical applications we would definitely
have to find a morę effective tool for inferring a grammar. Because of that we will consider
a generał case in which we resign from the Algorithm 1 and assume having some morę
sophisticated one. The grammar produced by this algorithm would generate such a langu-

45

age, that the positive sample would be a proper subset of it. Therefore the negative sample
can influence the grammar being created (if we were still using Algorithm 1 we could
simply ignore the negative sample and the grammar wouldn't produce any word ffom it -
because it wouldn't produce any word other than in the positive sample at all!). The negati-
ve sample can restrict the language being created.

Let us look if we can get the structure of a semigroup following the path analogous to
the one that we have already seen. As previously we will try to construct the mappng 8 that
describes the changes madę in the process of creating the grammar.

We cannot allow 8 to have the domain D x V , because in generał case it is not enough
to know the grammar itself. We have to keep somewhere the information about the words
that have been declined (the words in the negative sample) and also about the words that
have been assured to be from the language. We cannot say, knowing only the grammar,
which words are not generated, because we were forbidden to generate them, and which
ones are not generated because it happened so in the process of the grammar constructing.
Therefore, introducing new productions we wouldn't be able to say if we did not start to gene
rate some words that are disallowed. Similarly, we wouldn't be able to say which words are
generated because we wanted them to be generated and which ones are generated by chance.
Modifying the grammar to refuse generating some word ffom the negative sample, we could
accidentaly stop generating some of the wanted words. To summarize, it seems necessary to
remember all the words from the samples. The function 8 must be dependent on them.

Hence the following generał

Definition 8

The function 8 is defined in the follwing way:

8 : D x 2 f * x 2 7* x {+, -} x P ^ D x 2 f ’ x 2 f *,

8 (G ,S +, S~, ą ,*) = (G', S '+, s'-),
where:

G - the input grammar,
S + — the positive sample o f the language L,
S~ - the negative sample o f the language L,

- the sign equal to '+' o r t o denote whether the new word belongs or not to
the language L,

x - the new word,
G' - the new grammar that generates the words from the positive sample, S'+ and

does not generate words from the negative sample S'~,
S '+ - the new positive sample given by the following rule:

S<+=S +KJ{X} i f \ = ’+',
s + i f ą =

S"~ - the new negative sample given by the follwing rule:

46

s-
S' - =

S u {jc}
ifk =

i f \ = -■

We observe that the below-given statement holds

8(G(, S f , S , , ^(+i, *<+i) = (G(+i, S+t+x, S^+i).

One could ask what for to use G, when creating Gt+1 if we have all the information in
(S+t+h $t+l) and don't need Gt. This is because we believe that modyfmg the grammar is
ąuicker and therefore morę effective than building it anew. Secondly, the order in which words
appear in the information seąuence may influence the grammar created. We loose this infor
mation because we don't need it any morę, however this information is 'hidden' in the structu-
re of the grammar. Finally, this approach will enable us to give a neat theoretical description.

Now we will follow the same process of enhancing 8 function as we did for the canoni-
cal finite-state grammars. At first we will make 8 to accept seąuences of words.

We give a recursive

Definition 9
The function 82 is defined in the following way:

82 : D x 2F* x 2F* x ({+, -} x F*)* - t D x 2 F’ x 2F*,

82(G, S+, S~, ą,jc,) = 8(G, S+, S~, ą,*,).
8 2(G, S +, S , %xx x... Ł,„x„) = 8 (8 2(G, S +, S , %xx x... ^ ,x„ _ ,),

Futher, we create a set of functions 8 m

Definition 10

For each seąuence of'+' / signs and words (interleaved) 00 = Ł:\XX... £,„x„ the function 8 m is
defined in the following way:

8 u : S x 2f * x 2F*—» D x 2F ,x 2 F’,

8 „(G, S +, S~) = 8 2(G, S+, S~, co).

The catenation of 8 ^ functions is associative and hence again we get a structure of
a semigroup with the neutral element 8 0 . This time, however, we have no information on
whether this is a commutative semigroup because we don't know if the order in which we-
analyze words is important or not. This is dependent on the actual algorithm we use and
nothing can be said in generał.

We assume that in one time unit one new word comes, either into the positive sample
or into the negative sample. We deftne a seąence cos by putting all this words into one
series. If, in time t, we get a word x, from the language L, then we append +x, to <%. If the
word x, does not belong to the language L, we append -x t. Now, we can give the definition
for the function \y (G0 was defined in section 3)

V0S) = Sm/Go, 0, 0).

4 7

In the generał case the congruence 91 on the input information seąuences cannot be
defined as the eąuality of the languages generated by the proper grammars. It may happen
by chance that two different stucturally grammars produce the same language. However,
afiter adding productions for the next word to be generated these grammars become
inconsistent. We may still have the relation

«>i9I(o2 <=> 5<oi(Go) - 5w2(G0).

The size of the equivalence class depends on the inference algorithm used. However,
it is very unlikely that such a class will consist of all the seąuences with the same words.

Let us look at the following implications:

1) S\ cz S j => G| c G2 (G,- are the grammars constructed),
2) S,+ c 5 2+=>L(G ,)c :L (G 2),
3) e 5 f =» G] Z) G2 (G, are the grammars constructed),
4) S f czS 2 =>L (G,) z> L (G2).

Although they may hołd in some simple cases, in generał they are not necessarily true.
Let us see the following

Example 1

Let us consider the sets:

S,+ = {ab, a 2b2},

S,~ = {aaaabc},

G, = ({5}, {a, b, c), {S -> aS, bS, a, b, X}, {5}).

The new word in the information seąuence is +abc what means that it should be added
into the positive sample. If we only added some productions and thus enabled generating
abc starting from S, we would simultanously enabled generating the word aaaabc in the
derivation shown below

S => aS => aaS => aaaS =>* aaaabc.

Therefore we have to remove some productions, so the inclusion Gx cz G2 won't hołd.
Moreover, it is unlikely (although it depends on the algorithm) that the inclusion L { cz L2
was true. We would have to insert such new productions, that all the words that were gene
rated before can be generated after the modifications. Despite the fact that it will surely com-
plicate the grammar it may not agree with the idea of abstraction of the language given to the
input.

Analogously, the bigger 5“ set does not mean that the grammar and the language must
be smaller. On the contrary, if we disallow some word this will probably lead to the enlarge-
ment of the grammar (it must be morę complex). The changes to the set of production may
cause the langauge to grow, too.

In the rare case when the implications 2) and 4) hołd it is sensible to defme a partial
order on samples.

48

Definition 11

The relation n making the parłial order on samples is defined in the following way

(St , S[) n (Sj , S 2) => (5,+ c 5 2+)A (5 f =) S2).

Directly from inclusions 2) and 4) we see that

St 7i S2 => L (GO c L (G2)

what can help us to reject some of possible samples, if we know that the smaller one (in the
sense of n) already makes the language too big.

5. A word on grammars inference, 8 (functions and groups)
One may ask if it is possible to get a structure of a group on the 5 functions. The answer is
yes, but only under very heavy restrictions. When we get a new word in the information
seąuence, we put this information into the grammar structure by modyfing its productions
(and nonterminals and terminals). To create a structure of a group we need to fulfill the
following reąuirements:

- For each operation 8 we have to be able to fmd a reverse operation - 8 that would
remove the information introduced by 8 and restore the previous State.

- We cannot expect that the last operation is the one to be reversed. Therefore the infor
mation put by different operations into the grammar structure must be kept separately,
so that a piece of information corresponding to some operation 8 can be removed wi-
thout interferring the rest of information.

- Each mapping 8 (except the neutral mapping) must either remove some information
that has been introduced by the mapping - 8 (because (- 8) ° 8 = id), ot , if - 8 did not
happen, it must put some information (because 8 * id). This information can be later
removed by - 8 (because 8 » (- 8) = id).

- Repeatitive applying of the same operation 8X must each time modify the information
kept in the grammar. Although it seems natural to ignore the second and consecutive
application of the same operation (we already have information about the word x and it
is stored in the grammar) and to put 8X° 8X = 8X we cannot do it. There is no problem
if we want to have a semigroup structure. However, if we aim at getting a structure of
a group, we must obey the statement saying that 8 ° (- 8) = id = (- 8) ° 8 . If we allowed
both of the above eąuations we would get a contradiction.

8 = 8 ° id = 8 ° 8 ° (- 8) = 8 o (- 8) = id.

Each operation would have to be the identity!
The algorithm of building a canonical fmite-state grammar is a good candidate to be

modified to get the structure of a group. It fulfills the above-given reąuirements. The "in
formation" about each word generated is kept separately, namely in the form of a set of
distinct productions. These productions can safely be removed in the process of the 'reverse'
operation. Removing these productions will not cause the grammar to cease generating
other words, because the sets of productions are disjunctive and also because, in the process

4 9

of generating a word we don't use any of the productions for any other word. The order in
which the productions were introduced does not matter and thus we can safely remove ones
created many steps ago.

Let us look at two possible implementations.

Example 2

As in the ordinary algorithm for a canonical grammar we will have just words in the infor-
mation seąuence - we won't divide them into positive and negative samples. However we
will allow one word to appear many times. Every time the word comes, it will make the
grammar either start or stop generating the word, depending on the actual State of the gram
mar. In this way the operation -8 X is the same operation as the Sx one. In practice we have
only to change the step 2 of the algorithm. The updated algorithm is given below.

Algorithm 2a

Step 1. Assign:
VN = 0 ,
VT = 0 ,
P = 0 ,
S - the start symbol.

Step 2. For each word x t = a,1, ..., a " from the information seąuence do:
Step 2.1. Check if there exist productions:

S -» a,‘Z,1,

Z/ - 1 -> a/Z /,

z r ' -» a".

with some nonterminals Z,1, ..., Z,"'1.

If yes, cali these productions P',..., P". If not, go to step 2.3.
Step 2.2. It holds that x: e L(G) and we want to remove it from L{G). Remove the

productions and nonterminals:

P = P \ { P , P,"},

vN= v N\ { z > , . . . , z r 1}.

Check all the productions in G to find out which signs from the set {a,1,
..., a,"} are not used any morę. Remove them from VT (the last operation
can be omitted).
Go to step 2 (take the next word).

Step 2.3. The word x,- is not generated by the grammar G. Add the appropriate ter-
minals to VT, nonterminals to VN and productions to P so that it can be
derived (copy steps 2.1 - 2.3 from the Algorithm lb).

We see, that after applying the operation 8 * twice we return to the previous State of the
grammar (with accurancy to leaving some morę terminals if we don't care to remove them).

50

Hence, we have

8 , ° 5, = id

and the structure ({SJjc e Vr*}, °) is a group.

However, it seems unnatural to assume that a word should be generated by the inferred
grammar if it appears odd number of times on the input and should not be generated if it
appears even number of times.

Example 3
It seems to be much morę intuitive to assume that if a word gets repeated on the input then
it is even morę likeły to be in the language analysed than in the case when it shows up only
once. In this case the operation cannot be self-reverse. Thus, we need two kinds of opera-
tions - one for inserting information about the words to be generated and the second for
removing the information. If any word appears in the positive sample, productions for deri-
ving this word are added to the grammar. Therefore we cannot hamess any from the words
in the positive sample to do the reverse operation. It seems logical that such function should
be performed by the words appearing in the negative sample. To see this let us remind what
effect a negative sample should have on the grammar. If a grammar generates some word
and this word appears in the negative sample, the grammar should stop deriving it. In the
case of canonical finite-state grammars this is equivalent to removing the proper produc
tions. And this is exactly what we need! The only 'trick' here is that we have to allow words
to appear in both positive and negative samples. Moreover, if the word occurs morę times in
the negative sample we have to remember it, not to start deriving the word before it comes
the same number of times in the positive sample (due to the property that says - 8 0 8 = id).
If the word occurs morę times in the positive sample, we should 'accumulate' this knowled-
ge, either by creating separate sets of productions for each occurence, or by keepng the
number of appearances in some other structure.

It seems sensible to keep two structures together with the grammar, to keep words
from the positive and negative samples. With each word we must also keep the number
saying how many times this word has appeared. This can be realised by keepng two sets S q
and S q . In the set Sc+ we will keep pairs (co, n (co)), where co is a word and n (co) says how
many times morę the word co has appeared in S+. In the set S q we will keep analogous
information about the words that has occured morę times in S~.

Now the algorithm can be written as it is shown below:

Algorithm 2b
Step 1. Assign:

51

Step 2. For each word or,- = a ' , ..., a!' from the information seąuence do:

Step 2.1. Ifar, is in the positive sample (x, e S,+) then:

Step 2.1.1. Check if there exist a pair (ar,-, n) in S G.
If yes, go to step 2.1.2.
If no, go to step 2.1.3.

Step 2.1.2. If n > 1 then S G = S G, u {(or;, n - 1)} \ {(oc,-, «)}
otherwise (n = 1) S G = S G \ {(or,-,l)}
go to step 2 (take the next word).

Step 2.1.3. Check if there exist a pair (or„ n) in S G■
If yes, go to step 2.1.4.
If no, go to step 2.1.5.

Step 2.1.4. SG+ = S c u {(jc„ n + 1)} \ {(or„ «)}
go to step 2 (take the next word).

Step 2.1.5. Add the possibility of deriving the word x, by creating proper
productions and adding terminals and nonterminals (copy the
steps 2.1- 2.3 of the Algorithm lb).

Step 2.2. If Xi is in the negative sample (ar,- e Sj~) then:

Step 2.2.1. Check if there exist a pair (or„ n) in S<j.
If yes, go to step 2.2.2.
If no, go to step 2.2.3.

Step 2.2.2. If n > 1 then SG+= SG+ u {(or„ n - 1)} \ {(or„ n)} otherwise
(n= \) SG+= SG+ \ {(or;, 1)}
go to step 2 . (take the next word).

Step 2.2.3. Check if there exist a pair {(ar,-, n)} in S G.
If yes, go to step 2.1.4.
If no, go to step 2.1.5.

Step 2.2.4. S G = S G ^J {(ar,-, n + 1)} \ {(ar,-, n)}
go to step 2 (take the next word).

Step 2.2.5. Remove the possibility of deriving the word oc, by removing
proper productions, terminals and nonterminals (copy the steps
2.1 - 2.2 of the Algorithm 2a)

The 8 * functions should operate on the three arguments: the grammar G, the S G set
and the S G set. We have:

8 • D x 2vt ' x * x 2vt *x X - + D x 2vt * * x 2vt ' x *

8 A G ,S g+, S g) = (G \ S g ', S g '),

where: G \ S G' and S G' are the input arguments modified by the Algorithm 2b.

52

Again we see that for every element 8X we have the reverse element 8_x and vice versa.
Thus we have a group (U {8 X, 8 _x}, °).

Although this implentation is sligthly morę complex, the interpretation is indeed much
morę intuitive. A word is generated only if it appeared morę times in the positive sample
than in the negative one. We can imagine a system that reads some data and this data is
transformed into grammar inference automata. Of course read errors may happen and, as
a conseąuence, the same word can be sent both into the positive sample (as belonging to the
language) as well as into the negative one. However, these errors, if not to often, will be
ignored. The grammar inference automata will look in which of the samples the word appe
ared morę often.

Unfortunately it is even morę complex to make the same reasoning with the generał
process of grammar inference. This is due to the fact, that the information that we put into
the grammar may be 'diffused' and it may be impossible to take it out of the grammar not
influencing derivation of the other words. The same productions can be used to generate
different words and hence the problem. In the previous example we used the structure of
SG+ and SG~ because we wanted to keep information on how many times the word appe
ared in the sample. The word itself (in case of could be extracted directly from the
grammar. Now, we will need a similiar structure because in generał we cannot extract
even the sample words from the grammar. When we get a word from the positive sample
we create some productions that enable the grammar to derive the word. These produc
tions may also enable to produce some other new words - this way by using the produc
tions already existing, we diminish the number of productions and also we make a kind of
generalization of the input. However, this results in the fact, that the information 'we
know a word x : x e L', which comes through the positive sample is transformed into
weaker 'we know a set A : e A : x e L'.

As it was said in the section 4, the order of words is important.
Summarising all these arguments it seems that the only way to preserve the structure of

a group would be to keep all the information seąuence and make 8X functions dependent on
it. It we wanted to remove the possibility of deriving of some word from the grammar
(when the word appears in the negative sample), we would have to remove this word from
the information seąuence (from the positive sample) and create the grammar anew.

6. Conclusions
From the theoretical point of view, the process of the algebraization of the concepts of
grammar inference seems possible. It would be of a similiar formalisation level as the one
accepted for the weaker grammars and automata [2, 3]. However, because it was done here
in a very generał way, we can suppose that in case of morę specific applications - namely
particular algorithms for grammar inferring - the theory may get much morę complex. In
practical applications we must very carefully watch how much time the proposed procedurę
takes. This is, in tum, a simple derivative of the number of possible Solutions to analyse.
Therefore a transformation of the described model into effective algorithm should be done in
a context of well-known application (e.g. in pattem recognition). This is beyond the scope of
this paper. Nevertheless, it seems, that the theoretical description of the issue may lead to new,
interesting results, which would stimulate the research in grammar inference problem area.

53

Acknowledgments
I would like to thank my supervisor, Prof Mariusz Flasiński, who has suggested the topie,
supplied the bibliography and madę comments on the finał form o f this paper. Yaluable di-
scussions with Prof. Flasiński help me to develop in science, for which I am very grateful.

References
[1] Fu K.S.: Syntactic Pattern Recognition and Applications. New Jersey, Prentice-Hall, Inc. 1982
[2] Aho A.V., Ullman J.D.: The Theory o f Parsing, Translation and Compling. Englewood ClifFs,

N.J., Prentice-Hall, Inc. 1972
[3] Chomsky N.: Syntactic Structures. The Hague, Mouton Publishers 1957
[4] Hopcroft J.E., Ullman J.D.: Formal Languages and Their Relation to Automata. Reading, MA,

Addison-Wesley 1969
[5] Skolicki Z.: Semigroups and automata. ZN UJ (to be printed)

