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DISTORTED PATTERN RECOGNITION
AND ANALYSIS WITH THE HELP OF Hy GRAPH
REPRESENTATION

An algorithmfor distortedpattern recognition is presented. It's generalization ofM. Flasin-
ski results (Pattern Recognition, 27, 1-16, 1992). A new formalism allows to make both
qualitative and quantitive distortion analysis. It also enlarges parser flexibility by exten-
ding the set o fpatterns which may be recognized.
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ROZPOZNAWANIE I ANALIZA OBRAZOW ROZMYTYCH REPREZENTOWANYCH
PRZEZ IEf GRAFY

Praca zawiera algorytm syntaktycznego rozpoznawania obrazéw rozmytych (znieksztatco
nych), reprezentowanych przez IEjgrafy. Jest on uogolnieniem algorytmu parsera dla gra
matyk ETPL(k), podanego przez M. Flasinskiego dla obrazow znieksztatconych. Zapropo
nowanyformalizm pozwala na ilosciowq ijakosciowq analize rozmycia badanego obiektu.
Stowa kluczowe: rozpoznawanie obrazow rozmytych, syntaktyczne metody rozpoznawania
obrazéw, gramatyka ETPLS, parsing gramatyk grafowych

1. Introduction

Graph grammars became an object of interest as a generalization of string grammars well
known in the formal languages theory. They appeared to be a powerful formalism in vario-
us branches of applications: parsing theory, syntactic pattern recognition, parallel and con-
current systems, artificial intelligence, complers design, programming languages, CAD/
CAM tools [5, 6, 7]. In that article we focus ourselves on syntactic pattern recognition
methods.

The first step we have to make before we apply a syntactic graph model is the descrip-
tion of an analyzed phenomena in terms of graph formalism. Finding a proper graph repre-
sentation is our basie task. The difference between theoretical graph model and real world
situation is a common problem arising in the application of a graph methods to pattern
recognition. This difference may be caused either by the distortions and fuzziness genera-
ted by registering devices (for example a camera) or by the natur¢ of cert! physical pheno-
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mena (for example the shadows around an object). In all those cases we have to use some
formalism taking into account possible pattem distortions. Such approach was already pre-
sented in [1], However, a descriptive power of introduced grammar class was restricted by
the finite number of elements in the set of possible distortions.

To resolve the above problem and make arecognizing algorithm morg flexible we
assume that the fuzziness may be parameterized, and that it's possible to defrne distortion
function, measuring the fuzziness of analyzed object, in the parameter space. Such func-
tions, associated with each of graph edge and node, play a key role during graph parsing,
allowing to choose an appropriate production.

The pattem recognition process divides into two phases. The first (syntactic) phase
gives the answer if analyzed graph (namely a graph representation of pattem) belongs to the
language generated by our grammar. In this step we use a modified parsing algorithm for
ETPL(fc) grammars (see [2]). If the answer is yes, we can go to the second phase.

In the second (semantic) phase we check whether distortions do not exceed the limita-
tions imposed on a problem. Those limitations may concem node and/or edges fuzziness.
For example a total value of nodes fuzziness may not exceed a certain threshold. Such an
analysis is possible sifice we assume that distortions can be parameterized.

2. Preliminaries

2.1. An indexed edge-unambiguous graph (IE graph)

We begin our considerations with the defmition of IE graphs. This family of graphs was
introduced in [4] for an ambiguous scene representation.

An IE graph is a guintuple G = (V, E, Z, T, ), where:

V - the finite, nonempty set of nodes to which indices have been ascribed
in an unambiguous way;

r = (yi,y2, Y. - the finite, nonempty set of edge labels ordered by the relation of sim-
ple ordering <; the elements of T can be interpreted as the spatial
relations between the pattem objects, represented by the nodes of G|
T is assumed to be a family of non-symmetric binary relations: for
each label 1e T there exists label Arlsuch that the edges connecting
nodes u and v, (u, A, v) and (v, X1, u), describe the same spatial rela
tion (so called semantically equivalent edges)\

Z - the finite, nonempty set of node labels,

E - the set of graph edges of the form (v, X w) e Vx T x V, fulfilling
conditions:

+ each the edge is directed ffom the node having a smaller index to
the node having a greater one,

o foreachve V:if(v, A o e E then there doesn't exist (v, X z) e E
or (z, A1, V) ¢ E,

¥ F-» Z - the node labelling function.
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2.2. Distortion functions

Let G =(V, E, E, I, Pbe an IE graph. We make the generalization conceming the sets of
node and edge labels E, T:

- EcS,rc ruwhereE, may be finite or infinite (continuous) sets;

- with each element x e E we associate the function p*: Eu—»R+u {0}.

Similarly with eachy e Twe associate [jT: Tu—»R+u {0}.

We impose following conditions on p 2, y

P"W =sup pf (x),

X

Hy(y) = sup p[ ().

yeru

Values py(y), p~ (x) measures the degree of similarity between y, y and x, x respective-
ly. Functions p ], py are called distortion functions.

Example 1
The set of labelled edges is shown in Figure¢ 1. The labels in T = {p, r, s, ¢, u, v, x, y }, can be
viewed as the values of an angular coordinate (analogously to the compass guarters: N, NE,

E, SE and so on); p =0,r=Tr s} =7 n.

Fig. 1. The set of edge labels T

Assume the fuzziness of directions in the range¢ +Aa, where Aa =" and associate the

functions p” with them:
xp(- k(2n - a)2), a e [2n- Aa, 2n),

exp(- ka2, a 6 [0, Aa],
0, otherwise,
J exP(-N - >q © Aa, » +Aa
py(ayL SF(-"-a)2>a® 4 Bty
0, otherwise,

where k>0 is constant, jj =7, s, ...,y, forj =1,..., 7 (see Fig. 2). At the horizontal axis we
mark the angle values as described above.
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Fig. 2. Functions  for the edge labels

2.3. Acceptable distortions of the nodes and edges
Define supports of pxz and pyr as the sets:

supp(pf) = {x e Z,: pf(x) > 0},

supp(py) = {y e r,,: ny(y) > 0}.

One should interpret supports as the sets of labels with it non-zero similarity to the not
distorted ones.

Define the set of acceptable object distortions (S4OD) and the set of acceptable spatial
relation distortions (SASRD) by:

def v
SAOD(x) = supp(p™), x e Z,
def
SASRD(y) = supp(p"), y e f.

Remarks
(i) SAOD and SASRD are in general the continuous sets (see conditions imposed on Ty Z,).
(ii) We will assume in the seguel that for a distinct arguments the corresponding sets are
disjoint i.e:

VxLx2e x2: SAOD(x¥Y n SAOD(x2) =0,
VXhX2e f M X2:SASRD(X,) n SASRD(X2) = 0.

(iii) For nonterminal nodes we define: SAOD(x) = {ic}.
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2.4. Fuzzy labels sets

Using the notion of SA0D and SASRD, associate with E, T the sets (the fuzzy extensions of
E and T):

def

Z, = U S40DXx),
xeZ.

Tf e ) SAOD(y).
yer

Remarks
By remark (ii) in the previous point 2.3 we assume that Vjc e E/(y e Ty) there exists
and can be effectively pointed out only one x e E(y e T) such that x ¢ SAOD(x),

(Ye SASRDy)).
2.5. The distance between node/edge labels

In Ey, 1 /define distance functions:

xux2e SAOD(x), for some x,

iw, otherwise,

Xu X2e SAOD(x), for some X,

otherwise,

Sr(X,, - "fe*1

Note that we will say about distance between nodes/edges remembering that it con-
cems their labels.
Remark
We make two assumption about oo:
(i) oo+ 00= o0,
(i) oo+ ¢ = oo.

2.6. A node of w-th level

Anode VOof IE graph G=(V, E, S, T, $)having an index 1is called a node of the first level.
We introduce recursively a notion of n-th level node. A node v is a node of the n level if:
(i) there exists such an edge (w, y, v) e E that wis anode ofthe n- 1level,
(i) for each [(«, y,Vv) e Eor (v,y, u) e £]: u is anode at least n - 1 level.
We define in the same way, a node of n-th level for an ief graph, introduced in the
following section.

3. Graph structures
3.1. IE~Graphs

Since we introduced the node and edge labels fuzziness and constructed the sets of distorted
labels, it is possible to define an extension of IE graphs family. These new, distorted graphs,
called IE/ graphs, will be helpful for the representation of a scene containing deformed
objects.
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Let G= (V, E, Z, T, y) be given an IE graph. We construct new "fuzzy" graph
Gf=(V, Ef, Zy, Tf, () called an IE/) graph (an indexed edge-unambiguous fuzzy graph),
where:

V - afinite, nonempty set of nodes to which indices have been ascribed in an
unambiguous way;
Ef - aset of graph edges of the form (w, X, v) e Vx Tyx V satisfying conditions:
(i) each edge is directed from the node having a smaller index to the node
having a greater one,
(i) foreach ve V:if(v, X w) e fsythen there doesn't exist (v, Xi, z) e £ysuch
that 8r(X[, X2) * coor (z,y, v) 6 £ysuch 8r X,y ) * oo
Zy and Ty - the fuzzy extensions of Z, T, defined previously; we assume that Typreseryes
all the properties of 7' it's ordered by the certain relation of simple ordering <,
Tyis a set of non-symmetric binary relations and for each label X e Ty there
exists label X-1 e Tysuch that the edges (1, X v) and (v, X-1, u) describe the
same spatial relation between the nodes « and v;
(>K->Zy - anode labelling function such that $iG=y.

Remark
We assume that there exist well defined distortion functions for the edges and nodes in
all the definitions where the sets Zy, Tyare present.

3.2. Distance between two IEygraphs

Now we define a measure of distortion, which tells us how much distant are the deformed
graphs G and H. Let:

G- ("g, Eg, £>TE 32>

be isomorphic2) [Eygraphs. (We can assume that VG=VH= V). A distance between G and H
is defined as below

C, Ce

8(G, H)=E8I(x,x) + E8r(y,y),
(%) .D

where x is the label of a node belonging to G and indexed with 7, analogously x is the label
of anode belonging to H and indexed with the same index 7 y and y are the labels of
corresponding edges belonging to G and H respectively, coming from the nodes indexed
withj to the nodes indexed with & The terms denoted as Cn and Ce are called respectively
node cost and edge cost.

Il In the sequel a subscript/ refers to the word fuzzy.

2) We appy the definition of IE graph isomorphis (see [2], p. 5) to IEygraphs: two IEygraphs 4 =
= (VA Eu , Sy, Ty, 4),) and B = (VB Ef B Zy, Tf, () are isomorphic ifthere exists bijection h: V4—
VBsuch that ()  ° h =fa, (ii)) BB = {(h(x), X h(y)): (x, X,y) e EfA).
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3.3. Characteristic description

Let G = (V, Ef, 'If Yf, ©) be an IE"graph. A characteristic description of the node nk e V,
having an index & and labelled with #, is a seguence ofthe form Ik = [uk r, ejf, ..., eir], where
i, <i2<.. <in r is the number of edges going out from this node ejy (j = 1, r)3>
footnotemark denotes a label of the edge directed ffom the node nkto the node having an

index 7, ij is attached as a subscript to that label.
A characteristic description of graph G is a sequence /= [7j; I12, [ mj of characteristic

descriptions of its nodes.

Example 2
The characteristic description of the node, say v, indexed with 1 (Fig. 3) is

h ~ @2, 2]

The subscript "1", of the node label « indicates just an index of v; the subscripts "2"
and "3" are the indices of the nodes to which the edges labelled with ¢ and u are directed.

Fig. 3. Characteristic description of a node

The description for entire graph is
1= [«i, 2, t2u2; c2, 2, sAu5; b3, 1, u6;a4, 0, <¢c50, ¢60,-].

The comparison of the characteristic descriptions of two corresponding nodes of deri-
ved and analyzed graph, plays a key role in the parsing algorithm. In definitions of the
parser procedures following notions will be helpful.3

3) In several cases we will denote the string ¢/... e, as Ek where k is an index of the node nk
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3.4. Context-identical nodes

Let nk nkbe the nodes having the same index and labelled with » and » respectively.
(1) Let G =(V, Ef, Zy, Ty, P and G ={V,Ef, Ey, Ty, P be the IEygraphs. Nodes nk e V and
nk e Vare context-identical if they have the same characteristic descriptions.
(i) Let's assume that # V> # V. Nodes nk nkhaving the characteristic descriptions 7k = [nk,
r, & ... er], Ik= [nk r, d;{... df] are potentially context-identical if following con-
ditions are satisfied.

L. 8\n, fi) * ao

2. r=r

3. Iffor eachj e {1,..., r} there exists k e {l,..., 7}, such that jj = ik then 8r(e,y d;k) * oo.
4. LetAs=(i{... ip) and Bs =(i{... ip) be the subseguences of4 = ir) and B =(f,... ir)

correspondly. Moreover 4sand Bs are assumed to have following two properties:

(i) seauence Bs does not contain any member of 4,
(ii) seguence 4s does not contain any member of B.

Nodes having indices ffom As are terminal and those having indices belonging to Bs
are nonterminal ones.

3.5. Potentially contextual nodes

The nodes having the indices ..., 7, (l.e. belonging to As) are called textitpotentially
contextual for the node indexed with &

The edges (V¥ er/, .-, ..., (vk erp, v€.), where vg denotes anode¢ indexed with ¢, are
called potentially contextual edges for the node indexed with &

Let (vk, e, vg) be a potentially contextual edge. The pair of the form (k, e) is called
a description of a potentially contextual identity. We ascribe to index ¢ a list of such de
scriptions: Lg (see the notions in a section 5.1).

Above defmitions are introduced to overcome following difficulty. During the parsing
process we compare characteristic descriptions of two corresponding nodes belonging to
generated and analyzed graph. It may happen that in a moment of comparison not all nodes
adjacent (i.e. giving a contribution to the characteristic description) to the considered node
are generated yet. In such a case we have to storg this fact in a list Lg and check the descrip
tion later (for a detailed discussion conceming this problem see [2], p. 10 and [1] p. 770.)

Example 3.

In Figure 4 the parts of graphs bar G (generated graph) and G (analyzed graph) are shown.
Keeping the notation introduced above we have:

h = ["3>3, udrsi6], =["s3,3, rss6/7];

|

k=3,r =3;
A=(1,123)=(5,6,7),B=(i"h) =4, 5, 6);
A, —00 = (7), Bs= (i{) =(4).

N
Il
I

Y

n
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The node/7 is potentially contextual for the node d3 Since the edge (d3 /,/7) is poten-
tially contextual for d3we have: L7={(3, 0}- After anode/7is generated we have to verify
if the edge (d3, 1, f-j) (where 8r (¢, ) * x>) in graph bar <7is present (see procedur¢ CHECK).

3.6. Subgraph m-TL(G, l,j)

Let G be an /Ef graph and let / be an index of its node ns having characteristic description
/5 = [rc|, r, en... eir]. A subgraph H of G consisting of node n4 nodes indexed with ia+x, ...,
iatm, (a> 0, a + m <r) and edges connecting those nodes is denoted: H= m -TL(G, /, ia*t).
In a special case when m - r- a we denote: H = CTL(G, [, iat)).

4. Graph grammars

4.1. TLP*grammar

A auintuple g = (Zy, A, Yj, P, Z) is called a TLPy graph grammar (a two-level productions
fiizzy graph grammar), if following conditions are futfilled:

1. Ac set of terminal labels.

2. P - finite set of production of the form (/, D, Cj), where: /- label of the nonterminal
node - left hand side of production, D e IEy- right hand side of production having
characteristic description which satisfies condition:

/=[«!,r,,£ ,; nm rm Em] or
/=[«., 0,-], (W)
where: n\ e A, «2, nm- the nodes of 2nd level;
Cf-.Tj x{in, out}—>Zyx Zyx Tyx{i'n, out} - embedding transformation.

3. Z e IEy- initial graph (the axiom), having characteristic description satisfying condi
tion (W).

To explain the way how embedding transformation should be applied let’s consider
expression Cy(y, in) = (x, y, X out). Each edge labelled with y e SASRD(y) coming into the
node of lhs of production should be replaced by the edge labelled with X e SASRD(X) direc-
ted from the the node having the label x e SAOD(x) of production rhs to the node labelled
withy e SAOD(y) in the rest-graph (i.e. graph with the production lhs node removed).
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g is called a closed TLPy graph grammar if for any derivation
Z —GO0—2 G\ C2-2 = Gn

ofthis grammar G,, i=0, n) is an IEygraph.

Example 5
Let's consider embedding transformation for the production P : 5 —H= [bh 1,s2;¢2 0,-] (Fig. 5):

(v, iri) = {(b, a, 1, in)},
Cf{u, out) = {(b, 4, u, out), (c, A, r, in)}.

In this case the edges r, u remain unchanged, and new edge r going out ffom nontermi-
nal node A4 to c is created.

Example 6
We may define following example of TLP" graph grammar (Fig. 6) and make derivation
using its productions (Fig. 7).

Fig. 6. Initial graph Z and productions of grammar g
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where:

Remark

Fig. 7. Derivation in the grammar Q
O~ (£, A TSP, 2),
Z=1{a b c dej, g A B D}, Z/I= UI\SAOD{x),
Xe
A={a b c d ej, g},

T= {p,r, st uvxyl }_?‘]= y\.f{fS‘ASRD{y).

We assume the existence of |is and (ir functions for all the elements of Z and T sets.

Embedding transformations for the grammar productions (a lower index includes the
number of production to which the transformation is ascribed).

) Gi:

2) CJ

O (v, in) = {b, a, r, in)},

O (u, out) = {(h, 4, u, out), (c, 4, r, in)};

GG, in) = {{d, a, s, in)},

G (u in) = {{d, b, u, in)},
Cf(r, out) = {(d, ¢, r, out)},
O (u, out) = {(d, D, u, out)}
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3) g'3- g2
4 G4:
q'(l, in) = {(g= a, I, im)},

G (u, in) = {(g d, u, in)}.

4.2. PLf{k) graph grammar
Let 6 = Xf A, rf, P, Z) be a closed TLPy graph grammar. Let

Z4 XAX2-> G 4 H,

K$) KS da?)
and
zZ—» —0 2 H2
rig) g dg)
be regular left-hand side derivations of grammar ( where — denotes transitive and

reflexive closure of ~"4gy A4 is a characteristic description of the node indexed with L X/ X2
are substrings, max - a number of nodes of the graph X\4X2.

Qs called a PLy (k) graph grammar (a production-ordered /r-left nodes unambiguous
fuzzy graph grammar) if the following condition is fulfilled.

Ifk - TL(//,, lmax+)\) =k - TL(H2 I, max+1),
then CTL(GL /, max + 1) = CTL (G2 I, max + 1) (PL)
The symbol = denotes the isomorfsm of graphs.

4.3. Potential previous context

Let g = Xy, A, If, P, Z) be PLy(Ar) grammar. A pair (3, X) e A x Tfis called a potential
previous context for the node label x e Z, if there exists such IE*graph G = (V, Ef, Xy, Ty 9
belonging to some regular left-hand side derivation in g, that (u, X, v) e E, I{9=y, V) =
=x,u,ve vand 8r(% X) * oo, 81(x, X) * oo, 8r(>* y) * oo.

4.4. ETPLy(A) graph grammar

g e PLf(k) is called an ETPLy(&) graph grammar (embedding transformation-preserved
production-ordered Ar-left nodes unambiguous fuzzy graph grammar), if each production

A > [Xxrx Eg ...; Xm rm Em]
belonging to that grammar satisfies condition: if (b,y) is a potential previous context for 4,

then there exists only one guadruple (X% b, z, in) e Cf(y, in), where Cfis an embedding
transformation for this production; in case ofi = 1, we have z=y and (X\, b, y, in) ¢ Cj(y, in).
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4.5. TTLP and TTLN sets

We defme two families of sets associated with the grammar productions.
(i) Let4 — G be the /-th production of the grammar ¢ e ETPLj(k). Let's defme a set of
terminal graphs generated by this production

TTLP(/)= {G e IE/~- 1. GcH where 4 4 H 2. G=k- TL(H, 1,2)}.
KO

(i) Let MY A-» G \, (/,) A —G, be all productions of a grammar Q e ETPLy(A) having
nonterminal symbol 4 in their lhs. A set of all terminal graphs generated fforn A has
a form: TTLN(X) = {(/,, TTLP(/,)), i =1,  «}.

5. Parser

5.1. Parsing procedures and functions

Notations:
G - an analyzed graph
H - aderived graph
Z - an axiom graph (an initial graph)
Li - alist of descriptions of potentially contextual identities, ascribed to the node
indexed with 7
<0 - a label of the node of graph H, having an index i
n - anumber of nodes of graph G
cn - anode cost
ce - aedge cost
S - aseguence of triples: (number of production, ¢, ce)
V- - anode indexed with i

Procedures and functions
Remark

Contrary to [1] we will compute separately the edge cost (ce) and node cost (c,,). It will
allow us to make also a qualitative description of pattem distortion.

MAXIND(//) retums a number of nodes of a graph H.
DEFk-TL(G, i, m, E) creates a graph E =k-TL(G, i, m).
GIVETTLN(X) retums a set TTLNfK).
CHOOSEPROD(%, R, k)

Step 1. Chooses such graphs H\, Hp from R that 3 £¢- subgraph of E: E{=//,, and
8(£,, Hj) *oofori=1, p.

Step 2. Chooses from the set Hu  Hp asubset Hiu  Higof best fitting subgraphs

8(Hv, Ey) =min8(Hk Ek,j =1 , q.

Step 3. Chooses the maximal graph Hmfrom the set HiU  Hig If Hm* 0 then k w=num
ber of production giving Hm, otherwise £ w=0.
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PRODUCTION(//, i, k)
Step 1. The application of the &th production for the node v, of graph H.
Step 2. The calculation of the costs:

G, = x), ce=Zzsr(k, %9,
(x,%) X, X)
where the sums extend over all terminal nodes generated in result of the current
production application (for ¢n) and over all new terminal edges4)Yfor ce)! it's assu-
med thatjee ~"V H) is a corresponding node label forx e <t>¢("c) and analogously:
X and X are the labels of two corresponding edges.
Step 3. S w=5u {k cn ce).

CONID(G, H, i)
The Boolean function testing if nodes of graphs G and H having index i are context-identical.
PCONID(G, H, i, err)
Ifthe nodes of graphs G and H indexed with i are potentially context-identical then for each
potentially contextual edge (v,, ¢, vg): Lg\=Lgu (i, e). Otherwise err := 2.
CHECK(Z,,, H, err)

for each (%, e¢) e Lf.
if 3e e SASRD(e) such that (vk e, v,) ¢ H then
Lj=Lt- (k e

else err :=3

5.2. Parsing algorithm

H :=7Z;err =0; 5 w=(0, c”, cel)5>
for /=0 tondo
iferr=0 then
begin
if 9fj(i) is a nonterminal node then
begin
m := MAXIND(tf) + 1
DEFk-TL(G, i, m, E)
R := GIVETTLN(<t)/Xi))
CHOOSEPROD(%, R, k)
if k=0 then err := 1
else PRODUCTION(//, i, k)
end
if not CONID(G, H, i) then PCONID(G, H, i, err)
CHECK(L,, H, err)
end

4) A terminal edge is an edge between two terminal nodes.
5) The values ¢,0clfare the sums of distances between corresponding terminal nodes and terminal
edges of an axiom Z and analyzed graph G
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Example 7

Let us modify grammar ¢ from the last example by replacing production P2 with two new
productions: P3a and Pib (Fig. sa). The embedding transformation remains unchanged:
Cfia= Cfib = Cfi- Analyzed graph G (Fig. sb) is an input for the parser.

Fig. 8. New productions in Q(a); the analyzed graph - G (b)

In aresult of parsing we get graph A which is generated in subseauent steps (Fig. 9).
The node and edge costs are calculated as it follows:

Step 0. co=31(a, a,), ced = 0;
Step 1. ¢, =sl\c, c,), cei =81(j, 5,) +81(U, W,);
Step 2. cn2=138\d, d\) +sr(eb e2), ce2 =Sr(s,52) + Sr(t, t2) + sr(u, u\
Step 3. c,3=0, ce3=3sr(t, ti),
where:
a{ e SAOD(a),
G e SAOD{¢),
d{ € SAOD(),
eue2 e SAOD(e),
si,s2 ¢ SASRD(s),
t\92 ¢ SASRD(?),
Ui, u2 ¢ SASRD(u).

We also assume that sI(eb e2) <sr(e, ¢2).

Remark

It should be noted that production P2zhas been rejected in the parsing process, because
the distance between rhs graph and a subgraph CTL(G, 3, ¢) for this production is greater
than in case of P2h.
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The total distance (cost) between G and H, 8(G, H), is given by

3 3
8(G, H) =Cn+ Ce="Z cni+ Z cei.
=0 0

Now after the parser accepted G as belonging to the language we can begin to analyze
the type of distortion. Ce and C,, will be a helpful guantities for that purpose.

Fig. 9. The derivation steps during graph G analysis (see Fig. sb)

6. Semantic phase - graph distortion function

In the Preliminaries 2. we have ascribed the functions p* and p£ to nondistorted nodes and
edges. These functions give a similarity measure between two nodes/edges. We can define
a similar function for the entire graph p: IEyx [Ey—»R+tu {0}. A value of p tells how much
differs the analyzed graph from the generated one. It may be another criteria of acceptance
of the graph G (besides the belonging to the language). Such criteria may be regarded as
semantic ones: we reject the graph belonging to the language (satisfying syntactic criteria)
on a basis of some additional (semantic) information, for instance Ce > 0.5. A semantic
information given by the function p depends on its shape and may vary depending on the
problem. Consider for example the problem in which distortions of nodes may be neglec-
ted, while distortions of the spatial relations among them are restricted by p:

Lsrrm - I exP(-Q2 for Ce < const,
- <o (-Q2r othenvise
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The following examples illustrates the basie cases of semantic pattem analysis (not¢ that
we may neglect either spatial relations (c) or nodes distortions (d)):

a) i>00 f(Cn <const! and/2(Ce) < const2,

b) p > 0 <=>/(C,,, Ce) < const,

c) p>0<>/ (C,) < const (edge fuzziness neglected),
d) p> 0 <>/ (Ce) < const (node fuzziness neglected),

where: Cn= Eg,,
s

Ce=Zce.
S

For the case (b) the p function may has a form:

ar m - lexp(-C"+ c~’ for C"+ C* < const’
0, otherwise.
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