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OPTIMISTIC AND PESSIMISTIC RESULT OF PLANNING 
AND SCHEDULING DYNAMIC PROCESSES

1. Introduction

In many real-life circumstances decision problems arise. Optimisation problems can be for- 
mulated as decision problems as well. An optimisation problem can be expressed in terms 
of a model and a performance index. While the model describes the problem, the perfor 
mance index assigns a value to each feasible realisation of the problem [1],

An algorithm is a method to solve a class o f problems with Computer. The 
computational complexity o f an algorithm, which can be measured, is the cost. It is 
measured in runtime during which the algorithm is used to solve one o f the problems. If the 
runtime is limited by a polynomial function of the amount of input data at most, the 
problem is said to be an easy one otherwise it is a hard problem. If a problem is easy it is 
enough to describe a method meeting such a constraint, when used to solve the problem. 
What does it mean that a problem is hard? The problem is hard when it is necessary to 
prove that it is impossible to find a fast method to perform the calculations which identify 
an optimal solution. There are a number of easy problems. Matrix inversion is easy: n * n  
matrix can be inverted with the Gaussian elimination method in time of cn at most. Sorting 
problem is easy as well. The fact that a computational problem is hard does not imply that 
its every instance has to be hard. The problem is hard when no algorithm can be pointed at, 
which could ensure a high performance for all instances of the problem. Notice that the 
amount o f input data to the Computer in this example is smali [7].

In recent years there has been a growth in research which deals with the development 
and complexity analysis of combinatorial algorithms. Complexity measures are of two 
kinds: static, independent of the size and characteristics o f the input data, and dynamie, 
dependent on the input data [3].
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2. Optimisation for dynamie problems

Optimisation is aimed at finding the optimum seąuence for the given form of the perfor 
mance index. This section deals with the problems o f optimisation for dynamie problems, 
including combinatorics optimisation. Three forms o f the performance index for optimisa 
tion tasks are established. Now we are considering the scheduling problem.

The loss of the profit /?, (C,_i) depends on the resources volume C,-_j. Special attention 
is given to finding polynomial algorithms used for combinatorics optimisation tasks. These 
optimisation tasks may be solved for a large number of dynamie processes.

The optimisation algorithms are built upon the sorting procedurę. It is assumed that the 
performance index is additive. On the completion o f i dynamie processes, the performance 
index value determines the initial condition for the subseąuent dynamie problem under re- 
alisation which is discretionally chosen out o f n — i processes yet to be carried out.

In real physical or economic processes it is necessary to know a definite time interval 
for carrying out the elementary technical, technological or economic operation.

3. Applied Statistics

The plotting o f experimental results to see if  there is any orderly relation between variables 
is usually referred to as correlating the data [26]. The pairs of values o f the variables asso- 
ciated with each data point are designated x, and y t with y  assigned to the variable which is 
imprecisely known, or to the dependent variable. A straight linę through the data is expres- 
sed as: y  = ax+ b  = ax + ( y -  cix), where y  is estimated value of y  for observed value of x. a is 
the slope o f linę, identical with regression coefficient, and b is intercept which gives the 
estimated value o f y  at x = 0. The values of a and b corresponding to the linę are calculated 
with the minimum -  sąuared deviation of y  from y. It is not obvious from a plot o f the data 
whether or not it is reasonable to draw a straight linę through the points. It is possible to test the 
estimated variance removed by the linear correlation against the estimated variance remaining 
after correlation. The total sum of sąuares of deviation variable from its mean is E(y -  y)2, and 

the total degrees of freedom are « -  1 ./2 is the fraction of the sum of sąuares of deviation remo- 
ved by the correlation linę, (1 - r 2) is the sum of sąuares of deviation from the least -  sąuares 
linę, eąual to E(y -  y)2, with n - 2  degrees of freedom. We designate the estimate of variance 

removed by the correlation as s2(C). The ratio of s2(C)/s1(y) may be tested by the F  ratio test 
(Fisher test R. A. Fisher, Frank Yates, Statistical Tables for Biological, Agricultural and Medi- 
cal Research, Oliver and Boyd Ltd., Edinburg and London 1953) [25], [24] for 1 and n -  2 de 
grees of freedom to see whether the variance removed by the correlation linę is significant 
when compared to the residual variance of estimate. This test is equivalent to testing the signifi- 
cance of r, the correlation coefficient, sińce s1(C)ls2(y) = r2(n -  1)/(1 -  r2). Since F  at 1 degree 
of freedom is eąual to t 2 {t test), the F  ratio test for correlation r2(n -  2) / (1 -  r2), can be ex- 
pressed in terms of t, that is t = r2 V n-2  / Vl—/-2. This t test, the F  test, and the tabulated signifi 
cant values for the correlation coefficient will all give identical results.
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Example
An example has been written by Matlab.

(The optimistic and pessimistic result o f a slope a)

There is given a vector x and a vector_y.

x=[10 40 50 210 220 470 850]; 
y=[10 20 30 45 50 80 120]; 
n=7;
sr_x=mean(x)
sr_y=mean(y)
sy=sum(y)
Sx=sum(x)

sy2=sum(y*y’)
sx2=sum(x*x’)
sxy=sum(x*y')
Spx2=sum(x*x')-1/n*(sum(x))A2

spy2=sum(y*y’)-1 /n*(sum(y))A2
spxy=sum(x*y’)-1/n*(sum(x)*sum(y))
a=spxy/spx2
B=sr_y-a*sr_x

r=spxy/sqrt(spx2*spy2)
r2=r*r
s2dash_y=(1 -r2)*spy2/(n-2)
S2a=s2dash_y/spx2

sa=sqrt(s2a)
s2bar_y=s2dash_y/n
Sbar_y=sqrt(s2bar_y)

t005n_2=2.571

The value t005n_2=2.571 comes from R. A. Fisher, Frank Yates, Statistical Tables for  
Biological, Agricultural and Medical Research, Oliver and Boyd Ltd., Edinburg and Lon 
don 1953). It is given at the 0.05 level, and n — 2 = 5.

bary_u=sr_y+t005n_2*sbar_y
bary_l=sr_y-t005n_2*sbar_y
a_u=a+t005n_2*sa

au is a pessimistic result for a slope a. 

a_l=a-t005n_2*sa

at is an optimistic result for a slope a. 
for 7=1: n,
Y_UR(i) a*x(i)+b+t005n_2*...

45



sqrt(s2dash_y*(1/n+(x(i)-sr_x)*(x(i)-sr_x)/spx2));
end

for j= l :  n,
y_LR(i)=a*x(i)+b-t005n_2*...
sqrt(s2dash_y*(1/n+(x(i)-sr_x)*(x(i)-sr_x)/spx2));
end
y_UR
y_LR
plot(x,y,’*')
hołd on;
plot(x,a*x+b)
hołd on;
plot(x,(a+t005n_2*sa)*x+sr_y-sr_x*(a+t005n_2*sa),'r’) 
hołd on;
plot(x,(a-t005n_2*sa)*x+sr_y-sr_x*(a-t005n_2*sa),'b')
plot(sr_x,bary_l,’+’);
hołd on;
plot(sr_x,bary_u,'o’); 
hołd on; 
plot(x,y_UR); 
hołd on; 
plot(x,y_LR);
title(‘Confidence intervals’); 
xlabel(‘ x axis'); 
ylabelC y axis').

The results o f the example are shown in Fig. 1.

Fig. 1. A p p lied  s ta tis tic  re su lts
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The model o f the optimisation process is given as

4. Scheduling of linear dynamie processes

| P, (C,-i )= aiC,_l+bi ; a, >0; bi >0; C0 > 0 1 m in ^ C ,.

In this section we examine a case of scheduling problem where the coefficients a and b are 
different for each model [21]. The relations at < a2 < a 3 < ... < a n l < an are assumed to be 
fulfilled.

In Table 1 p t (C,_, ), C ,, ^ C ,  are shown (for permutation o f models in the form (1 ,2 , 

3

Table 1

i P.(C,-|) ZC,

0 0 Co Co

1 a\C0+b\ (ai+l)C0+ź>i Co+C\

2 a2(a\Co+bi)+b2=a2C]+b2 (a2+\)C\+b2 Co+Ci+c2

3 a-iC-i+b-i 0a3+l)C2+b3 C0+C1+C2+C3

n anC„,\ +b„ (a„+\)C„.\+b„ c0+c,+...+c„

PROBLEM

« | (C,_, ) = a ; C ' , > 0; > 0; C0 > 0 1 m i n ^ C .

In this section we examine a case o f scheduling problem where the coefficients a and b are 
different for each model. The relations above are assumed to be fulfilled.

It is assumed that relations are fulfilled.

Theorem  1
If for the problem

n | Pi (C,_, )=  alCi_l + bl ; > 0; b, > 0; C0 > 0 1 m in £ jC .

for Vy=lj2...n and i *  j  
the relation

C 0(a i +ty + b i+ ((a  j +V) bt + b j )  1+ ^  ] ^ [ ( « , +1)
y  k = 1 l = \ , l * i j * j  j

47



(  k= n -2 l=k >

■^Co (aJ + \ )+bj + ((ai+\)bj + bj ) 1 + X  r i ( a / + l)
V k=1 l= \,l* i,l* j )

is fulfilled
then the zth model occupies the first position of optimal permutation. 

PROOF

For the seąuence of models (1,2,..., n -  1, ri) the performance index is

= +( î +c2 + c„_, + c„  =

C0 +

(a2+ 1)C0 + Z)/ +

(a2+ 1) (ai + l)Co+ (a2 + 1 )bj + b2 +

. . . +

/= n -1

(a2+ l)(« ,+  l)Co n  («,+ !)+
/=3

/=«+o n (̂ /+o+
1=3

k=n- 1 /=»-l

x  n  ( « ,+ i ) +
*=3  /= *

b n-1 +

l=n

(a2+ l)(tf,+ 1)C0 (tf,+ 1) +
1=3

l=nî(̂2+1) n (a/+1)+
1=3

k=n l=nx ̂*-i n («/+!)+
Ar=3 /=n

bn.
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For the sequence o f models (2, 1,..., n —\,n )  the performance index is

Z  - C o + C-l + C^+^.^+C^+Ch-

Co

(a2+ 1 )C0 + b2 +

(ai + 1) (a2 + 1 )Co + (<z/ + 1) b2 + bi +

l=n~]
(a ,+  l)(a 2+ 1)C0 n  (a, + 1) +

1=3

l= n -\

*2(flr.+ l)ri(«i + l) +
1=3

z
k=3

l= n-\

bk-1 n («/+!) +
1=3

b„-1 +

l=n
(a1+l)(a2+l)Co n ( a ,  + l)

1=3

l=n

*2(a,+ l)ri(fl, + l)
1=3

+

K=Lz 1=2

n («/+i)+*w.
i=k

Given the relation Z ,C  <= Z-C. , 

we have

f  k= n-2  l=k

Co(ai + ^)+bi+((.Oj+l)bi+bj) 1+ Z  T l  (a /+ l)
V  k=\ l= \J * i ,l* j

<=C0(a,+l) + 6,+((a,+l)A,+M
k= n-2  l=k \

i+z n (a,+i)
V A=1 l= \,l* i,l* j /
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Now, there are n -  1 models. The model on the first position of optimal permutation is fi- 
xed. We can calculate a new initial condition

Co: = C0+ a, Co + b,.

The models are assumed to be scheduled by the relation

a, <a2 <a3 <... <a, <0j <... <a„_2 <a„_,.

Theorem  2
If for the problem

dn | p , (C,._, )= ajCî + b j ; a, > 0; b{ > 0; C0 > 0 1 m in ^ C ,

where i e  {1, 2,..., w} a n d 2 < w < « - 2  

forVy=i2 .n and i j  the relation

C0 {a. + !)+& ,+ ((aj + \)bi + b j )
(  k=m

1 + Z n (a,+i)

: C0 (a2+ l)+ 6 y+ ((^ + 1 )^ + 6 , )
y  A:=m /=£ ^

i + z  n  (a /+ i)
k =1 /=! J

is fulfilled then the model M, occupies the /th position o f optimal permutation. 

PRO O F

The proof is analogous to the proof of theorem 1.
Exam ple
The algorithm resulting from the theoremsl and 2 is tested. The data for the problem

p, (C,_l ) = a iC,_1+ i ,;  ^ > 0 ; bi >Q\C0> o \m in ^ lCi

are presented in Table 2.

Table 2

i a, b, Cn
0 1
1 1.00000 3.13799

2 2.86105 20.25810

3 3.27292 67.16544

4 4.31869 16.17955

5 5.37224 42.56738
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We examine the relation:

A -Q  (a ,+ i> i-^ + ((« y + i)^ + ^  )i i + s * =i n ^ ( - , + D

ri- C 0(aj +\)+bJ+((ai+\)bJ+bi ) 1 + X W rX=i,/»;,/*/a ' +1)

fory = 1, 2,..., 5 and i* j .
The results o f relations are shown in Table 3.

Table 3

v a lu e  l] v a lu e  n i ./ re su lt  o f  re la tio n

55 9 9 .9 2 7 5 6 8 .3 0 4 i 2 tru e

12595 .22 2 1 5 5 1 .6 7 9 i 3 tru e

4162 .741 4 5 1 1 .4 5 0 i 4 tru e

6 8 3 1 .2 1 6 9680 .0 7 3 i 5 tru e

7 5 6 8 .3 0 4 5 5 9 9 .9 9 2 2 1 fa lse

12540 .749 2 2 8 3 5 .7 9 0 2 3 tru e

8 2 0 3 .4 8 8 5 4 8 1 .7 1 7 2 4 fa lse

9 8 0 8 .3 0 6 10571 .599 2 5 tru e

2 1 5 5 1 .6 7 9 12595 .228 3 1 fa lse

2 2 8 3 5 .7 9 0 12549 .749 3 2 fa lse

2 2 4 4 9 .6 8 5 818 9 .8 0 2 3 4 fa lse

2 4 4 4 3 .491 12948.251 3 5 fa lse

4 5 1 1 .4 5 0 4162 .741 4 1 fa lse

5 4 8 1 .7 1 7 820 3 .4 8 8 4 2 tru e

8 1 8 9 .8 0 2 2 2 4 4 9 .6 8 5 4 3 tru e

6 3 8 9 7 .8 2 7 10654 .154 4 5 tru e

968 0 .0 7 3 6 8 3 1 .2 1 6 5 1 fa lse

10571 .599 9 8 0 8 .3 0 6 5 2 fa lse

12948.251 24443 .491 5 3 tru e

1 0 6 5 4 .154 6 3 8 9 .7 8 2 5 4 fa lse

The model M\ occupies the first position of optimal permutation. There are four models that 
are described in Table 4.

Table 4

i a, b, Co
0 5 .1 3 7 9 9

1 2 .8 6 1 0 5 2 0 .2 5 8 1 0

2 3 .2 7 2 9 2 6 7 .1 6 5 4 4

3 4 .3 1 8 6 9 16.17955

4 5 .3 7 2 2 4 4 2 .5 6 7 3 8
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We can write the relation

h~Co (« /+  !)+£,•+((a ; + l)&i+£ ;)^ l + S * =i

r2= C 0 ( d j+  l )+ b ] + ((a i + l ) b j+ b i )^1 + X W

fory = 1, 2, 3 ,4  and i =Aj, 
where

C 0: =  C 0 + C 0(o i +  1) +b\.

The results o f relations for i , j  = 1, 2, 3 ,4  are shown in Table 5.

Table 5

value ly value rj i ./' result o f  relation
6 2 2 1 .5 4 8 11331 .502 i 2 tru e

4 0 6 7 .8 1 7 2 7 3 2 .2 5 2 i 3 fa lse

4846 .361 5244.331 i 4 tru e

11331 .502 6 2 2 1 .5 4 7 2 1 fa lse

11091 .537 4 0 5 9 .0 9 2 2 3 fa lse

12039 .865 6400 .4 3 7 2 4 fa lse

2 7 3 2 .2 5 2 4 0 6 7 .8 1 7 3 1 tru e

4 0 5 9 .5 0 9 11091 .537 3 2 tru e

3 1 5 4 .8 1 5 5256 .623 3 4 tru e

5244 .331 4846 .361 4 1 fa lse

6 4 0 0 .4 3 7 12039 .865 4 2 tru e

525 6 .6 2 3 3154 .8 1 5 4 3 fa lse

The model M ą  occupies the second position of optimal permutation. Now, we have only 3 
models, and Co = 43.0695, see Table 6.

Table 6

i a\ 6, c„
0 4 3 .0 6 9 5

1 2 .86105 2 0 .2 5 8 1 0

2 3 .2 7 2 9 2 6 7 .1 6 5 4 4

3 5 .3 7 2 2 4 4 2 .5 6 7 3 8

We examine the relation:

h~Co  (a i + l ) + * i+ ((<3y+ \)b ,+ bj) 1 + S * =i r i ; =i,ł / /*,(a / + l)

ri ~ C0 {aj+ \)+bj+((a, + \)b j+ b A \  + n ^ , , , ( « / + D
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fory = 1, 2, 3, 4 and i * j,

where C0: = C0+ C0(a3+ 1) + b3.
The results o f relations for i ,j  = 1, 2, 3, are shown in Table 7.

Table 7

v a lu e  /3 •value  r 3 i j re su lt  o f  re la tio n

1361 .226 23$ 8 .1 5 8 i 2 tru e
1133 .049 1358.733 i 3 tru e

2 3 5 8 .1 5 8 1361 .226 2 1 fa lse
2 5 8 4 .3 9 8 1595.941 2 3 fa lse

1358 .733 1133 .049 3 1 fa lse
1595.941 2 5 8 4 .3 9 8 3 2 tru e

The model M2 occupies the third position of optimal permutation. At the end there are only 
two models, and Co = 188.24, see Table 8.

Table 8

i ai bi Co

0 188 .24

1 3 .2 7 2 9 2 6 7 .1 6 5 4 4

2 5 .3 7 2 2 4 4 2 .5 6 7 3 8

We examine the relation /4 = C0(a\ + 1) + (a2 + l)6i r4 = Co(a2 + 1) + (ai + l)^ ) -  
The model M3 occupies the fourth position o f optimal permutation.
The optimal permutation has the form M\, M ą , M2, M3, Ms.
The computational complexity of scheduling problem

1S

n \ P,( Ci -i ) =aiCi_t+bi ; a ,> 0; b,> 0; C0> 0 1 m in£JCi 

0 \ Y , ( i 2- i ) n  log «1

5. Remarks

Ali seąuencing problems are concemed with the assignment o f tasks to appropriate servers 
over time, so as to meet certain structural and time constraints and some performance opti- 
misation criteria. Over the last four decades considerable study has been given by scientists 
and engineers to seąuencing and scheduling problems due to their theoretical interest (com- 
binatorial optimisation, complexity analysis, worst-case analysis) and practical value (e.g., 
in FMS, CIM and multiprocessor Systems) [20].
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