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OPTIMISTIC AND PESSIMISTIC RESULT OF PLANNING
AND SCHEDULING DYNAMIC PROCESSES

1. Introduction

In many real-life circumstances decision problems arise. Optimisation problems can be for-
mulated as decision problems as well. An optimisation problem can be expressed in terms
of a model and a performance index. While the model describes the problem, the perfor
mance index assigns a value to each feasible realisation ofthe problem [1],

An algorithm is a method to solve a class of problems with Computer. The
computational complexity of an algorithm, which can be measured, is the cost. It is
measured in runtime during which the algorithm is used to solve one of the problems. If the
runtime is limited by a polynomial function of the amount of input data at most, the
problem is said to be an easy one otherwise it is a hard problem. If a problem is easy it is
enough to describe a method meeting such a constraint, when used to solve the problem.
What does it mean that a problem is hard? The problem is hard when it is necessary to
prove that it is impossible to find a fast method to perform the calculations which identify
an optimal solution. There are a number of easy problems. Matrix inversion is easy: n *n
matrix can be inverted with the Gaussian elimination method in time of cn at most. Sorting
problem is easy as well. The fact that a computational problem is hard does not imply that
its every instance has to be hard. The problem is hard when no algorithm can be pointed at,
which could ensure a high performance for all instances of the problem. Notice that the
amount ofinput data to the Computer in this example is smali [7].

In recent years there has been a growth in research which deals with the development
and complexity analysis of combinatorial algorithms. Complexity measures are of two
kinds: static, independent of the size and characteristics of the input data, and dynamie,
dependent on the input data [3].
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2. Optimisation for dynamie problems

Optimisation is aimed at finding the optimum seauence for the given form of the perfor
mance index. This section deals with the problems of optimisation for dynamie problems,
including combinatorics optimisation. Three forms of the performance index for optimisa
tion tasks are established. Now we are considering the scheduling problem.

The loss of the profit/?, (C, i) depends on the resources volume C- j. Special attention
is given to finding polynomial algorithms used for combinatorics optimisation tasks. These
optimisation tasks may be solved for a large number of dynamie processes.

The optimisation algorithms are built upon the sorting procedur¢. It is assumed that the
performance index is additive. On the completion of i dynamie processes, the performance
index value determines the initial condition for the subseguent dynamie problem under re-
alisation which is discretionally chosen out of n —i processes yet to be carried out.

In real physical or economic processes it is necessary to know a definite time interval
for carrying out the elementary technical, technological or economic operation.

3. Applied Statistics

The plotting of experimental results to see if there is any orderly relation between variables
is usually referred to as correlating the data [26]. The pairs of values of the variables asso-
ciated with each data point are designated x, and ytwith y assigned to the variable which is
imprecisely known, or to the dependent variable. A straight ling through the data is expres-
sed as: y =ax+b =ax + (y- cix), where y is estimated value ofy for observed value ofx. a is
the slope of ling, identical with regression coefficient, and b is intercept which gives the
estimated value ofy atx =0. The values of @ and b corresponding to the ling are calculated
with the minimum - sguared deviation ofy from y. It is not obvious from a plot of the data
whether or not it is reasonable to draw a straight ling through the points. It is possible to test the
estimated variance removed by the linear correlation against the estimated variance remaining
after correlation. The total sum of sguares of deviation variable from its mean is E(y - »)2 and

the total degrees of freedom are « - 1./2is the fraction ofthe sum of sguares of deviation remo-
ved by the correlation ling, (1- 72) is the sum of sguares of deviation from the least - sguares
ling, eaual to E(y - y)2 with n -2 degrees of freedom. We designate the estimate of variance
removed by the correlation as s2(C). The ratio of s4C)/sl(y) may be tested by the F ratio test
(Fisher test R. A. Fisher, Frank Yates, Statistical Tablesfor Biological, Agricultural and Medi-
cal Research, Oliver and Boyd Ltd., Edinburg and London 1953) [25], [24] for 1 and n - 2 de
grees of freedom to see whether the variance removed by the correlation ling is significant
when compared to the residual variance of estimate. This test is equivalent to testing the signifi-
cance of 7, the correlation coefficient, since s (C)ls2(y) =r2mn - 1)/(1 - r). Since F at 1 degree
of freedom is egual to 72 {t test), the F ratio test for correlation r2n - 2) / (1 - rd, can be ex-
pressed in terms of £ that is t =r2Vn-2 /V1—-2. This ¢ test, the F test, and the tabulated signifi

cant values for the correlation coefficient will all give identical results.
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Example
An example has been written by Matlab.
(The optimistic and pessimistic result ofa slope a)

There is given a vector x and a vector_y.

x=[10 40 50 210 220 470 850];
y=[10 20 30 45 50 80 120];
n=7,

sr_x=mean(x)

sr_y=mean(y)

sy=sum(y)

Sx=sum(x)

sy2=sum(y*y’)
sx2=sum(x*x’)

sxy=sum(x*y")
Spx2=sum(x*x')-1/n*(sum(x))A2

spy2=sum(y*y’}+1/n*(sum(y))A2
spxy=sum(x*y’)-1/n*(sum(x)*sum(y))
a=spxy/spx2

B=sr_y-a*sr_x

r=spxy/sqrt(spx2*spy2)
r2=r*r
s2dash_y=(1-r2)*spy2/(n-2)
S2a=s2dash_y/spx2

sa=sqrt(s2a)
s2bar_y=s2dash_y/n
Sbar_y=sqrt(s2bar_y)

t005n_2=2.571

The value t005n_2=2.571 comes from R. A. Fisher, Frank Yates, Statistical Tablesfor
Biological, Agricultural and Medical Research, Oliver and Boyd Ltd., Edinburg and Lon
don 1953). 1t is given at the 0.05 level, and n—2 = 5.

bary_u=sr_y+t005n_2*sbar_y
bary_l=sr_y-t005n_2*sbar_y
a_u=a+t005n_2*sa

auis a pessimistic result for a slope a.

a_l=a-t005n_2*sa

atis an optimistic result for a slope a.
for 7=1: n,

Y_UR(i) a*x(i)+b+t005n_2*...
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sqrt(s2dash_y*(1/n+(x(i)-sr_x)*(x(i)-sr_x)/spx2));

end

forj=1: n,

y_LR(i)=a*x(i)+b-t005n_2*...

sqgrt(s2dash_y*(1/n+(x(i)-sr_x)*(x(i)-sr_x)/spx2));

end

y_UR

y_LR
plot(x,y,™)
hotd on;
plot(x,a*x+b)
hotd on;

plot(x,(a+t005n_2*sa)*x+sr_y-sr_x*(a+t005n_2*sa),'r’)

hotd on;

plot(x,(a-t005n_2*sa)*x+sr_y-sr_x*(a-t005n_2*sa),'b")

plot(sr_x,bary_l1,’+");

hotd on;
plot(sr_x,bary_u,'0’);

hotd on;

plot(x,y_UR);

hotd on;

plot(x,y_LR);
titlte(‘Confidence intervals’);
xlabel(’ x axis');

ylabelC y axis').

The results ofthe example are shown in Fig. L

46

Flg 1. Applied statistic results



4. Scheduling of linear dynamie processes

The model ofthe optimisation process is given as

|P, (C,-i )=aiC,_I+bi;a, >0; bi>0;CO0>01min"C,.

In this section we examine a case of scheduling problem where the coefficients a and b are
different for each model [21]. The relations ar<a2<a3< ..< anl< anare assumed to be
fulfilled.

In Table 1p¢(C, ,),C,,~C, are shown (for permutation of models in the form (1,2,

3
Table 1

i P.(C) ZC,

0 0 Co (@)

1 a\CO+b\ (ai+1)Co+24 Co+C\

2 a2a\Co+bi)+b2=a2C]+b2 (a2+)C\+b2 Co+Citc2

aiGitbi 3+1)C2+b3 Co+C1+C2+Cs

n anG,\+b, (a,+)C,.\+b,, CO+C,+...4+C,

PROBLEM
«| (C_)=a; C ', >0, >0,C0>01lmin"C.

In this section we examine a case of scheduling problem where the coefficients @ and b are
different for each model. The relations above are assumed to be fulfilled.

It is assumed that relations are fulfilled.

Theorem 1

If for the problem

n|Pi(C, ,)=alCi l+bl; >0, b>0;, CO>01min£jC.

for Vy=lj2.nand i *j

the relation

CO(ai+ty +bi+((aj +tV) bt+bj) 1+ » 1M («,+1)

y k=1 1=\,1*%ij*j J
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is fulfilled

( k=n-2 1=k >

m°Co (aJ+\)+bj +((ai+\)bj +bj) 1+X  ri(a/+l
\'% k=1

1=\, 1%i,1%f )

then the zth model occupies the first position of optimal permutation.

PROOF

For the seguence of models (1,2,..., n- 1, ri) the performance index is
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For the sequence ofmodels (2, 1,..., n) the performance index is
-C o+ CGI+CMANCMCh-
Co

(a2+ 1)CO+ b2+
(ai+ 1) (a2+ YCo+ (4 + 1) b2 + bi +

Ef
(a,+ 1)(a2+ 1)COn

(a, + )+
=3

Il
3

*zﬂm)’

T“

(<<i H)+

=

(al+)(a2+1)Con (a, +1)
“ZaHyi(fl,+)-

K=L 1=2

Z n (dHFw
Given the relation Z,C <=Z-C
we have

I=k

Tl (a/+l)
1=\

f k=n-2
Co(ai+")+bi+((.0j+Dbi+bj) 1+Z

k=n-2

<=C0(a,+1) +6,+((a,*DA,+M |+Z n (a,-H

\
A= 1=\ 10 0% )
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Now, there are n - 1 models. The model on the first position of optimal permutation is fi-
xed. We can calculate a new initial condition
Co: = CO+ a, Co+ b,

The models are assumed to be scheduled by the relation

a, <a2<a3<...<a, <0j <...<a,, 2<a,, ,.
Theorem 2

If for the problem

dn|p,C,._,)=ajCi*+bj;a,>0; b{>0,C0>01min"C,

where i e {1,2,...,w} and2<w<«-2

forVy=i2 nand i j the relation

( k=m

COfa. + )+& .+ ((aj+ )bi+bj) 147 1N (a"H)

y A=m I=£ A

CO(a2+1)+6y+(("+ 1) +6,) i+z n  (a/+i)
k=1 /=l J

is fulfilled then the model M, occupies the /th position ofoptimal permutation.

PROOF
The proofis analogous to the proofoftheorem 1.
Example

The algorithm resulting from the theoremsl and 2 is tested. The data for the problem

p, (C, )=aiC,_I+i,; *>0; bi>Q\CO>o0\min™ICi

are presented in Table 2.

Table 2
i a, b Cn
0 1
1 1.00000 3.13799
2 2.86105 20.25810
3 3.27292 67.16544
4 4.31869 16.17955
5 5.37224 42.56738
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We examine the relation:

A-Q (a,ti>i-"+((«y+D)*+"~)ii+s*=Sn ~ (-, +D

n-C O(aj +\)+bJ+((ai+)bJ+bi) 1+ X W rX=i,/»;,/*/a'+1)

fory=1,2,..., 5and i*j.

The results ofrelations are shown in Table 3.

Table 3

value If value n i ./ result of relation
5599.92 7568.304 i 2 true
12595.22 21551.679 i 3 true
4162.741 4511.450 i 4 true
6831.216 9680.073 i 5 true
7568.304 5599.992 2 1 false
12540.749 22835.790 2 3 true
8203.488 5481.717 2 4 false
9808.306 10571.599 2 5 true
21551.679 12595.228 3 1 false
22835.790 12549.749 3 2 false
22449.685 8189.802 3 4 false
24443.491 12948.251 3 5 false
4511.450 4162.741 4 1 false
5481.717 8203.488 4 2 true
8189.802 22449.685 4 3 true
63897.827 10654.154 4 5 true
9680.073 6831.216 5 1 false
10571.599 9808.306 5 2 false
12948.251 24443491 5 3 true
10654.154 6389.782 5 4 false

The model M\ occupies the first position of optimal permutation. There are four models that
are described in Table 4.

Table 4
i a b, Co
0 5.13799
1 2.86105 20.25810
2 3.27292 67.16544
3 4.31869 16.17955
4 5.37224 42.56738
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We can write the relation

h~Co («/+ Dt o+ ((a; + D&I+E£;)MN +S * 5

12=C 0 (dj+ D)+b] +((ai+Dbj+biy1 + X W

fory= 1,2, 3,4 and i =4
where
C0:= C0+CO(oi + 1) +bl.

The results ofrelations fori,j =1, 2, 3,4 are shown in Table 5.

Table 5
value ly value rj i 7 result ofrelation
6221.548 11331.502 i 2 true
4067.817 2732.252 i 3 false
4846.361 5244.331 i 4 true
11331.502 6221.547 2 1 false
11091.537 4059.092 2 3 false
12039.865 6400.437 2 4 false
2732.252 4067.817 3 1 true
4059.509 11091.537 3 2 true
3154.815 5256.623 3 4 true
5244.331 4846.361 4 1 false
6400.437 12039.865 4 2 true
5256.623 3154.815 4 3 false

The model M4 occupies the second position of optimal permutation. Now, we have only 3
models, and Co=43.0695, see Table 6.

Table 6
i al 6, G,
0 43.0695
1 2.86105 20.25810
2 3.27292 67.16544
3 5.37224 42.56738

We examine the relation:

h~Co (ai+ 1)+ *i+((J+ )b, +bj) 1 +S*= ri;=i,1//* a/+1)

ri~ CO{aj+\) +bj+((a, +\)bj+bA\ + n~,,,(«/+D
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fory = 1,2, 3, 4 and i ¥j,
where C0:= CO+ CQ(as+ 1)+ b3

The results ofrelations for i,j = 1, 2, 3, are shown in Table 7.

Table 7
value /3 evalue r3 i J result ofrelation
1361.226 23$8.158 i 2 true
1133.049 1358.733 i 3 true
2358.158 1361.226 2 1 false
2584.398 1595.941 2 3 false
1358.733 1133.049 3 1 false
1595.941 2584.398 3 2 true

The model M2occupies the third position of optimal permutation. At the end there are only
two models, and Co= 188.24, see Table &.

Table 8
i ai bi Co
0 188.24
1 3.27292 67.16544
2 5.37224 42.56738

We examine the relation /4= Cl{a\ + 1) + (a2+ 1)6i r4= Co(a2+ 1)+ (ai + )")-
The model M3 occupies the fourth position ofoptimal permutation.
The optimal permutation has the form M\, M4, M2 M3, Ms.

The computational complexity of scheduling problem

n\P,(Ci-i)=aiCi_t+bi; a,>0; b,>0; CO>01min£JCi
1S

0\Y,(i2-i)n log«l

5. Remarks

Ali seguencing problems are concemed with the assignment of tasks to appropriate servers
over time, so as to meet certain structural and time constraints and some performance opti-
misation criteria. Over the last four decades considerable study has been given by scientists
and engineers to seguencing and scheduling problems due to their theoretical interest (com-
binatorial optimisation, complexity analysis, worst-case analysis) and practical value (e.g.,
in FMS, CIM and multiprocessor Systems) [20].
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