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GENERATION OF TRIANGULAR MESHES 
FOR COMPLEX DOMAINS ON THE PLANE**

1. Introduction

Many physical phenomena can be modeled by partial differential eąuations (PDEs). Numer- 
ical methods for solving PDEs (FEM, FVM, BEM) approximate the solution of a linear or 
nonlinear PDE by replacing the continuous system with a finite number of algebraic eąua 
tions. The result is a finite number of points in space at which variables such as velocity or 
electric field are całculated.

The collection of nodes and elements is called a finite element mesh. Structured 
meshes have a regular connectivity, while in an unstructured mesh each point have a differ- 
ent number of neighbours. A mesh must conform to the object or domain being modeled, 
and should meet constraints on both the size (possibly varying throughout the mesh) and 
shape ofits elements.

A mesh generator should be fully automatic and should simplify input data as much as 
possible. It should offer rapid gradation ffom smali to large sizes of elements. The generat- 
ed mesh must be always valid and of reasonably good ąuality. Ali these reąuirements were 
taken into account during selection of algorithms used in successive stages of the presented 
mesh generation scheme.

2. Specification of a physical domain

The domain being triangulated is defined as a set of sub-domains (either filled or empty) 
(Fig. 1 demonstrates an example of a complex domain).

Boundaries of sub-areas and holes are described by a collection of edges. Exterior 
boundaries separate meshed and unmeshed portions of the space, while interior boundaries
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enforce the constraint that elements may not pierce them. Each edge can be specified as 
a straight linę segment, arc, or fragment of a B-spline. The direction of edges determines 
which side of the edge is adjacent to the filled area. Edges adjacent to two filled areas and 
free edges (e.g. the PR edge in Fig. 1) are bidirectional.

Fig. 1. Valid complex domain: a), b), c) filled subdomains; d) empty subdomains; ABFGHA, BCDEFB, 
IJKLI, MNOM -  domain boundaries, PR -  enforced inner edge

A valid specification of a domain must conform to few constraints:
-  edges can’t cross themselves (a corresponding graph must be planar);
-  each edge must be incident to two different vertices (loops aren’t allowed);
-  there mustn’t be any two edges incident to the same two vertices (any two nodes can 

be connected by at most one edge).

3. Generation of a reąuested number of boundary nodes

Before triangulation of the domain can take place, an initial set of nodes must be provided 
by discretizing boundaries of the domain. The number and location of boundary nodes 
should be specified with respect to a reąuired density of a mesh in the vicinity of particular 
boundary edges. Additionally, a piecewise linear approximation of boundaries should be as 
close to the shape of original curves as possible.

The described algorithm (Fig. 2) of the discretization of the boundary leaves nodes al- 
ready existing in the domain without changes. An additional number of nodes (specified by 
the user) is distributed uniformly along boundaries.

First, the length of all boundary edges and the total length of boundaries is evaluated. 
On the basis of the known number of additional nodes, which should be distributed among 
all edges (subtracting nodes already existing in the domain), an expected average length of 
a boundary edge is evaluated. This average value allows the estimation of a number of seg- 
ments for each edge. After a repeated inspection of boundary edges, all vacant nodes are as- 
signed and edges can be split. In order to reduce the influence of the seąuence of inspected 
edges on the distribution of nodes, an estimated number of nodes for each edge is gradually 
increased (with a coefficient dA).
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evaluate the entire length of boundaries /, = // =

where: /, -  length o f a successive boundary edge,

Wj -  weight o f an edge (a geometrie average of node weights),

evaluate the average expected length o f an edge /avc: = -

where: ne -  number o f initial boundary edges,

nA -  number o f additional boundary nodes, 

evaluate the number o f additional nodes for each boundary edge:

«,■ :=  O, :=  O, 
while > 0:

f o r  each boundary edge: 

n' := —̂  + dA '
_ ^ave

/  n ' >  0:__________________________________________________________

5„ = m in (n 'i- rii, n^J, 
n, := n, + 5„, 
nA nA — 8n,

dA :=dA +  0 .2,

split edges accordingly to the determined number of new nodes n, 
for each boundary edge,______________________________________

Fig. 2. Algorithm of determining the location of boundary nodes

A positive value is assigned to each node in the domain. These values (called weights) can 
be used to diversify sizes of boundary edges (and conseąuently sizes of adjacent elements). 
Higher value of the weight at some node increases the density of the mesh in its neighbour- 
hood (Fig. 3). The ratio of lengths of edges adjacent to two nodes is inversely proportional 
to the ratio of weights of these nodes.

The influence of weights of boundary nodes is ensured by scaling the length of each edge 
by a factor equal to the (geometrie) average weight of vertices at ends of this edge. As a result, 
an edge with the higher average weight is split into adeąuately morę (shorter) segments.

If weights at both ends of an edge are different, additional nodes are distributed along 
this edge with the adeąuately varying density (Fig. 4). The location of nodes is determined 
accordingly to the following rules (which allow to unambiguously evaluate distances be- 
tween successive nodes):

the ratio of lengths of the last sub-edge to the first one is eąual to the ratio of the First
/ W

weight to the last one — = ——, 
lo

/ w
the ratio of lengths of successive sub-edges /, is constans —  =

/,. y
the sum of lengths of all sub-edges is eąual to the length of the whole edge.
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Fig. 3. The influence o f weights o f boundary nodes on the density o f boundary edges and the resul- 
ting mesh: a) the uniform mesh; b) variable mesh

Fig. 4. Yarying distribution of boundary nodes

4. Triangulation of a set of boundary nodes

The process of the generation of triangular mesh is based upon the wełl-known Delaunay 
triangulation (described e.g. in [8, 13, 16, 17]). This construction has some advantageous 
properties — in particular it is guaranteed, that the Delaunay triangulation of a vertex set 
maximizes the minimum angle among all possible triangulations of that set.
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4.1. Delaunay triangulation of a set of vertices

The algorithm (Fig. 5) describes the process of triangulation of a given set of boundary no- 
des. The scheme is similar to the Bowyer-Watson algorithm [3, 18], The construction starts 
with some simple triangulation (one or two triangles) which encloses the whole set of boun 
dary nodes. This initial mesh is obviously Delaunay’s one. Then, vertices are incrementally 
inserted into the mesh one by one, while maintaining the Delaunay’s property.

determine the bounding box o f all boundary nodes,
insert vertices o f this rectangle into the mesh,
initialize the mesh with two triangles based on these vertices,

fo r  each boundary node:

insert this node into the mesh,
retriangulate locally,__________________________________

Fig. 5. Algorithm of Delaunay triangulation

The sequence of the insertion of boundary points is randomized in order to improve the 
efficiency of the triangulation. The local retriangulation of the mesh after an insertion of 
each node is carried out with respect to one of the properties connected with the Delaunay 
triangulation. The choice of the employed criterion has no influence on the shape of created 
mesh, because the resulting mesh is always Delaunay’s one and, save for degenerated case, 
such triangulation is uniąue. However, the efficiency and robustness of the process of trian- 
gulating may vary.

4.1.1. Criterion of empty circumcircle

This criterion says, that any node of a triangle mustn’t be contained within the circumcircle 
of any other triangle within the mesh. The only exception occurs, when there are morę than 
three vertices which lie on one circle. The algorithm (Fig. 6) takes advantage directly of 
this criterion.

find a triangle containing the new node,
mark this triangle and add it to the list o f invalid triangles,
loop  for successive triangles ffom the created list:

let T be the next triangle,
ifa n y  triangle adjacent to T contains new node in its circumcircle 
and it is not marked:

mark this triangle and add it at the end o f the list,_______________

determine all boundary edges o f the cavity containing marked triangles, 
delete all marked triangles,
add new triangles by joining edges of cavity with the new node,

Fig. 6. Algorithm of retriangulation with the criterion o f an empty circumsphere
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When a new vertex is inserted, each triangle whose circumcircle encloses the new vertex is 
no longer Delaunay’s one, and should thus be deleted (Fig. 7). First, a triangle containing 
the new node must be found. Then, a set of triangles containing the new node in their cir- 
cumcircles is determined by the broad-first search from the initial triangle. The set of delet 
ed triangles forms a star-shaped cavity, which is left vacant. Each vertex of this cavity is 
then being connected to the new vertex with a new edge.

Fig. 7. Utilization o f the property o f an empty circumcircle: a) new node inserted into the mesh; 
b) triangles containing the new node in their circumcircles; c) the empty cavity and new triangles

4.1.2. Criterion of inner angles

The criterion of inner angles follows from the already mentioned property of maximizing of 
minimal angles, and it can be expressed in a few equivalent forms. The one used in the pre- 
sented algorithm says, that for each pair of neighbouring triangles the sum of inner angles 
adjacent to the common edge mustn’t be smaller than the sum of the remaining two inner 
angles (Fig. 8).

Fig. 8. Criterion of inner angles <xl2 + a 13 + a 22 + a 2, > a ,, + a 2,

In the algorithm (Fig. 9) after each new node is inserted, the containing triangle is found 
and split into three new triangles (if the new vertex doesn’t fali upon an edge of the trian 
gle). Next, a recursive procedurę tests whether any of the newly created triangles and one of 
theirs neighbours don’t conform to the criterion of inner angles. Each affirmative test trig- 
gers an edge flip. The process of inserting of one node is shown in Figurę 10.
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find a triangle containing the new node, 
remove this triangle,
i f  the node is inside this triangle:________________________________________________

create new triangles by joining vertices o f the removed
triangle with the new node,_________________________________________________

else i f  the node falls upon an edge o f the triangle:_________________________________

remove an adjacent triangle (if it exists),
create new triangles by joining vertices o f this cavity with the new node,
{ if  an adjacent triangle doesn’t exist -  create two new triangles),________________

add new triangles to the veryfying list,
fo r  a ll triangles in the yeryfying list:_____________________________________________

i f  a triangle and its neighbour don’t conform to the
criterion o f inner angles:___________________________________________________

flip a common edge,
add both altered triangles to the yeryfying l i s t , __________________

else  remove this triangle from the yeryfying list,______________________________

Fig. 9. Algorithm o f retriangulation with the criterion o f inner angles

Fig. 10. Utilization o f the criterion of inner angles: a) new node inserted into the mesh; b) division of 
the triangle into three smaller triangles; c) edges flipping

4.2. Localizing a containing triangle

In both retriangulating algorithms presented above, the first step reąuires to locate the trian 
gle which contains the newly added node. To be precise, in the scheme based on the crite 
rion of the empty circumcircle, localizing any triangle containing the new node in its cir- 
cumcircle would be sufficient. However, choosing the triangle which contains the new node 
as an initial triangle has the advantage of avoiding some problems with the round-off error 
of evaluating whether a point lies within a circumcircle.

The algorithm (Fig. 11) of localizing the triangle containing the new node (which can 
be generalized to other polygons) is based upon the scheme of “mesh walking” in the direc- 
tion of the new node [17] (Fig. 12a). This method reąuires the mesh to be coherent and to 
form a convex polygon without holes. Both these reąuirements are fulfilled at the first stage
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of the triangulation, before removing of obsolete triangles takes place. Afterwards, this 
method is no longer used, because inner nodes are inserted into a chosen triangle which 
needn’t to be sought.

select an initial triangle:
set the recently created triangle as an initial triangle, 
set the root of QuadTree as a current tree-node, 
loop:

if the current tree-node contains a valid preferred triangle
and this triangle is nearer to the given point than the current initial triangle:

set this preferred triangle as the initial triangle, 
if the current tree-node has sub-nodes:

set the sub-node in the direction of the given point as a current tree-node, 
else leave the loop,

localize the containing triangle:
set the initial triangle as the current triangle,
while the current triangle doesn’t contain the given point: 
select an edge of the current triangle in the direction of this point, 
set the triangle adjacent by this edge as the current triangle,____

Fig. 11. Algorithm of localizing of the triangle containing the given point

Fig. 12. Localizing of the triangle containing the point P: a) oriented scanning of elements in the 
mesh; b) selecting an edge in the direction of the given point

As the first checked triangle (called the initial triangle) the recently added element is select- 
ed. Such choice is advantageous, if successively inserted nodes are located near one to the 
another. Otherwise, an altemative method of choosing a good initial triangle must be utilized 
in order to minimize the number of triangles being checked.

For each checked element, a position of the node relatively to this element is determined. 
If the new node lies within the element (or at its edges), the procedurę stops. Otherwise, 
one of the adjacent triangles in the direction of the node is selected as a candidate.
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The method of choosing one of the neighbours is based upon values of angles between the 
normal vector and the directional vector, in the middle of edges (Fig. 12b). After evaluating 
scalar products of all pairs of vectors, the edge (and the adjacent triangle) with the largest 
value is chosen.

Since the problem of finding the containing triangle is crucial for the efficiency of the 
entire algorithm, the structure of geometrical QuadTree is utilized in order to ensure fast se- 
lection of a good initial element for a further procedurę of scanning of the mesh. The Quad- 
Tree structure doesn’t storę all elements in the mesh. Each node of the tree, covering 
a rectangular area of the mesh, contains only one reference to the triangle (called a prefer- 
red triangle) which is located nearest to the middle of the node (Fig. 13a). During the evalu- 
ation of the distance from a triangle to the midpoint of a node, this triangle is represented 
by its centroid.

Fig. 13. Structure of the QuadTree: a) choosing the preferred triangle for a node o f the tree; b) scanning 
the tree along the path determined by the given point

łn order to preserve the coherence of the QuadTree, this structure must be updated each 
time any mesh element is inserted or removed ffom the mesh. A newly created triangle is 
sift through successive levels of the tree, according to coordinates of its centroid (Fig. 13b). 
For each visited node of the tree a check is performed, whether this triangle is nearer to the 
midpoint of this node than its preferred triangle. An affirmative test causes the replacement of 
the reference to preferred triangle. Additionally, in every visited node a counter of assigned 
triangles is increased. If the value of the counter becomes greater than a certain threshold, 
the node is split into four equal sub-nodes.

During the removal of any mesh triangle, the QuadTree must be updated in order to re- 
move any references to this triangle. The triangle is sift through the tree and if the preferred 
triangle in any node is equal to the triangle being removed, such reference is invalidated. 
Because the QuadTree is used during the process of constructing the mesh and its size is 
gradually growing, removing a triangle (possibly connected with decreasing of some coun- 
ters below the threshold) doesn’t cause removing of any node of the tree.

During selecting of the optimal initial triangle, the QuadTree is scanned along the path 
determined by coordinations of the given point. For each visited tree node, the distance 
from the point to the centroid of the preferred triangle in this node is evaluated, and the cur- 
rent best initial triangle is updated in order to minimize the distance from initial triangle to 
the given point.
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4.3. Recovery of the boundary

Delaunay triangulations are oblivious to the boundaries of the domain, and these bounda- 
ries may or may not appear in a triangulation (Fig. 14). In order to ascertain the presence of 
all boundary edges, one can enforce theirs construction during the triangulation or recover 
them afterwards. The presented scheme utilizes the second approach.

Fig. 14. Example o f a missing boundary edge (marked with a broken linę): a) shape of boundaries; 
b) set o f boundary vertices; c) triangulation o f boundary nodes

After all boundary points are inserted into the mesh, specified boundary edges are inspected. 
If any of them is missing, the process of the recovery is performed. Simultaneously, all bound 
ary edges (both already existing and just recovered) are marked as unremovable and trian- 
gles adjacent to them are described in order to identify the sub-area of the physical domain, 
to which they belong.

Two methods of recovery of missing boundary edges are presented. One of them re- 
quires the insertion of additional nodes, while the other is based upon edges swapping.

4.3.1. Insertion of points

For each missing edge, the new node is inserted into its middle [19]. After a successful re- 
triangulation, the presence of both sub-edges is ascertained. If any of them is still missing, 
the procedurę is performed recursively (Fig. 15). During this recovery, both created edges 
as well as triangles adjacent to them are accordingly described.

Fig. 15. Recovery o f the boundary by the insertion of points: a) missing AD  edge (marked with a bro 
ken linę); b) inserting the G vertex in the middle o f the AD  segment; c) inserting the H  vertex produces

the reąuired edge
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4.3.2. Edges swapping

The algorithm (Fig. 16) of the recovery of the missing edge is based upon an iterative pro- 
cess of edges swapping in order to create the reąuired edge [12]. It should be noticed, that the 
ąuadrilateral formed by two adjacent triangles can be concave, which prohibits the flip of 
the common edge (e.g. in Fig. 17a swapping of the BC  diagonal in the ABEC  ąuadrilateral 
is impossible). However, it is proved that an adeąuate order of edges swapping, resulting in 
the recovery of the desired edge, can always be found in 2D. While this method doesn’t 
reąuire the introduction of any additional points, the resulting mesh is usually of worse ąuality.

create a list o f all edges, which cross the missing edge E0:

for each triangle T incident to the point P\ (a node of Ef):

if  the edge E\ of the triangle T opposite to P\ crosses E0:

add the edge E\ to the list,
set this triangle as an initial triangle T\,

loop:

let Ti be a triangle adjacent to the triangle T\ by the edge E\, 
if  the vertex of the triangle Ti opposite to E\ is incident to E0:

le a v e  t h e  lo o p ,

c h o o s e  a n  e d g e  Ei o f  t h e  t r i a n g l e  Ti d i f f e r e n t  t o  E i ,  C r o s s in g  Eg, 
a d d  Ei t o  t h e  l i s t ,  

let T\ Ti, E ] — Ei,

while the list is not empty:—  
take the first edge from the list
if swapping o f this edge for neighbouring triangles is possible:

remove this edge from the list, 
swap this edge,
if  the new edge crosses the missing edge: 

add the new edge at the end of the list, 

else move the edge to the end o f the list,

Fig. 16. Algorithm of recovery of a missing edge by edges swapping

While missing edges are recovered, the resulting triangulation may be no morę Delaunay’s 
one and it is called “constrained Delaunay triangulation” [5, 12]. As a conseąuence of this 
redefinition, some alterations are introduced into triangulation schemes described above. In 
particular, all boundary edges are treated henceforth as unremovable. In the algorithm of 
the retriangulation by the criterion of an empty circle, adjoining triangles, whose common 
edge is marked as a boundary edge, are no longer considered neighbours. In the algorithm 
utilizing the criterion of inner angles any boundary edge can’t be swapped. All these altera 
tions guarantee that once recovered boundary edges won’t be removed during the further 
Processing of the mesh.
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Fig. 17. Recovery of the boundary by edge swapping: a) missing AD edge (marked with broken linę); 
b) first swap (BE —» CD); c) second swap (BC -» AD) resulting in the recovery of the missing edge

4.4. Deletion of obsolete elements

After enforcing the presence of all boundary edges, the deletion of obsolete elements can be 
performed. Up to this moment, the area of mesh was defined by two auxiliary triangles en- 
closing the whole domain. As a result, the mesh contains additional triangles (surrounding 
the domain or forming holes) which should be removed. The algorithm (Fig. 18) is coupled 
with identifying all valid triangles as being a part of one of the specified sub-areas in the 
domain.

mark and add to the verifying list all valid triangles, identified 
during the validation of boundary edges (Section 4.3), 
for each triangle front the verifying list:

for each neighbour of this triangle:

if the edge common to this pair of triangles is not a boundary one 
and the adjacent triangle isn’t marked yet:

mark this triangle,
copy the area identifier,
add this triangle into the verifying list,

remove all unmarked triangles,

Fig. 18. Algorithm of deletion of obsolete elements

5. Refining the mesh by an introduction of inner nodes

The ąuality of the mesh obtained by the triangulation of boundary points depends upon their ar- 
rangement. If thus created mesh doesn’t conform to specified reąuirements conceming the size 
or the ąuality of its elements, it must be improved by the insertion of additional points. As 
an optimal shape of a triangle, the eąuilateral one is assumed. The information about node 
spacing within the domain is approximated on the basis of the density of boundary nodes.
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5.1. Insertion of inner nodes

First, the ąuality of all mesh elements is evaluated according to the chosen criterion. Nodes 
are then inserted incrementally into the existing mesh in the vicinity of bad triangles, rede- 
fining the triangles locally as each new node is inserted, to maintain the constrained Delau- 
nay triangulation (Fig. 19). Criterions of assessing the ąuality of triangles, and methods that 
are chosen for defining where to locate interior nodes are described in the following sections.

evaluate ąuality coefficients (according to the chosen criterion) for all triangles, 
reorganize all triangles into the structure of the heap 
(with the worst element at its top),
loop

fetch the worst triangle from the top o f the heap,
i f  the ąuality o f this triangle is higher then the reąuired threshold:

leave the loop,

e lse :

insert a new node inside this triangle, 
retriangulate locally,
i f  the number of inner nodes is higher then the maximum value: 

leave the loop,

Fig. 19. Algorithm of insertion of inner nodes

Before the process of refining the mesh takes place, the set of triangles creating the mesh is 
reorganized into the structure of the heap [2], which is preserved during the subseąuent re- 
triangulations. Utilizing this structure allows to find the worst triangle in the single step (it 
is always located at the top of the heap), while it introduces a logarithmic complexity of ad- 
ding and deleting of triangles.

In order to avoid the creation of triangles with too smali area (which is particularly 
characteristic for the category of ąuality criterion based upon the shape of triangles), a re- 
striction on their size is imposed. For each triangle adjoining the boundary the minimum 
area is determined (eąual to the area of an eąuilateral triangle based upon a boundary edge). 
The smallest of all these minimum areas is used as a minimum area for all inner triangles. 
During the refinement, the ąuality coefficient of each triangle with area less then its mini 
mum value, is set high enough in order to prohibit the division of this triangle.

5.2. Criterions of the quality of triangles

Each step of the procedurę of the refinement selects the currently “worst” triangle and it at- 
tempts to improve the mesh by inserting a new node in the vicinity of this triangle. The de- 
finition of the “worst” triangle implies introducing of an ordering relation. Criterions of as 
sessing the ąuality of triangles, which exert a significant influence on the shape of the cre- 
ated mesh, can be divided into three categories.
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5.2.1. Weighted criterion

Before the insertion of inner nodes takes place, a weight is ascribed to each boundary node. 
The value of the weight at each node is calculated as an average length of boundary edges 
incident to this node. Next, the ąuality of each triangle is evaluated according to the for 
mula [6]

where:

Q( A) =
G(A)2 
S(  A)

( 1)

S(A) -  area of the triangle,
G(A) -  geometrie average of weights of vertices of this triangle.

Thus determined ąuality coefficient is always positive and its optimal value is approximately 
eąual to 2. Increasing this value produces meshes with the higher density.

5.2.2. Shape criterions

One of the utilized criterions is the coefficient a  evaluated according to the formula 2 [15]. 
The rangę of this coefficient for valid triangles is (0, 1]. a  is eąual to 1 for eąuilateral trian- 
gles and converges at 0 while triangles degenerate into a linę segment. There are included 
some other shape coefficients (3), whose values grow as a triangle becomes “better shaped”. 
Factors used in all these formulas allow to obtain 1 as the value of each coefficient for the 
eąuilateral triangle:

Q(A) = ol ( ABC ) = 2-/3
c a  x cm

||C4|| + 1 ^ 1  +||5C||

e(A ) =
r r nr1 ( p - a ) ( p - b ) ( p - c )  r
R p S  p 3 d

(2)

(3)

5.2.3. Size criterion

The ąuality of triangles is evaluated as a ratio of the reąuested size of elements throughout 
the mesh to their current areas. The background spacing grid [15] is used in order to 
approximate expected sizes of elements within the mesh on the basis of the distribution of
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boundary nodes. Determined sizes of elements along the boundary are equal to the area of 
eąuilateral triangles based upon boundary edges (Fig. 20). The spacing function within the 
domain is interpolated in order to obtain gradual transitions between triangles with various 
areas. This spacing function is represented as a regular sąuare grid enclosing the whole 
triangulated domain. The values of the function within each sąuare are interpolated on the 
grounds of values at grid nodes (forming vertices of this sąuare). The density of the space 
grid depends upon the ratio of the shortest boundary edge to the size of the bounding box of 
the domain.

Fig. 20. Background spacing grid: a) determining values of the spacing function along boundaries; 
b) interpolating the spacing function within the domain; c) obtaining the expected size for a triangle

5.2.4. Quality threshold

The significant parameter of the algorithm (Fig. 19) of the insertion of the insertion of inner 
nodes is the threshold value of the ąuality coefficient, up to which triangles are still being 
improved (as long as the maximum number of inserted nodes isn’t reached -  if such limita- 
tion exists). Increasing the threshold value causes increasing the number of inner nodes and 
usually a better ąuality of the resulting mesh. For criterions based upon the shape of trian 
gles, the threshold value should be less than 1.

5.3. Determining the location of inner nodes

Three strategies of the location of a new node for the triangle being refined are presented. 
Analogously to the choice of the ąuality criterion, the method of introducing new nodes has 
a large impact upon the structure of the resulting mesh.

5.3.1. Midpoint of the longest edge

The new point is inserted in the middle of the longest edge of the triangle. The weight of 
this point (if the weighted criterion is utilized) is calculated as an average value of weights 
of both nodes of this edge.
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5.3.2. Weighted centroid of the triangle

The new point is inserted according to the formula 4 [19]

,  W,x, + W2x2 + fV}x}
x wt + w2 + w3

The weight of this point is calculated as

(4)

w=a ai him (5)

Increasing the value of factor a w lessens the density of the resulting mesh. The recommend- 
ed rangę of this factor is [1,1.3].

5.3.3. Circumcentre of the triangle

Coordinates of the new node are equal to the centre of the circle circumscribed on the trian 
gle being improved [9]. While the circumcentre of a triangle may or may not belong to this 
triangle, a search for a containing triangle must be performed. If such triangle can’t be found 
(the point lies outside the domain or there is a boundary edge between the initial triangle 
and the point) the operation is cancelled. In such case the ąuality coefficient of the triangle 
is set high enough to prohibit further processing of this triangle (until any modification of 
neighbouring triangles takes place).

The weight of the new point is evaluated according to the formula 5 already mentioned.
If the quality of triangles is assessed on the basis of criterions different ffom the weighted 

criterion, weights of all points are set to 1 (and have no impact upon the created mesh).

6. Improvement of the mesh

The quality of the constructed mesh can usually be improved by employing some optimiza- 
tion techniques. Methods presented below can be divided into two categories based upon 
smoothing and clean-up. Smoothing adjusts node locations while clean-up generally changes 
the element connectivity. In order to achieve best results both types of methods should be 
used altematively. The process of improving the quality of the mesh is fmished, if the 
quality is good enough or the efficiency of methods falls below some threshold.

6.1. Laplacian smoothing

This well-known simple method (Fig. 21) [7] relocates nodes of the mesh in order to locally 
even out lengths of inner edges. During every pass of the procedurę each intemal node in 
the mesh is placed at the average location of any node connected to it by an edge

* = - £ * ,  (6) 
n ,=i

where n -  number of nodes connected to the given point by an edge.
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for each node in the mesh:
if  the node doesn’t belong to the boundary:

change the location of this node according to the formula 6, 
for each triangle incident to the node:

if the triangle is inverted (its area is negative):

restore the previous location of the node,

Fig. 21. Algorithm of Laplacian smoothing

Unfortunately, for some configurations of the mesh, the Laplacian formula can result in 
a corrupted mesh (Fig. 22). The presented algorithm includes an inspection of the correct- 
ness of the mesh after each relocation of the node. If the resulting mesh is invalid, the last 
modification is cancelled.

Fig. 22. Failure of Laplacian smoothing

6.2. Edges swapping

This method is based upon the already mentioned strategy of swapping the common edge in 
two adjacent triangles, if such modification is possible and if the criterion of inner angles is 
not fulfilled (i.e. if the sum of inner angles adjacent to the common edge is less than the 
sum of other inner angles). The algorithm (Fig. 23) iterates through all triangles in the 
mesh. For each pair of adjacent triangles a check can be madę to determine whether swap 
of diagonal edge would improve ąuality of these triangles [13]. If the test is affirmative, the 
edge is swapped.

for each triangle in the mesh:

for each adjacent triangle:

if the common edge doesn’t belong to the boundary 
and triangles form a convex ąuadrilateral 
and the sum of inner angles adjacent to the common edge 
is less than the sum of residual inner angles:

swap the edge (Figurę 24), 
update parameters of triangles,

Fig. 23. Algorithm of edges swapping

8 7



a)

Fig. 24. Clean-up of the mesh by edges swapping: a) edge swapping; b) edge can’t be flipped in this
concave quadrialateral

6.3. Topological clean-up
For a triangular mesh there should be optimally 6 edges at any inner node. Whenever there is 
an inner node that does not have an ideał degree, the quality of elements surrounding it will 
also be less than optimal. While for meshes with varying density, nodes with degree different 
ffom 6 are indispensable, one should avoid creating nodes with too Iow or too high a degree. 
Topological clean-up is oriented solely to improve the connectivity of nodes, and the quality 
of elements in the mesh may actually decrease. Therefore, it should be coupled with a method 
directly improving the quality of elements, such as Laplacian smoothing.

6.3.1. Adjusting local spacing of nodes

First of the presented methods is based upon the insertion and the deletion of some inner 
nodes, in order to balance locally the density of the mesh. The scheme for processing sparse 
nodes (with a degree less or equal to 4) is described in the algorithm (Fig. 25).

fo r  each node in the mesh:

i f  the node doesn’t belong to the boundary:

i f  the degree of the node is equal to 4:

remove the node together with four adjacent triangles, 
add two new triangles inside the cavity (Fig. 26),

i f  the degree o f the node is equal to 3:

remove the node together with three adjacent triangles, 
_ l add a new triangle inside the cavity,

Fig. 25. Algorithm o f correction of sparse nodes

Fig. 26. Deletion of a sparse node
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Dense nodes (with a degree greater or equal to 8) are improved by the insertion of additional 
one or two nodes in theirs vicinity (Fig. 27).

for each node in the mesh:

if the node doesn’t belong to the boundary:

if the degree of the node is equal to 8 (Fig. 28):

choose an incident edge with the greatest degree of the other node,
move the node along this edge by -  its length,

insert a new node in the middle of the opposite edge, 
perform the retriangulation (with the criterion of inner angles),

if the degree of the node is greater or equal to 9 (Fig. 29):

choose an incident edge with the greatest degree of the other node,
move the node along this edge by — its length,

select edges E\ and Ej
(which divide all incident edges into three even groups), 
insert a new node in the middle of the edge E\, 
perform the retriangulation, 
insert a new node in the middle of the edge Ej, 
perform the retriangulation,

Fig. 27. Algorithm of correction of dense nodes

Fig. 28. Insertion of one new node

Fig. 29. Insertion o f two new nodes
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6.3.2. Edges swapping

The second of presented methods is based upon swapping edges in order to even out de- 
grees of vertices in adjacent triangles (algorithm -  Fig. 30) [4, 10]. While this method al- 
lows to reduce considerably the number of sparse and dense nodes, it leaves the number of 
all inner nodes unchanged.

for each edge:

if for the edge 2-4 (Fig. 31)
nonę of the vertices 1, 2, 3 and 4 belongs to the boundary 
anddegrees of these vertices comply to «2 + «4 -  -  «3 > 2:

swap the edge 2-4 into 1-3, if it is possible, 
if the quadrilateral 1-2-3-4 is convex),

Fig. 30. Algorithm of balancing degrees of nodes by edges swapping

Fig. 31. Swapping an edge

7. Renumbering
The purpose of the algoritm (Fig. 32) of renumbering nodes in the mesh is to accelerate 
computations, for which the mesh is created. The main idea is to minimize the difference of 
numbers of vertices in elements in the mesh in order to decrease the bandwidth in the stiff- 
ness matrix for the finite element method (FEM). The scheme is based upon the broad-first 
scanning of the graph -  nodes of the mesh are numbered from the first one, through its neigh- 
bours, and their neighbours, etc.

Since the choice of the first (starting) node has significant impact on the effectiveness 
of the entire scheme, three passes are performed (in altemated directions) with the last node 
being the first in each successive pass.

The algorithm (Fig. 32) describes forward renumbering. The backward scheme (itera- 
ting points from n to 1) is identical but for some slight changes reversing the process.

Another variation of the algorithm described above is renumbering with the correction 
for distances. This procedurę starts with the renumbering algorithm (Fig. 32) and then all 
vertices are sorted according to their distance from the starting point (for each disjoint area 
separately). For some cases of meshes, especially with curvilinear edges, this additional ope- 
ration allows to improve the ąuality of renumbering.
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for i= 1 ... n\________________________________________________

ifk < i:_________________________________________________

k  := 2 ,  (k  — expected number of the successiye neighbour of the point P[;]),

k i + 1, (important for incoherent areas) 
for each neighbour (/*[/]) of the point P[i\.

Fig. 32. Algorithm of renumbering of mesh nodes

8. Results
Figurę 33 shows the process of triangulation for a complex domain. After generation of 
100 boundary vertices (according to weights ascribed to nodes in the domain) the Delaunay 
triangulation is performed. Next, the boundary is recovered and obsolete triangles are re- 
moved. The resulting mesh is completed by the Delaunay refinement with the weighted cri- 
terion and introducing new nodes in the circumcentre of triangles being improved. The finał 
mesh is then improved by three passes of described optimization procedures.

Criterions of assessing the ąuality of triangles and strategies of locating new nodes dur- 
ing the refinement procedurę allow to obtain meshes with a various structure and quality.

Fig. 33. Successive stages of the scheme of the mesh generation: a) specified domain; b) generated 
boundary nodes; c) triangulation of a set of boundary nodes; d) deletion of obsolete triangles; e) inser- 

tion of inner nodes; f) smoothing and clean-up
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Figurę 34 presents meshes created for various ąuality criterions (new nodes are introduced 
in circumcentres of triangles), while in Figurę 35 results for different strategies of locating 
new inner nodes (and the weighted criterion) are demonstrated.

Fig. 34. Meshes generated with different ąuality criterions: a) weighted criterion; b) shape criterion;
c) size criterion

Fig. 35. Meshes generated with different strategies of locating new inner nodes: a) midpoint of the 
longest edge; b) centroid of the triangle; c) circumcentre of the triangle

The detailed analysis of the ąuality of meshes obtained for different variations of triangula- 
tion scheme as well as the study of the expected efficiency of particular algorithms is pre- 
sented in [14].

9. Conclusions
In presented paper a complete scheme of the generation of triangular, unstructured meshes 
for 2D domains is described. The scheme is based upon the Delaunay triangulation. A se- 
rious stress was put on the ability to perform a fully automatic triangulation of complex do 
mains while meeting reąuirements regarding the ąuality and size of elements throughout 
the mesh. Described algorithms were optimized with respect to running time and an empiri- 
cal efficiency close to linear was achieved for the whole process.

The shape of the resulting mesh can be influenced by means such as weights of verti- 
ces in the domain, the choice of parameters and strategies employed during the refmement 
procedurę, or the selection of improving methods. Elements in the mesh can be converted 
into curvilinear triangles with consideration for the complex shape of the boundary (in or 
der to increase the matching of the mesh and the physical domain being modeled).

Futurę works will focus on extending the mesh generation scheme into a three-dimen- 
sional and anisotropic space, and on the generation of all-quadrilateral meshes.
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