
Computer Science. Vol. 3. 2001 519.713:81 ’32:004

M icha ł Korzycki

FINITE-STATE METHODOLOGY 
IN NATURAL LANGUAGE PROCESSING

Since the Antiąuity, the naturę of the language has intrigued scientists and philosophers. 
They have tried to unveil the pattems and regularities, that seem to rule our main commu- 
nication tool. Through centuries various grammars have attempted to systematize our prag- 
matic knowledge in this area.

Recent mathematical and algorithmic results in the field of finite-state technology, as 
well as the increase in computing power, have constructed the base for a new approach in 
natural language processing.

But the task of creating an appropriate model that would describe the phenomena of 
the natural language is still to be achieved. In this paper I’m presenting some notions rela- 
ted to the finite-state modelling of syntax and phonology.

1. Introduction
Grammar, or, as it has now been called, linguistic theory, is in contrast with other Natural 
Sciences in what concems the approach toward the analyzed data. In Biology or Astrono- 
my, a significant part of the accumulated data is usually treated as a noise insignificant to 
the global result of the measurement. The linguist must for example consider such fact, that 
the essential information of an average text is contained in its statistically unsignificant 
part. This tums the linguistic theory into a science concentrated not on the accumulation of 
data, but on the elaboration of generał rules describing the properties of the analyzed mate 
riał, without any sort of systematic observation. That approach leads easily to overgenerali- 
zation. To take a well-known example, using the grammatical categories of Classical Greek 
to describe exotic languages is often irrelevant [1].

The earliest grammatical models formalized sentence forms by replacing each word 
with its grammatical category. Owing to its conceptual simplicity, this model has been re- 
peatedly used under different names. It might be proper to cali this model Markovian -  as *
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Markov introduced it to study phonetic seąuences. A much morę refmed model has been 
presented by N. Chomsky in 1957 in the form of, what he called, context-free grammars. 
This model is at the base of the contemporary theory of formal languages and grammars. 
But again, any of those types of grammar were restricted to the description of the linear or 
der of categories with simplistic relations between them. Chomsky himself pointed the in- 
adeąuacy of this model to describe the complex phenomena of the natural language.

It seems that the rules which govem the language are strongly context-restricted. It me- 
ans that the behaviour of separate elements is strongly determined by their surroundings. 
What’s morę, this context must be taken ffom all the structural layers of the language -  
such as morphology (phonetical adjustment of the lexical stem to the suffixes), syntax (mo- 
difications of the lexical stem depending of the lexical form), and (which is especially dif- 
ficult to formalize) semantics.

The defmition of the local grammar, given by W. Woods (1970), was an important step 
in our attempt to obtain a fuli scalę analysis of the language. He stipulated that the global 
naturę of the language results ffom the interaction of a multiplicity of local finite-state 
schemes which we cali finite-state local automata, or shortly, local grammars. This is a 
conseąuence of the language being a product of an evolutionary process, and the complex 
phenomena are a result of interaction between various grammars that datę back to various 
historical periods.

2. The finite-state framework

The theory of finite-state automata is rich, and finite-state techniąues are used in a wide rangę 
of domains. Finite-state Systems have been present sińce the emergence of Computer science, 
and are extensively used in such various areas as operating system analysis (ie. Petri-nets), 
program compilation, handwriting recognition or speech processing. So it’s not suprising that 
finite-state formalisms have also been vastly employed in the recent industrial and academic 
researches aiming to create formal models of natural language processes.

One of the morę elaborated contemporary models of the natural language is based on 
a formal description of representations and relations between them. Sometimes these re- 
strictions refer to only one representation, and we prefer to cali them constraints. A repre- 
sentation is a specific form of a language element (such as a word, sentence, morphem 
etc.). This can be its directly observable shape, such as its written form. Others are invented 
by the scholars to serve as building blocks of a theory describing specific phenomena. We 
will name the first form the surface representaion, the latter -  the lexical one.

This model, known as two-level morpology, has been described by K. Koskenniemi in 
1983 using a finite-state interpretation. The papers written by Kapłan and Kay in 1994 sug- 
gest that to describe this model, the use of a variant of the classical finite-state automaton 
(FSA) -  the finite-state tranducer will be the most appropriate (a morę exact description can 
be found in 2.2).

This tool proved itself to be even morę useful, as the notion of context has been defi- 
nied with the use of this formalism [2].
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2.1. Finite-state automata and regular expressions

As a reminder, and to set the notation, I will now give the definition of the finite-state auto- 
maton.

A finite-state automaton is a ąuintuple

where:
I
Q

i * Q  
F a  Q

£ c g x ( I u { E } ) x g

(Z, Q, i, F, E),

a f i n i t e  s e t  c a l l e d  t h e  a l f a b e t ,  

a f i n i t e  s e t  of S t a t e s ,  

t h e  i n i t i a l  S t a t e ,  

t h e  s e t  of f i n a ł  S t a t e s ,

the set of edges -  (where £ -  is the empty word).

One of the strongest properties of FSAs is the fact, that there is a correspondence between 
those automatons and a certain class of formal languages usually called regular languages. 
That makes the FSAs a very versatile tool, as the class of regular languages is closed under 
such operations as set union, set intersection, concatenation, Kleene Star etc. (it is a conseąu- 
ence of the Kleene theorem -  1956). This closure property can be applied to FSAs, what ma 
kes them equivalent to their syntactical description. As a result, most of the expressions used 
in Computer programs are equivalent to an automaton. Such strong formal properties are un- 
common to other formal tools used in natural and formal language processing. This makes 
the FSAs especially suitable for a vast rangę of theoretical applications.

To describe the FSA pictorially w e adhere to the fo llow ing  convention: the FSA is tre- 
ated as a graph, the States marked as circles are its nodes, and the FSA edges are the edges 
o f  this directed graph. The labels o f  the edges are alphabet letters that belong to the specific  
edge, the finał States are depicted as tw o concentric circles, and the starting State is usually 
marked by an arrow signed “start”.

Presented below is a rangę of symbols and operators used to describe regular 
expressions and corresponding regular languages:

a -  a single letter usually describes a single alphabet symbol,
' a ' -  also a single alphabet symbol; the quotes are only used to avoid misinterpre- 

tations ex. where a symbol has the same graphical value as a regular 
expression operator,

‘ A12 3' -  once morę a single alphabet symbol -  one with a longer name,
? -  this symbol describes a language composed exclusively of all the singletons 

over the given alphabet,
[] -  an empty pair o f  bracket denotes the empty sym bol i.e. the w ord o f  length 0 

(also marked as e ),
[ a  ] -  usually the brackets only describe the order in with the operations are execu- 

ted. This expression has the same meaning as A, 
a b -  this is an operation of concatenation between two regular languages -  A and B, 

A~ -  Negation; denotes the language which is the set complement of A to the fuli 
language Z*, i.e. the language containing all the strings (words) over Z (Fig. 1),
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A* -  Kleene Star. Describes the language composed of 0 or morę repetitions of the 
language A (Fig. 2),

A+ -  Kleene Plus. Describes the language composed of 1 or morę repetitions of the 
language A (Fig. 3),

A $ -  Non contenance. Describes all strings containing no string ffom A (Fig. 4),
A 1 B -  Set union. This language is composed of all the strings ffom A and all the 

strings from B,
A /  b  -  Ignore. Describes the strings of A possibly interspersed with strings from B .

Fig. l.Theautomatoncorrespondingtothe [abc~] expressionoverthe ( a , b , c )  alphabet

Fig. 2. The automaton accepting the a* language

Fig. 3. The automaton accepting the a+ language

Fig. 4. The automaton accepting the [abc ] $ language over the {a , b , c ) alphabet
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Example

[ a * ] / b  gives: e , a ,  a b ,  b a b ,  b a a b ,etc. (Fig. 5).

Fig. 5. The automaton accepting the language [a* ] / b

2.2. Finite-state transducers and regular relations
We understand By the term regular relation a subset of a Cartesian product of two regular 
languages. This also often interpreted as a mapping from one regular language to another. 
Automata operating on such relations are called finite-state transducers (FST). The main 
difference between a transducer and a “classical” FSA (as defined in the last section) is the 
fact that in a transducer, the edges are labelled with pairs of symbols instead of singletons. 
Although transducers, on the whole, do not conserve all the strong algebraic properties of 
FSAs, they can still be regarded as equivalent to a certain set. Such set will always be a re 
gular relation. In common applications, we treat the first symbol of a pair labelling an edge 
as an input symbol, and the second one as an output symbol. The graphical representation 
of a FST differs from the representation of a FSA by the fact that the graph is labelled with 
two symbols at each edge, both separated graphically with a slash (“/”) sign. The graph se- 
arching algorithms that were used to decide the acceptability of an input in a FSA can also 
be applied to a FST. We consider only the left input symbol on the passed edges, and write 
on the output the right symbols that occured on our path. In his context, we can distinguish 
two distinct (but not exclusive) types of transducers. The ones that possess only left non-ep- 
silon symbols, and those that have only right non-empty symbols. The first ones will be cal 
led acceptors, the latters, generators.

To describe regular relations we will use the calculus of extended regular expressions. 
Below we give the used extension to the classical regular expression calculus.

A . x . B -  crossproduct (Cartesian product) of the regular language A and the the re 
gular language B. It denotes all the string pairs whose first element be- 
longs to A and the second to B. The implementing automaton is obtained 
by the concatenation of the acceptor of the language A with the generator 
of the language B.
Because we regard the identity relation on A as equivalent to A, we can, 
and usually do, simply write a instead of a . x  . a.

R S -  the operation of “coordinate-wise” concatenation of tworegular relations 
(transducers). The obtained relation is a result of a coordinate-wise conca 
tenation.
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Example

[a  . x .  b ]  [ c  . x .  d] gives [ a c  . x .  bd]
A - >  B -  simple replacement operator. Replaces all the occurences of strings from one 
language (A) with strings of an other language (B). We define it as follows 

A->B := [ NOUPPER [A , x .  B] ] *  NOUPPER 
where NOUPPER designates [A -{  e  } ]$ .

Example
F ora ->  b (Fig. 6) 
the words:

a c a  aba a a c

will be changed into:

b cb  bbb bbc

A - >  B __  C -  marking operator. This operator precedes (“marks”) all the occurences
of the strings from A with strings ffom B, and follows the strings from A with the strings 
from C.

Fig. 6. The transducer implementing the a->b relation over the (a . b . c } alphabet 

Example

F o ra  ->  b __  c
the words:

a c a  aba a a c

will be converted to:

b a c c b a c  b a c b b a c  b a c b a c c

R . o . S -  composition of relations. It happens that, given two regular relations (transdu- 
cers) R and S, a transducer can be defined that corresponds to their composition R . o . S. 
For additional details on this fact, the reader should refer to the reference marked as [4]. 
Technically speaking, the composition of transducers can be regarded as connecting the 
output of the first one to the input of the second.
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Example

[ a . x . b ]  . o .  [ b . x . c ]

gives
[ a . x . c ]

A ->  B | |  L __  R -  conditional replacement operator. Replaces the occurences of
strings from the language A to strings of the language B, but only if the string from the lan- 
guage A lies between the left context L and the right context R.

It can be defined as a composition of four relations:

[ L ->  [ ] __  « '  ] ,
. o .

[ R ->  ' « '  _  [ ] ] ,
. O .

[ ' < '  A /  [ ' « '  I ' » ' ]  ' > '  ->  B ] ,
. o .

[ [ « '  I * » '  } - >  t ] ] •
The first relation marks all occurences of the left context.

Example

F ora ->  b | | c  d

the word
will be changed into

c a c
c ' « '  a c

a d a 

' «  '  a d  a

The second relation marks all occurences of the right context.

Example

F ora ->  b | |  c  __  d

the word
will be changed into 

The third relation actually applies the replacement operator.

' « '  a c ' « '  a
' « '  a c ' « '  a ' » '

da
da

Example

F ora ->  b | | c  __  d

the word c ' « '  a c ' « '  a ' » '  da
will be changed into c « '  a c b da

The last relation removes all occurences of the auxiliary symbols ' « '  and ' .

Example:

F ora ->  b | | c

the word
will be changed into

d

« ' « '

c ' « '  a c
' » '  da

da (Fig. 7).
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Fig. 7. The transducers implementing the a -> b | | c __ d expression over the {a , b , c }
alphabet

This operator has many variants, as the context can be used in many ways to constrain the 
operator. Morę details can be found in [2].

%L% -  in this the way I will distinguish a transducer symbol defined earlier from its 
graphical value.

Example

F o rL :=  [ a . x . b ]
%L% . o .  [ b . x . c ]

gives
[ a . x . c ] .

3. Samples

The following sections present some simple examples of the application of this formalism 
to model the phenomena of the natural language. Ali the graphs and results presented in this 
text have been obtained by using of an implemented regular expression compiler.

3.1. Hyphenation

This simple example to ilustrate typical methods used in this approach toward the model- 
ling of the phenomena of the natural language. The model desribes the principle of hy 
phenation. It rules the formation of new words by the addiction of the prefix “co-”. The sign 

(the hyphen) disappears when the modified word begins with a letter different from “o”. 
We begin by marking the beginning of the string by using a additional symbol “#”. The

first operator ? ->  ' # ' __  [ ] marks all the letters with the symbol which gives
us the following result for the word “operation”

# o # p # e # r # a # t # i # o # n .

The next operator'# '  ->  [ ] 11 ? __  ? removes the surplus of auxiliary signs

# o p e r a t i o n .
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After the addition of the prefix ' # ' ->  c  o weobtain 

c o - o p e r a t i o n .

Now we can remove the sign if it appears before a sign different from “o”:
->    II o __  to  ~] gives (here without any changes for “operation”)

c o - o p e r a t i o n .

But for the word

e d u c a t i o n  

we would get

c o e d u c a t i o n .

3.2. Simple conjugation modelling

This example illustrates the use of two-level morphołogy. The analyzed word will have two 
representations. The first one, the surface form, is the textual form of the word. The second 
one, the lexical one, is its symbolic representation dependent on its grammatical form.
Lets take, on the input, a typical Polish verb with the “ować” an ending of the infinitive.

p r a c o w a ć  (to work).

We will start by marking the end of the input with an auxiliary symbol “&”. We will use 
(as in the former example) two operators to obtain our goal.

The first one ? ->  [ ] __  ' marks all the letters with the symbol ' & ', which
gives us

p&r&a&c&o&w&a&ćs.

The next one s &' ->  [ ] | |  ? __  ? removes the additional symbols.

p r a c o w a ć&.

We can now modify our word into its lexical form by means of the following operator 
o w a ć ' s '  - >  ' + I n f ' .  That gives us now

p r a c ' + I n f '

If we defme the automaton L as
L :=  u j ę  | u j e s z  | u j e  | u jem y  | u j e c i e  | u j ą  which corresponds to 
the lexical suffixes of the present tense of the indicative mood, the operator 
'+  I n f  ' ->  %L%givesnow

p r a c u j ę
p r a c u j e s z
p r a c u j e
p r a c u je m y
p r a c u j e c i e
p r a c u j ą

( I w o r k ) ,
(You work -  s i n g . ) ,  
(He/She w o r k s ) ,
(We w o r k ) ,
(You work -  p l . ) ,  
(They w o r k ) .
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This corresponds to the forms of this verb in the present tense of the indicative mood. 

The compositions of all the operators gives for the input

g o t o w a ć

an output of:

( to  cook)

g o t u j ę  ( I  cook) ,
g o t u j e s z  (You c o o k  -  s i n g . ) ,
g o t u j e  (He /She c o o k s ) ,
g o t u j e m y  (We c o o k ) ,
g o t u j e c i e  (You co o k  -  p l . ) ,
g o t u j ą  (They c o o k ) .

This type of modelling of linguistic phenomena has already been extensively used in the 
description of a vast group of languages -  including English, Finnish, French, Russian, 
Swahili, Basąue etc. The following example will hopefully show the vast rangę of pro- 
blems that can be described with the use of this formalism.

3.3. Modelling a declination with a yariable lexical stem

We discuss now a somewhat morę complicated lexical example. Besides the addition of the 
lexical suffixes, we will be conffonted with the variation of the lexical stem.

Let us suppose that we have on the input a typical Polish adjective

b i a ł y  ( w h i t e )  .

The first two operators of the last example will give us 

b ia ły & .

We obtain our lexical form by using of the following operator 
y '& ' ->  v+Nom ' . We now obtain

b i a ł ' +Nom' .

If we define the automaton M 
asM :=  y I i

what corresponds to singular and plural suffixes of the Nominative case, the operator: 
'+Nom' ->  + %M% gives:

b i a ł+ y ,

b i a ł + i .

We have obtained here an additional abstract form, in which the symbol ' + ' separates the 
lexical stem ffom the suffix. We can now adjust the stem phonetically:

The operator 1 - >  1 | | ? __  ' +' i  results in
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Having removed of the auxiliary symbols'+ ’ ->  [ ] weobtain: 
b i a ł y ,  
b i a l i .

For lexical stems włth no such endings, such adaptation will not occur. Taking as an exam- 
ple the word c z a r n y  ( b l a c k )  weobtain: 

c z a r n y ,  
c z a r n i .

3.4. Modelling mobile lexical verb suffixes

In the Polish language there exists a phenomenon called mobile lexical verb suffuces. The 
lexical suffixes of a verb in the third person of the past tense of the indicative mood can be 
attached, instead of the verb, to almost any other part of the sentence. I present here a met- 
hod to localize such suffixes and place them back in their place after the verb. It will show 
that finite-state rules can also be used to describe such “long-range” lexical rules.

Let us take the sentence

p s a  mi k u p i ł e ś  (You) b o u g h t  me a dog

Its version with a mobile verb suffix will have the form of 

p s a ś  mi k u p i ł

Let us try to identify this phenomenon. We must first use an automaton that will serve us as 
a dictionary: - DICTION, and defined as:

DICTION := p i e s |  p s a  | mi | k u p i ł e ś  | k u p i ł

We now apply the operator %DICTION% - >  ' <  ' __
Its role involves the recognition and marking of all known forms of words.

We obtain now

' « ' p s a ' » ' ś  ' « ' m i » '  « ' k u p i ł ' » '

As we can see, " p s a ś"  has not been recognized as a part of the dictionary.
If we use an additional lexicon containing only nouns

NOUN := p s a  | p s u  | k o t  | k o t u

We can then search the text for nouns

%NOUN% - >  [ ]   '+ '  R

Which gives as an output

' « ' p s a ' + ' R ' » ' ś  ' «  ' m i ' » '  ' « ' k u p i ł ' » '

We look now for verbs in the third person of the past tense of the indicative mood:

VERB:= k u p i ł  | w z ią ł  

%VERB% - >  [ ] '+ '  I3P
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Which gives us

' < ' p s a ' + ' R > ' ś  ' < ' m i ' > '  ' < ' k u p i ł+  I 3 P > ' .

We can now apply a constraint to work on only those texts where the phenomenon we are 
interested in has been identified. Formally speaking, this constraint is an identity relation on 
a certain set.

?* ' + ' R ' » '  ś  ' ' ' « '  ?*

It gives us an empty output for an input with no identified phenomenon, and copies its input 
if such phenomenon occurs.
We place the suffix back in its rightful p lace ' + '  I3 P  - >  e ś  gives 

' < ' p s a ' + ' R ' > ' ś  '< 'm i" > '  ' < ' k u p i ł e ś '> '

We remove the auxiliary symbols:

'+ '  R *>' ? ' ' < '  - >  ' ' ' < '

. o .

[ ' > '  1 ' < ' ]  - >  ' '

Which gives us
p s a  mi k u p i ł e ś

As we can see, with a rangę of auxiliary symbols and constaints, we can apply this forma- 
lism to the description of phenomena that occur over a wide text span.

4. Conclusions

This formalism can be highly useful in the modelling of morphosyntactic phenomena of the 
language. Its simplicity and, what is morę important, the ease with which it can be imple- 
mented in the form of a Computer program make it an invaluable tool for a natural language 
scientist.
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