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1. Introduction

Static analysis is the process of finding bugs automatically by using algorithms and
techniques that analyze the source code. This operation is indeed slower than the
compilation process, as it requires some of the algorithms to run in exponential time.
A static analysis can detect bugs falsely in a code, whereas the code correctly func-
tions. The false positive frequency in different code checkers vary remarkably due to
the different analysis precision of each checker.

With today’s rapid increase of our dependence on electronic complex devices,
a very important attribute has emerged, which is the functional safety of the device.
Functional safety testing [24] is not only about producing the correct output for
specific inputs. It is most importantly about producing the correct output in the
right time. For some systems, real-time testing would be very difficult as well as
costly and might not cover all of the likely hazardous situations [6,21,28].

Accidents that have recently happened due to software problems are the trigger of
our proposed work. These accidents have drawn our focus to find a technique to detect
and locate hazards in software. In the air navigation field, the unfortunate crash of
the Ethiopian Airlines jet in March 2019 [11] was one of the worst airplane accidents.
Another crash of the same airplane model preceded this one by five months [23].
Casualties were reported in both crashes. The preliminary report stated a switch
malfunction [11]. In the automotive field, a Tesla Model 3 drove under the trailer
of a truck in March 2019 [31] when the autopilot mode was working. This accident
is very similar to the one that happened in 2016 due to the autopilot mode. Again,
casualties were reported. Toyota recalled many cars in 2010 because of a bug in the
anti-lock braking software [32].

Other domains like medical devices or military equipment fall into the critical
domains [20] that directly affect the safety of individuals. Since C language is looked
upon as one of the fastest high-level languages that deal with no limitations with
hardware, most of the real-time systems are American National Standards Institute
for C programming language (ANSI-C) implemented.

In this study, a methodology for analyzing the hazardous events that could hap-
pen in safety-critical systems is proposed. The block diagram of the proposed method
is depicted in Figure 1. The proposed system is composed of two sub-systems: a mod-
eler (parser), and an analyzer. There are two inputs to the system: the ANSI-C
project, and the hazardous event equation. The ANSI-C project, which is the first
input, is parsed to produce a timed model where each C statement preserves its time
attribute. The parsing process is based on the Hierarchical Communicating Real-
-time State Machine (H-CRSM) formal modeling strategy [12,13,29]. The hazardous
event equation is the second input. The objective of this study is to automatically
analyze the hazardous event equation to produce a hazardous scenarios list using
the H-CRSM-generated model. Figure 2 describes all of the stages for the proposed
system. The bright clouds are the system inputs. The dark clouds are the system
outputs. The ovals are the stages of the system.
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The proposed system proves that the hazard equation can be valid if it finds
paths that can lead to the hazard equation being true. In this case, the root cause
events are displayed to the user as proof that the hazard equation can be achieved.

This paper is constructed in six sections. Section 2 briefly introduces related
works. Section 3 demonstrates the proposed modeler. Section 4 presents the pro-
posed analyzer. Along the paper, a case study is explained to show how the diagram
and H-CRSM model are generated. It is also used by the analyzer to show a real-
-world example on each of the Undesirable Event (UE)-elements in the analysis phase.
Section 5 describes two case studies to have a full picture of the system that shows
how the system can detect and locate hazards that could occur in the ANSI-C code.
Finally, the conclusion of the work is in Section 6. The proposed system can be
extended to any other programming languages. It is not limited to only C-codes.

ANSI-C Code —

H-CRSMI
Model g

Hazardous
Event - Analyzer —p Hazardous
Equation w Scenarios

Figure 1. Block diagram of proposed system [4]

2. State of the art

Due to the importance of safety critical systems analysis, many researches have been
carried out in this scope. In [27], the authors developed an approach called Hazard
Analysis and Operability Analysis (HAZOP). This approach is used for generating
test models using a safety analysis technique by generating timed automata from
extended system requirements, which helps in building test cases. They added more
alternative scenarios to the requirements by deriving guide phrases from the original
requirements, which are used to generate alternative requirements scenarios.

In [14], an integration between the behavioral and fault models is done to generate
more test cases for the system model. An aerospace application was used to validate
their work.

Another approach is introduced in [25]. This is a combination of the automotive
Hazard Analysis and Risk Assessment (HARA) and Spoofing, Tampering, Repudia-
tion, Information Disclosure, Denial of Service, and Elevation of Privilege (STRIDE)
strategies. It defines the influence of security concerns on safety conceptions at the
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system level. The approach classifies the security hazard probabilities; it is then used
to determine the number of corrective actions to be taken. In his book [10], Ericson
demonstrates the way to work out the mostly used hazard analysis techniques like
Environmental Hazard Analysis (EHA), Fault Tree Analysis (FTA), failure mode and
effects analysis, HAZOP, and Event Tree Analysis (ETA). In [22], a formal model-
ing and safety analysis framework is built for safety critical systems called S-sharp.
This provides a domain-specific modeling language. It is an automated formal safety
analysis tool that is built using the .NET and C-sharp languages.

In [19], the author demonstrates the incorporations between use cases and a mod-
ified method for functional hazard assessment. This depends on an early analysis of
the hazard of the Unified Modeling Language (UML) at a functional level. The FTA
method is presented in [9]. This decomposes system-level failures using tree struc-
tures. The decompositions result in lower-level events and logic gates that model their
interactions. Another approach that employs Binary Decision Diagram (BDD) is pre-
sented in [2], where it attempts to solve the dependencies between the branch point
events in FTA that produce incorrect analysis outputs. In [18], the authors devel-
oped a stochastic FTA model to calculate the probability of occurrence for a top-level
event. In [17], Ishimatsu et al. proved that a traditional hazard analysis scope is
the failure of components; nevertheless, the software continues to operate. Software
can frequently be a factor in causing accidents. A method is demonstrated in [30]
that repeatedly conducts Failure Mode and Effects Analysis (FMEA) and FTA un-
til there are zero risks in the control software; thus, it makes the control software
safer. FMEA is employed in order to analyze any control software risks. In [33],
the authors focused on the formal modeling and verification of the Reactor Protec-
tion System (RPS) system in a nuclear power plant based on their long experience
in the field. They used FTA templates to formalize the process of the requirements
analysis. The Software Cost Reduction for Nuclear Applications (NuSCR) formal
specification was used in the development process of the requirements analysis. The
Computation Tree Logic (CTL) model checker was applied to verify and validate
the requirements analysis. They built a system that automatically transforms the
NuSCR specifications into a Function Block Diagram (FBD) program in the design
phase. They used FTA templates for the design phase. Meanwhile, the FBD model
and Verification Interacting with Synthesis (VIS) analyzer was applied to verify the
model in the design phase. In [34], a theoretical approach based on System-Theoretic
Process Analysis (STPA) Based on Hazardous Control Action Tree (HCAT-STPA) is
developed to produce a model and analyze the hazards that may occur at the system
level. This strategy is established on the System-Theoretic Accident Modeling and
Processes (STAMP) and STPA analysis methods. The problem with STPA is that it
depends excessively on individual inspection.

The Axivion Bauhaus Suite is a non-free tool for static code analysis for many
languages, including C. It performs architecture checking, interface analysis, Motor
Industry Software Reliability Association (MISRA) C checks, and clone detection [19].
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Astrée is a non-free tool for static code analysis that aims to prove that there are
no runtime faults. It analyzes C codes that uses memory in a complex way; there
is neither dynamic memory allocation nor recursion. It targets embedded systems,
nuclear energy, medical instruments, and aerospace applications [3]. Its objective is to
make sure that the code satisfies the behavioral properties of the employed interface
that it uses [7]. It is based on CPAchecker, which is a tool for configurable software
verification [1]. Coverity is one of the leading static analysis tools in the automotive
industry founded in the Computer Systems Laboratory at Stanford University [8]. It
supports many platforms, including C-language. It analyzes more than 3,900 open-
source projects. Infer is a free static-analysis tool developed by the Facebook team
with open-source contribution that focuses on null-pointer, other memory problems,
coding conventions, and unavailable APIs.

Infer [16] applies a technique called bi-abduction to analyze a program composi-
tionally. This analysis interprets code procedures separately from their callers. It is
declared that this helps the scalability of Infer to cope with big codebases as well as
run fast on code changes in a step-by-step manner. Polyspace is one of the strongest
tools used in the automotive industry; it is provided by Mathworks. It employs
abstract interpretation to find out whether there are errors during runtime. Dead
Code (also in the source code) is used to check all MISRA rules. It has two separate
versions. The first is a polyspace code prover that proves that there are no critical
run-time error without code execution. The second is Polyspace Bug Finder, which
acts as a checker of coding rules, code metrics, and security standards; it also finds
faults. The real problem with Polyspace Bug Finder is that it has too many false
positives, which generates thousands of possible threads that are not actually valid
threads [26]. Helix QAC is a strong non-free tool used in the automotive industry. It
parses the C-code against all MISRA checks and raises errors if any of the rules are
violated. It also has the ability to prioritize errors based on their severity [15].

From the brief survey above, it is noticed that the focus of the above-mentioned
work is hazard analysis during the modeling phase. However, hazards are susceptible
to occurrence during the implementation phase; yet, no hazards are detected in the
model. Industry static analysis tools try to find hazards from the implementation
phase of the system. However, most of them focus on running MISRA checks against
the code to find those rules that the input code violates. Very few tools try to find
hazards based on well-known patterns. This strategy results in thousands of false
positive errors. Most of these errors are neglected by the user of the tools.

3. The proposed modeler

The ANSI-C source code is reverse-engineered into a model that can be analyzed. An
introduction to the modeling system (see Fig. 2) can be found in our paper [5]. The
input C-project is pre-compiled using Gnu’s Not Unix (GNU) Compiler Collection
(GCCQ) to solve all includes, definitions, macros, and processor-predefined commands.
The pre-compiled project is fed into the model system to generate the real-time model.
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The model is fed into the analyzer with the hazard equation. The hazard equation is
the condition that we do not want to happen in our system. The analyzer output
is a highlighted list of conditions in the code. Each output condition shows a path
that causes a hazard equation to occur. The hazard scenarios are passed to the
table-generation module. The variables are extracted from each hazard scenario and
the user is asked to define the valid classes for each variable. The table-generation
module generates a list of valid values for each variable to satisfy that hazard scenario.
The generated list of values for a hazard equation is the proof that the input system
is vulnerable.
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Figure 2. Proposed system hierarchy
The modeling system consists of three phases as shown in Figure 3 [5]. The

Abstract Syntax Tree (AST) is generated when the precompiled ANSI-C code is
parsed and the H-CRSM model [12,13] is generated when the AST is traversed.

ANSI-C H-CRSM
Code AT Model

Figure 3. Modeler block diagram

A comparison table in our modeling paper [5] summarizes the best-known compil-
ers. It was proven that the best option is the C Language front-end compiler (C-Lang)
parser because it generates AST, it is implemented in C++ (which is very fast in pro-
cessing), and uses the American National Standards Institute (ANST) C99 and ANSI
C11 standards. The model is represented by H-CRSM due to its capability to rep-
resent time in the model. It is derived from the Communicating Real-time State
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Machine (CRSM) model [29]. The hierarchical modules added to H-CRSM helped in
making the system expandable.

The AST generated from the C-Lang parser is traversed, then the H-CRSM
model is generated. The model contains one input C-project as shown in Figure 4 [5].
Each project contains one extern global machine that has the definition for all extern
variables defined in the project. It also has one or more C-files. Each C-file has
only one global machine that contains the definition for all of the global variables
defined in this file. It also has one or more machine(s) that is/are the representation
for a C-function in the model. Each machine contains one function-container, a list
of function parameters, a list of acceptance states that corresponds to the return
statements in C-language, a list of machines that called this machine, and a list of
machines that this machine calls. Each container has zero or more variable definitions,
zero or more children containers, and zero or more children transitions. A container
is a block in C-language. A block can be an if-container, switch-container, loop-
-container, function-container, or self-compound-container.

Al Al
Extern Global File
Machine

F_“_‘_‘_‘_“L_‘_“““‘“‘l

. Global
U Machines u Machine ’

il Al
Initialization
U State ’ U Node

Figure 4. Modeler hierarchy diagram

Figure 5 [5] shows a UML diagram for the container class. An average execution
time is added for each transition to define the time needed to execute the command
on that transition. A guard condition may be added to the transition to block the
execution of the transition if its guard condition is not satisfied. It also has a source
state and a destination state. Each state has a list of input transitions and a list of
output transitions. A guarded-transition is a transition that has a guard-on has one
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atomic C-statement. When a transition is executed, its corresponding C-statement is
executed as well.
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Figure 5. Container class diagram [5]

This section discusses the translation of some elements in C-language into the
H-CRSM model. Section 3.1 describes the function representation in the H-CRSM
model. Section 3.2 describes the variable representation in the H-CRSM model. Sec-
tion 3.3 describes the array representation in the H-CRSM model. Section 3.4 de-
scribes the pointer representation in the H-CRSM model. Section 3.5 describes the
enumeration representation in the H-CRSM model. Section 3.6 shows a C-code ex-
ample and its translation to an H-CRSM example in a state machine diagram and
XML formats.

3.1. Function declaration

Function declaration algorithms are executed when entering a new function or exiting
from a function after finishing its body.

The system creates a new machine as discussed in Algorithm 1. The newly
created machine becomes the current machine. Each machine is one big function-
container. The function container parameters shown in listing 5 are set. Each machine
has one or more state(s), so the system creates a new state.

Algorithm 1 Visiting function declaration algorithm [5]

1: procedure VISITFUNCTIONDECL

if function-declaration is not a prototype then
current-machine < create a new machine
function-container.parent-machine < current-machine
function-container.name <— function-name
function-container.return-type < function-return-type
current-machine. current-container < function-container
current-machine.current-state < create-new-state
current-machine.beginning-state <— current-machine.current-state
current-machine. current-transition <— NULL
function-container. first-state < current-machine.current-state

EoO®ID U
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Algorithm 2 is executed when exiting a function declaration, which means that all
children within the function body have been visited. The system checks whether the
current-state is a useless state, which means it has no input or output transitions and
is not an acceptance state. The system then resolves all transitions whose destination-
state is not set yet; then, it assigns a NULL value to the current-state.

Algorithm 2 Exiting function declaration algorithm

1: procedure EXITFUNCTIONDECL
function-container.last-state < current-machine.current-state
if current-state is useless then

delete current-state from current-machine.states-list
resolve-unfinished-goto-transitions
current-machine < GLOBAL-MACHINE

3.2. Variable representation

Each variable is represented as a node that has a list of read-access instances that
defines all transitions where this variable is read. It has a list of write-access instances
that defines all transitions where this variable is written. It has also a list of pointers
that point to this variable.

Algorithm 3 is executed when entering a new declaration statement in the parse
tree. The system first checks whether this variable declaration statement is the first
statement after a go-to statement like goto label; int x;, then, a new state must
be created to be the source state of the variable declaration statement, as there is no
relationship between the GOTO statement and the variable declaration statement.

Algorithm 3 Visiting new variable declaration algorithm

1: procedure VISITVARIABLEDECL

2 add-new-state-if-first-stmt-after-goto-or-return-stmt

3 if is-extern-global-variable then

4 saved-machine < current-machine

5 current-machine < GLOBAL-EXTERN-MACHINE

6: add-var-init-node-to-init-machine (variable-declaration)

7 if wvariable-declaration is an array then

8 array-declaration(initialization-statement)

9 else if is initialization exists and is ternary operation exists then

10: visit-var-decl-when-init-part-is-ternary-stmt

11: else

12: variable-declaration(variable, initialization-statement)
13: if it is a function-parameter variable-declaration then

14: current-machine.add-function-parameter(variable-name)
15: if is-extern-global-variable then

16: current-machine < saved-machine

If the variable is an extern global variable, then its definition must be put inside
the extern global machine, so the algorithm sets the current machine as the extern
global machine in Lines 3-5, and before the end of the function, the algorithm sets
the current-machine back to the saved-machine in Lines 15-16.
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The system adds a new variable initialization node to the initialization machine
in Line 6. It checks that this variable is an array variable declaration; then, it calls
an array-declaration procedure, which is described in Algorithm 10. If the variable
is not an array variable declaration, then it checks whether a ternary initialization
part exists; then, it calls visit-var-decl-when-init-part-is-ternary-stmt described
in Algorithm 4. Finally, if no ternary operation exists, then the algorithm calls
a variable-declaration procedure, which is discussed in Algorithm 6. Note that
a variable declaration may be a scalar C-type, structure, union, or enumeration.

Algorithm 4 is responsible for handling the ternary initialization statement, as it
treats the current-state as a conditional state that has two guarded input transitions;
this means that the first transition will execute when the ternary condition is satisfied
as shown in Algorithm 5 and the second guarded transition will execute when the
ternary condition is not satisfied.

Algorithm 4 Visit variable declaration when initialization part is ternary statement

1: procedure VISITVARDECLWHENINITPARTISTERNARYSTMT
conditional-state < current-machine.current-state
visit-var-decl-when-ternary-condition-is-satisfied
condition-satisfied-last-state <— current-machine.current-state
visit-var-decl-when-ternary-condition-is-not-satisfied
condition-not-satisfied-last-state < current-machine.current-state
condition-satisfied-last-state.merge(condition-not-satisfied-last-state)

Algorithm 5 is executed when a ternary condition is satisfied. A transition is
created from the conditional-state to the newly created condition-satisfied-state with
guard condition if(ternary-condition). When the ternary condition is not satisfied, the
algorithm is very similar to the algorithm when the ternary condition is satisfied.
The only difference is that the guard condition will be negated as follows if(ternary-
condition == false).

Algorithm 5 Visit variable declaration when Ternary condition is satisfied

1: procedure VISITVARDECLWHENTERNARY CONDITIONISSATISFIED

2: condition-satisfied-state < create-new-state

3: current-transition <  create-new-transition(conditional-state, condition-satisfied-state,
if(ternary-condition), NULL)

4: give-read-access-to-stmt(ternary-statement.condition)

5: variable-declaration(variable, initialization-statement)

Algorithm 6 is executed when defining a new variable. A variable’s type may be
a structure, union, enumeration, or c-scalar type. If the variable type is a structure,
then Algorithm 7 is executed. If the variable type is a union, then an algorithm very
similar to the structure algorithm is executed. If the variable type is an enumera-
tion, then Algorithm 8 is executed. Finally, if the variable type is a C-scalar type,
then Algorithm 9 is executed.
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Algorithm 6 Variable declaration

1: procedure VARIABLEDECLARATION(variable, initialization-statement)

if variable.type is a structure then
structure-declaration(variable, initialization-statement)

if variable.type is a union then
union-declaration(variable, initialization-statement)

if variable.type is a enumeration then
enumeration-declaration(variable, initialization-statement)

if variable.type is a C-scalar-type then
c-scalar-type-declaration(variable, initialization-statement)

Algorithm 7 is responsible for defining a structure. It loops through all of the
structure-node children, gets the initialization statement for this structure-child if it
exists, and calls variable-declaration, which takes care of the recursive part.

Algorithm 7 Structure declaration

1: procedure STRUCTUREDECLARATION(structure-node, init-stmt)

2: for each structure-child in structure-node do
3: structure-child-init-stmt < get-next-initialization-statement(init-stmt)
4: variable-declaration(structure-child, structure-child-init-stmt)

Algorithm 8 Enumeration declaration

1: procedure ENUMERATIONDECLARATION(variable, init-stmt)
create-var-access-data-if-doesnt-exist(enum.var-name, enum.type-name)
if initialization-statement-exists then
destination-state <— create-new-state
current-transition < create-new-transition(current-state, destination-state, NULL,
declaration-statement)
get-variable-access-data-by-variable-name(enum.variable-name)
create-variable-access-instance(write-access, current-transition)
8: manually-traverse-init-stmt-and-give-them-read-access(init-stmt)

A

Algorithm 9 is responsible for declaring a scalar C-type variable like int, float,
char, etc. First, the system creates a variable access data record for this variable
(if it does not already have one). It checks whether the variable is inside a function,
then it creates the variable record inside the current machine variable list; or else,
this variable is a global variable, and it creates the variable record inside the global-
-machine variables-list.

Algorithm 9 C-scalar-type declaration

1: procedure CSCALARTYPEDECLARATION(var, init-stmt)
create-var-access-data-if-doesnt-exist(var.var-name, var.type-name)
if init-stmt-exists then
destination-state <— create-new-state
current-transition < create-new-transition(current-state, destination-state, NULL,
declaration-statement)
get-variable-access-data-by-variable-name(var.variable-name)
create-variable-access-instance(write-access, current-transition)
manually-traverse-init-stmt-and-give-them-read-access(init-stmt)
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The system checks whether an initialization part in Line 2 is defined for the
variable, then a new transition is created from the current state to the created new
state; then, it gets the variable access instance for this variable in Line 6 and creates
a write-access instance to the Left-hand Side (LHS) of the initialization statement
in Line 7. Finally, it adds a read-access instance to all variables appearing on the
Right-hand Side (RHS) of the initialization statement as shown in Line 8.

The system is capable of dealing with multiple variables that have the same name,
but defined in different scopes, as shown in Listing 1 where variable-name 7 is defined
in three different scopes. The system is capable of dealing with multiple variables that
have the same name, but defined in different scopes, as in Listing 1 variable-name ¢
is defined in three different scopes. The first definition is the global variable. The
second definition is inside the while-loop. The third definition is inside the for-loop.

Listing 1. Multiple definitions for variable example
int 1i;
int main(){
int x;
while (x < 5){
int i = 10;
//do some stuff
x——;
}
for (float i = 0;i < 3.2;i4= 0.1){
//do some stuff
}

>}

3.3. Array declaration

Algorithm 10 is responsible for declaring an array. The system calls recursive-
-array-declaration to get all of the elements of the array. For example, consider
an array of two dimensions called arr whose size is M x N. The first array element
is arr[0][0]. The last array element is arr[M-1][N-1]. In this example, the call to
function recursive-array-declaration will result in M x N array elements.

Algorithm 10 Array declaration

1: procedure ARRAYDECLARATION(array-declaration, init-stmt)

2: array-elements < recursive-array-declaration

3 for each array-element in array-elements do

4: array-element-init-stmt <— get-next-init-stmt(init-stmt)

5 variable-declaration(array-element, array-element-init-stmt)

For each element in the array, the algorithm calls the get-next-init-stmt that
is responsible for getting an initialization statement from the list. For example, if
an array is defined as int array/3/[2] = {{1,2},{3,4},{5,6}}, then the first call to
the function will get the value 1, the second call will get the value 2, and so on.
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The system then calls the variable-declaration procedure for that array element as
discussed in Algorithm 6.

3.4. Pointer representation

Pointers deal directly with memory in the C language. They are usually used with
arrays and fixed memory addresses.

As an example, struct MyStruct *ptr; represents a pointer to an array. When
incrementing pointer ptr++;, its does not increment by one but increments by the
size of structure MyStruct.

In the case of pointer initialization in C statement int *ptr==E&var;, a write access
is added to pointer initialization node ptr. The system adds pointer ptr to the pointer-
list. The pointer-list exists inside the initialization node for variable var. Variable var
is added to pointee-variables in the pointer initialization node for ptr.

Algorithm 11 discusses the assignment of a pointer. p = arr; is an example for
a pointer assignation to an array. The algorithm adds the first element of the array
to the pointer variables list if the pointee is an array as shown in Lines 6-8. The
pointer variable list contains a list of variables to which this pointer points. If the
pointer points to another pointer, then the other pointer is added to the pointer list
as shown in Lines 4-5. The pointer list is a list that contains all of the pointers to
which this pointer points. All of the variables pointed to by a pointer in the pointer
list are pointed to by this pointer as well. If the pointer points to a variable, then
this variable is added to the pointer variable list as shown in Lines 9-10.

Algorithm 11 Pointer assignation algorithm

1: procedure POINTERASSIGNMENT
2 destination-state < create-new-state
3: current-transition < create-new-transition(current-state, destination-state, NULL, assign-
-statement)
if RHS-of-assign-operation is pointer then
pointer-to-pointers-list.add ( RHS-of-assign-operation)
else if RHS-of-assign-operation is array then
first-elem-in-arr gets get-first-element-in-arr(RHS-of-assign-operation)
pointer-to-vars-list.add(first-elem-in-arr)
else
pointer-to-vars-list.add ( R HS-of-assign-operation)

Scoxoga

When the pointers are incremented, it points to the next element in the ar-
ray. When the pointers are decremented, it points to the previous element in the
array. Our system is limited to pointers only, which means that it does not support
pointers to pointers and higher orders. When pointers are incremented or decre-
mented, it must point to an array or it will be considered to be a memory violation.

3.5. Enumeration representation

Enumerations are substituted by their integer values in the model. The enumeration
in Listing 2 represents all of the options for a gear shift in an autonomous driving car.
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This enumeration is represented in our model as a dictionary, where the key is
the enumeration string and the value is its integral value. The enumeration values
are represented as follows: UNDEFINED_OR_NO_REQUEST = 0; RANGE_FORWARD = 1;
RANGE_REVERSE = 2; NO_TORQUE = 3; IMMOBILIZE = 4; MANUAL_GEAR_1 = 1;
MANUAL_GEAR_2 = 1; and MANUAL_GEAR_REV = 2.

Listing 2. Enumeration example

enum Range_selection_request {
UNDEFINED_ORNO_REQUEST,
RANGE FORWARD,
RANGEREVERSE,
NO_TORQUE,
MANUAL_GEAR.1 = RANGEFORWARD,
MANUAL_GEAR 2 = RANGEFORWARD,
MANUAL.GEARREV = RANGE REVERSE

I

3.6. H-CRSM model example

The code in Listing 3 represents a simple function that controls the motion of a self-
-driving car in the automotive industry. This function represents the disabled au-
tonomous mode state.

Listing 3. Function example

static dir_motion_control_state_t do._state_disabled (const bool is_auto,
const direction_motion_direction_-t direction_platform_curr)
{

3 dir_-motion_control_state_t local_out_state;

if (!is_auto)

{

local_out_state = DIR.MOTION_STATE_DISABLED;

}

else if ((!is-dir-motion_direction_valid(&direction_platform_curr)))
{

counter_reset(&fault_wait_counter);

> local_out_state = DIRMOTION_STATE FAULT;
s}

else

s {

state_machine_const_direction = direction_platform_curr;
local_out_state = DIR_MOTION_STATE_CONST DIRECTION ;

}

return local_out_state;

}

> inline bool is_dir_motion_direction_valid (const

direction_motion_direction_t* ptr){

23 return xptr != DIRUNKNOWN;
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First, it checks whether there is a request to disable the autonomous mode (which
is represented by function parameter variable is_auto); if the condition is true, then
the autonomous vehicle state is disabled. Second, if there is no autonomous-disable
request and the requested direction of motion is not valid, then the autonomous vehi-
cle state is fault. Third, if there is no autonomous-disable request and the requested
direction of motion is valid, then the autonomous vehicle state is a constant direc-
tion to define the new gear shift state of the car. The H-CRSM diagram is shown
in Figure 6.

start —

T2:
T54:
@ @
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Figure 6. HCRSM diagram for code in Listing 3

The states are represented by circles, and the transitions are represented by di-
rected arrows from one state to another. The commands are shown on each transition.
To save space, the command on each transition is described in Table 1. Part of the
Extensible Markup Language (XML) is shown in Listing 4. It focuses on the defini-
tion of the do_state_disabled function in our model, its return values, the variables
initialized in this function, and their read and write accesses.

The XML variable initialization part shows that the function has two parameters:
is_auto and direction platform_curr. The function also has one local variable:
local out_state. There is a static variable, which is defined in the static_global ma-
chine whose name is state_machine_const_direction. The read and write accesses
for each variable as well as the access transition Identification Number (ID) are shown
in the XML.
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Table 1
Commands on transitions for code in Figure 6
Transition num. Command
T1 is_auto == false?
T2 is_auto == true?
T3 local_out_auto_state = DIR_.MOTION_STATE_DISABLED
T4 *(&direction_platform_curr) == DIR_.UNKOWN?
T5 *(&direction_platform_curr) != DIR_-UNKOWN?
T6 counter_reset (&fault_wait_counter)
T7 local_out_auto_state = DIR_MOTION_STATE_FAULT
T8 state_machine_const_direction = dir_platform_curr
T9 local_out_auto_state = DIR_MOTION_STATE_CONST_DIRECTION
T10 return_stmt (local_out_state)

N

15
16
17
18
19
20
21
22

23
24
25
26
27
28

29
30
31
32
33
34
35

Listing 4. H-CRSM for the code in Listing 3 in XML format

<machine name = "global_extern" returnType = "void">

<container type = "function">
<variableInitializations>

<varInitNode name = "state_machine_const_direction" type

direction_motion_direction_t">
<is_func_param>true</is_func_param>

<accessInstance accessType = "WRITE" transition_id = "T8"/>
</varInitNode>

</variableInitializations>

</machine>
<cfile

<machine

name = "motion_management.c">

name = "do_state_disabled" returnType = "

direction_motion_cotrol_state_t">

<container type = "function">

<variablelInitializations>

<varInitNode name = "is_auto" type = "const bool">
<is_func_param>true</is_func_param>

<accessInstance accessType = "READ" transition_id = "T1"/>
<accessInstance accessType = "READ" transition_id = "T2"/>
</varInitNode>

<varInitNode name = "direction_platform_curr" type = "const

direction_motion_direction_t">
<is_func_param>true</is_func_param>

<accessInstance accessType = "READ" transition_id = "T4"/>
<accessInstance accessType = "READ" transition_id = "T56"/>
<accessInstance accessType = "READ" transition_id = "T8"/>
</varInitNode >

<varInitNode name = "local_out_state" type = "

direction_motion_cotrol_state_t">
<is_func_param>false</is_func_param>
<accessInstance accessType = "WRITE" transition_id = "T3"/>

<accessInstance acce

sType = "WRITE" tramnsition_id = "T7"/>

<accessInstance accessType = "WRITE" transition_id = "T9"/>
</varInitNode>
</variableInitializations>
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4. Proposed analyzer

An introduction to the analysis system with the explanation on a simple case study can
be found in our paper [4]. The focus of the proposed analysis system is the analysis of
the UE equation. Equation inp1>threshold _val && out1<0 is an example of a UE
equation, as inpl is a system input and outl is a system output. The meaning of
the UE equation is that the value of the outl signal cannot go beyond zero, given
that input signal inp1 is greater than a threshold value. Building the analysis tree is
the process of breaking down all of the variables in the UE equation until a constant
value or system input is reached (when neither can be broken into further elements).
The ultimate goal of the proposed analyzer is to traverse the analysis tree to find
scenarios in the code that validate the UE equation to prove that the code acts in
a faulty manner in these corresponding paths. The system requirements of the input
system are used to define the UE equation.

Multiple
Conditions

Multiple Single
Conditions Condition
I
[ T T
e e
. . Undetermined
Aomg:g?igi Constant Variable Read array element
P variable read
—— [ T 1
l Arithmetic l . l . " l " l . l .
Operation Variable Read Variable Write Memory Write Function Call Variable Read
T
[ 1 1 [
Undetermined
Variable Read State array element Variable Write
variable read
I
[ T T 1
Multiple Single N
l State l Conditions l Condition Function Call

Figure 7. UE element diagram

.

Figure 2 shows the stages of the proposed analysis system. There are ten different
types of UE elements as shown in Figure 7, which are discussed from Section 4.1
through Section 4.10. Section 4.11 discusses the building process of the analysis tree,
and Section 4.12 discusses the generation of the hazard scenarios by traversing the
generated analysis tree.

4.1. Multiple-condition UE element

A multiple-condtion UE element must contain one of the following operators:
e C-and operator (&&),
e C-or operator (||).
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It has two types of children:

e multiple-condition UE element,
o single-condition UE element (Section 4.2)
In UE equation vari>4 && var2<varl || var3<5, operator || is the multiple-
condition element that has two children. Element var1>4 && var2<varl is the first
child, and element var3<5 is the second child.

Algorithm 12 represents how a multiple-condition element is analyzed to generate
its children elements.

Algorithm 12 Multiple-condition element algorithm

1: procedure ANALYZEMULTIPLECONDITIONSELEMENT

this-elem.val + get-lowest-priority-elem

if this-element-is-visited-before then
exit-procedure

mark-this-element-as-visited

children-ue-elements-list + analyze-to-generate-children-elements

for each child-ue-element in children-ue-elements-list do
child-ue-element.analyze-ue-equation

Function get-lowest-priority-elem is responsible for finding the lowest-priority
element to be the root value of this element. Therefore, if we have an and-operator
and or-operator in the same input string value as in the example above, then the value
of the root element will be the or-operator (because it has a lower priority than the
and-operator). Function analyze-to-generate-children-elements is responsible
for generating two children UE-elements. The first UE-child is the string on the LHS
of the root element value, and the second UE-child is the string on the RHS of the
root element value. In Lines 7 and 8, the algorithm loops through each child and
analyzes it to generate the rest of the analysis tree.

4.2. Single-condition UE element

A single-condition UE element must contain one of the following operators:

e C-greater than operator (>),
e C-greater than or equal to operator (>=),
e C-less than operator (<),
o C-less than or equal to operator (<=),
e C-equality operator (==),
e C-not equal to operator (!=).
This can be analyzed into one of the following elements:

e arithmetic expression UE element (Section 4.3),

e variable read UE element (Section 4.4),

e undetermined array variable read UE element (Section 4.5),
e constant UE element (Section 4.9).
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In the vari+var2==arr[i] UE equation, operator == is the single-condition UE
element that consists of two children. Element vari+var2 is the first child, and
element arr[i] is the second child.

4.3. Arithmetic expression UE element

An arithmetic expression UE element must contain one of the following operators:

e C-assignment operator (=),

e C-addition operator (+),

e C-subtraction operator (-),

e C-multiplication operator (*),

e C-division operator (/),

e C-arithmetic And operator (&),

e C-arithmetic Or operator (]),

e C-arithmetic shift-left operator (<<),
o C-arithmetic shift-right operator (>>).

An arithmetic expression UE element can be analyzed into one of the following

UE elements:
e arithmetic expression UE element,
e variable read element (Section 4.4),
e undetermined array variable read UE element (Section 4.5),
e constant UE element (Section 4.9).

In vari*var2+var3, the + operator represents the arithmetic expression UE ele-
ment that consists of two elements. Element vari*var?2 represents the first child, and
element var3 represents the second child. Because of the precedence of arithmetic
operators in C-language, the multiplication operator has a higher priority than the
addition operator. This is why the value of the arithmetic expression UE element in
the previous example is the addition operator and not the multiplication operator.

4.4. Variable read UE element

A variable read UE element is the element that abides to the pattern of the variable
definition in C-language.
Its children can be one of the following UE elements:

o variable write UE element (Section 4.6),

e memory write UE element (Section 4.7),

e function call UE element return (Section 4.10).
It may not be analyzed into any children if there is no valid path between the variable
read-access instance and all of the write accesses to this variable as discussed in the
H-CRSM model. A child is added to this UE element for each valid path from the read
access to one of the write accesses to the same variable.
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Algorithm 13 describes how a variable read element is analyzed. In Line 2, it gets
all the write-access instances for the variable. From Line 3 to the end of the algorithm,
it loops through each write-access element for this variable. In Line 4, it gets all
possible paths from the read-access instance to the write-access instances. A path is
defined as a list of transitions that has no writes to the variable in any transitions in
that path. This path should begin from the write-access instance transitions and end
at this read-access instance transition. In Lines 5-6, it checks that at least one path
is found from the read-access instance to this write-access instance; if the condition is
true, then it will add this write-access instance as a child with a specific sequence
of paths.

Algorithm 13 Variable read element algorithm

1: procedure ANALYZEVARIABLEREADELEMENT
write-access-instaces < get-var-write-access-instances
for each a-write-access-instance in write-access-instances do
paths < get-paths(a-write-access-instance)
if paths.size >0 then
add-child(a-write-access-instance, paths)

Figure 6 shows the H-CRSM model for the code in Listing 3. When analyzing
variable read UE element local_out_state on transition T10, it has more than one
write access. This is why the value of the variable read UE element is the multiple
condition Or-operator. Transition T3 shows the first write-access instance, which is
DIR_MOTION_STATE_DISABLED when path { T1,T3,T10} is traversed. Transition
T7 shows the second write-access instance, which is DIR_MOTION_STATE_FAULT
when path {T2,T4,T6,T7,T10} is traversed. Transition T9 shows the third write-
-access instance, which is DIR_MOTION_STATE_CONST_DIRECTION when path
{T2,T5,T8T9,T10} is traversed.

If a transition has command #*statePtr = GEAR_NO_TRANSITION (where
statePtr is a pointer that points to variable currState), then it has only one child
when analyzing the read-access instance currState, which is memory write element
GEAR_NO_TRANSITION.

If a transition has command sensorReading = getLidarSensorReading(),
then it will generate a function call write element getLidarSensorReading() when
analyzing read-access instance sensorReading, which means that the values that can
be written to the sensorReading variable come from the return values of function
getLidarSensorReading().

4.5. Undetermined array UE element variable read

This element defines an array element whose index is not known until run time.
lidarBuf [idx] is an example of an array variable read element whose index is not
known until run time, as idx can take any value within the array size range.

This element is analyzed into n multiple condition elements (Section 4.1), as n
is the number of possible array indices for this array, which is any number within the
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following range: (0 ... ARRAY_SIZE - 1); i.e., this element is analyzed into n ele-
ments separated by or-statements: (lidarBuf[0] && idx == 0) || (lidarBuf [1]
&& idx == 1) || (lidarBuf [ARRAY_SIZE - 1] && idx == ARRAY SIZE - 1).

4.6. Variable write UE element

This element is always a child of a variable read UE element (Section 4.4). The
analysis of this UE element consists of two children. A state UE element is the first
child that represents the source state of the write-access transition. The following UE
elements are candidates for the second child:

e arithmetic expression UE element (Section 4.3),

o variable read UE element (Section 4.4),

e undetermined array UE element variable read (Section 4.5),
e constant UE element (Section 4.9).

When analyzing variable write element dir_platform_curr that is the produc-
tion element when analyzing variable read element state machine_const_direction
(which is accessed on transition T8 in Figure 6), it consists of two children. The state
UE element DS D5 that represents the source state of access transition T8 is the first
child. Variable read UE element dir_platform_curr represents the second child.

When analyzing variable write element DIR_MOTION_STATE DISABLED (which is
accessed on transition T3 in Figure 6), it consists of two children. The state UE
element DSD; that represents the source state of access transition T3 is the first
child. Constant UE element DIR_MOTION_STATE_DISABLED represents the second child.

If the variable write element is arr[i], it consists of two children elements. The
state UE element that represents the source state for the write-access transition is the
first child. The undetermined array variable read element arr[i] is the second child.

4.7. Memory write UE element

Memory write element is the write to a memory location through a pointer. *p = var;
is an example of a memory write element, where var is the value written using the
pointer. It is always a child of a variable read UE element (Section 4.4).

This element is analyzed into variable write element (Section 4.6).

There must be a path from a transition where a pointer is pointing to the address
of a variable and another transition that has a memory write to this location without
any other writes to that pointer in between so that the memory write is considered
to be a write element to the pointee variable.

Figure 8 shows pointer ptr that points to var. The write to the memory location
can be substituted by a write-access element to var if and only if the program does
not pass through State D. This element is analyzed into a write element to var with
a list of states that the path must pass through (like State B in this case) to make
sure that ptr points to var and a list of states that the path cannot pass through
(like State D in this case).
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Figure 8. Memory write example

4.8. State UE element

This element can be a child of another state UE element. It can also be the child
of a variable write UE element. It has no children if there are no input transitions
to this state. It has many children (one for every input transition) if there are no
guard conditions on those transitions. The state UE element is analyzed into exactly
two children elements in the case of a guarded transition. The guarded condition
represents the first child, and the transition’s source state represents the second child.
It may be analyzed into the following:

o state UE element,
o multiple condition UE element (Section 4.1),
e single condition UE element (Section 4.2).

If state element DS D1 is analyzed in Figure 6, state DS Dy will be its only child.

If state element DSDj3 is analyzed, its analysis consists of three children state
UE elements. State UE element DS D7 represents the first child. State UE element
DS Dg represents the second child. State element UE DSD; represents the third
child.

If state element DSDy is analyzed, it consists of two children. Single condition
element is_auto==true? is the first child. State element DSDy is the second child.



Hierarchical state machine model for analyzing safety hazards. . . 61

4.9. Constant UE element

This element represents any constant value in C-language. It may be characters, num-
bers, or even C-language reserved words. It is not analyzed into any other children.

4.10. Function call UE element

We can analyze a function call to do the following;:

e get the return values of the function. The analysis of each function is done
independently, and the generated output scenarios for each function are saved
for further use. Each return statement is the beginning state of the function
analyzer;

e get the conditions and time steps for each path,

e get the paths that have writes to a global variable,

e get the paths that do not have writes to a global variable.

The code in Listing 3 shows a function called do_state_disabled that has three
paths and returns a different value for the variable local_out_state for each path.
If we are analyzing this function to get the return values for this function, then we
will get three scenarios (as follows):

o DIR_MOTION_STATE_DISABLED && is_auto == false.

This means that the return value is DIR_.MOTION_STATE_DISABLED and the condi-

tion that must be valid for the function to return this value is is_auto = false.

o DIR_ MOTION_STATE_FAULT && is_auto == true && is_dir motion_-
direction valid( direction platform_curr ) == false.

This means that the return value is DIR_MOTION_STATE FAULT and the conditions

that must be valid for the function to return this value are is_auto = true and

is_dir motion direction_valid( direction_platform_curr ) = false.

e DIR_ MOTION_STATE_CONST_DIRECTION && is_auto == true && is_dir_-
motion_direction_valid( direction_platform_curr ) == true.

If we are analyzing this function to get the paths that have writes to global vari-
able state machine const_direction, then we will get only one scenario is_auto ==
true && is_dir motion direction_valid( direction_platform_curr) == true.

If we are analyzing this function to get the paths that have no writes to global
variable state machine _const_direction, then we will get two scenarios:

e is_auto == false,
e is_auto == true && is_dir motion direction_valid( direction_ -
platform curr) == false.

4.11. Analysis tree construction

Algorithm 14 [4] shows the abstract steps for building an analysis tree. Due to the
recursive nature of the construction of the analysis tree process, elements can be
visited multiple times. To save space and time, the UE element that is traversed once
is saved to be used later without the need to visit it again.
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Algorithm 14 Analysis tree construction algorithm [4]

1: procedure ANALYZEUEEQUATION
if this-element-is-visited-before then
exit-procedure
mark-this-element-as-visited
children-ue-elements-list + analyze-ue-element-based-on-its-type
for each child-ue-element in children-ue-elements-list do
child-ue-element.analyze-ue-equation

An analysis tree built for the code in Listing 3 to get the possible return val-
ues of the function is shown in Figure 9. Numbers are added to differentiate the
tree nodes. The hazard equation contains the return value of the function, which is
local_out_state. This also includes the source state that leads to the return statement
of the function. This is why the return statement is DSD3&Elocal_out_state.

Node (0) is the multiple condition element(DSD3éElocal_out_state) that has two
children. Node (1) is the first child, which is state element (DSD3). Node (2) is the
second child, which is variable read element local_out_state.

Three children are generated when analyzing Node (1). Node (3) is the first
child, which is state element DSD7. Node (4) is the second child, which is state
element DSD6. Node (5) is the third child, which is multiple condition element DSD1.

Node (9) is the state element DSD5 that is generated when analyzing Node (3).
The value of Node (9) is changed to €&, and it is analyzed to generate two children UE
elements. Node (19) is the first child, which is single condition element (*(&direction._-
platform_curr) != DIR_UNKOWN). Node (20) is the second child, which is state
element DSD2.

The value of Node (19) is changed to /=, and it is analyzed to generate two
children UE elements. Variable read element direction_platform_curr is the first child.
Constant value DIR_-UNKOWN is the second child.

Node (25) is a leaf element, as there is no write to this variable read element.
Node (26) is a leaf element, as it is a constant element.

The value of Node (20) is changed to &&, and it is analyzed to generate two
children. Node (27) is the first child, which is single condition element is_auto /= 0;
this means that the condition in Line 5 in Listing 3 is not satisfied. Node (28) is the
second child, which is state element DSDO.

The value of Node (27) is changed to /=, and it is analyzed to generate two
children. Node (33) is the first child, which is variable read element is_auto. Node
(34) is the second child, which is constant element 0.

Node (33) is a leaf element, as the variable is_auto has no write accesses. Node
(34) is a leaf element, as it is a constant element.

Node (28) is a leaf element, as state element DSDO does not have any input
transitions.

The state element DSD4 that is Node (10) is generated when Node (4) is ana-
lyzed.
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The value of Node (10) is changed to €€ when it is analyzed to generate two
children. Node (21) is the first child, which is single condition element direction_-
platform_curr == DIR_UNKNOWN Node (22) is the second child, which is state
element DSDZ2.

Node (21) is analyzed into two children, and its value is changed to ==. The
first child (Node 29) is variable read element direction_platform_curr. The second child
(Node 30) is constant element DIR_UNKNOWN. Nodes (29,30) are leaf elements as
described before.

The value of Node (22) is changed to &6 when it is analyzed to generate two
children elements. Node (31) is the first child, which is single condition element is_auto
/= 0. Node (32) is the second child, which is state element DSDO.

Two children elements are generated when analyzing Node (31). Node (35) is
the first child, which is variable read element is_auto. Node (36) is the second child,
which is constant element 0. Nodes (35, 36) are leaf elements as described before.

The value of Node (5) is changed to &€, and it is analyzed to generate two
children. Node (11) is the first child, which is single condition element is_auto == 0.
Node (12) is the second child, which is state element DSDO.

The value of Node (11) is changed to ==, and it is analyzed to generate two
children. Node (23) is the first child, which is variable read element is_auto. Node
(24) is the second child, which is constant element 0.

The value of Node (2) is changed to (|1), and it is analyzed to generate two
children elements. Node (6) is the first child, which is variable write element(DSD7
&8 DIR_MOTION_STATE_.CONST_DIRECTION). Node (7) is the second child,
which is variable write element(DSD6 €6 DIR_MOTION_STATE_FAULT). Node
(8) is the third child, which is variable write element(DSD1 && DIR_MOTION- -
STATE_DISABLE).

The value of Node (6) is changed to &, and it is analyzed to generate two
children. Node (13) is the first child, which is state element DSD7. Node (14) is
the second child, which is constant element DIR_MOTION_STATE_CONST_DIREC-
TION. The value of Node (7) is changed to €&, and it is analyzed to generate two
children elements. Node (15) is the first child, which is state element DSD6. Node
(16) is the second child, which is constant element DIR_MOTION_STATE_FAULT.

The value of Node (8) is changed to &€, and it is analyzed to generate two
children elements. Node (17) is the first child, which is state element DSDI. Node
(18) is the second child, which is constant element DIR_MOTION_STATE_DISABLE.

The nodes computed before are underlined in the figure.

4.12. Analysis tree traversal

Three paths are shown in the H-CRSM model in Figure 6. Each transition takes one
unit of time to execute for simplicity. Consider that the time at state DSDy is T;
then, it would be T+1 at state DSDy and T+2 at state D.SD5. The model is traversed
in reverse order as described in Section 4.11 when the UE equation is analyzed. The
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time on the transition where the analysis process begins is T. This means that, if it
begins at transition T10, then T is the time at state element DSDs. The time at
source states DSD7, DSDg, and DSD; is T-1.

Algorithm 15 [4] describes the traversal process of the analysis tree.

Algorithm 15 Traversing analysis tree algorithm [4]

1: procedure COMPUTESCENARIOS(this-element)

2 save-status-for-scenario-string

3 if this-element is-a state-element then

4 this-element.time <— parent-element.time + access-transition.time
5 else

6: this-element.time < parent-element.time

7 if this-element has no children then

8 if this-element is-a state-element then

9: add-to-scenario-string(true)

10: else

11: add-to-scenario-string(this-element.val)

12: if this-element is-a lhs-child-for-and-operator then

13: add-to-scenario-string(and-operator)

14: compute-scenarios(this-element.parent-and-operator.rhs-child)
15: else if parent-and-operator is-a lhs-child-for-and-operator then
16: add-to-scenario-string(and-operator)

17: next-node < parent-and-operator.parent-and-operator.rhs-child
18: compute-scenarios(nezt-node)

19: else

20: add-scenario-to-list-of-scenarios

21: else if this-element.val = or-operator then

22: for each child in this-element.children do

23: restore-status-for-scenario-string

24: compute-scenarios(child)

25: else if this-element.val = and-operator then

26: this-element.lhs-child.parent-and-operator < this-element

27: else

28: this-element.lhs-child.parent-and-operator <— parent-and-operator
29: compute-scenarios(this-element.lhs-child)

30: restore-status-for-scenario-string

Three possible scenarios are generated when the analysis tree in Figure 9 is
traversed:

e is_auto@(T-2) == 0 && DIR_MOTION_STATE DISABLED, when transitions {T1,
T3, T10} in Figure 9 are traversed in the following order: {23, 11, 24, 5, 12,
0,17, 8, 18}.

e direction_platform curr@(T-3) != DIR_UNKNOWN && is_auto@(T-4) != 0
&% DIR_MOTION_STATE_CONST_DIRECTION when passing through transitions {T2,
T5, T8, T9, T10} in Figure 9. The meaning of the direction platform -
curr@(T-3) value in the generated scenario is the actual value of variable
direction_platform_curr at time (T-3). The meaning of the is_auto@(T-4)
value in the generated scenario is the actual value of variable is_auto at
time (T-4).

The traversal of the analysis tree in Figure 9 in an order of {25, 19, 26, 33, 27,
34, 20, 28, 13, 6, 14} generates the previous scenario. State element DSDy is
substituted by true when the state element has no children.
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When traversing the analysis tree, the following hazard scenario is
generated: direction_platform curr != DIR_UNKNOWN && is_auto !'= 0 &&
DSDy &% DIR_MOTION_STATE_CONST_DIRECTION.

e direction_platform curr@(T-4) == DIR_UNKNOWN && is_auto@(T-5) != 0

&% DIR MOTION_STATE FAULT when passing through transitions {T2, T4, T6,

T7, T10} in Figure 9 in the following order: {29, 21, 30, 10, 35, 31, 36, 22, 32,

0, 15, 7, 16}.

We will concentrate on the first generated hazard scenario in Figure 9, which
is (is_auto@(T-2) == 0 &€& DIR_MOTION_STATE_DISABLED). The traversing of
the tree begins from the root, which is (Node 0). The algorithm checks the children
for (Node 0) from left to right; i.e., the next traversed child is (Node 1). (Node 1)
is an or-operator, which means that each child of this node will produce a separate
path. For simplicity, consider that (Nodes 3,4) are already traversed. The algorithm
traverses (Node 5), which is an and-operator. The algorithm traverses (Node 11),
then (Node 23). (Node 23) is a leaf element, so its value is added to scenario-
string. scenario-string now has the value of is_auto. The algorithm adds the value
of its parent, which is (Node 11). The value of scenario-string is (is_auto ==). The
algorithm finds that the parent of the current-node (Node 11) is an and-operator,
so it adds (&&) to scenario-string, which is the value of (Node 11), and traverses
the RHS of the and-operator, which is (Node 12). (Node 12) is a leaf state element,
and its value it substituted by true. The value of scenario-string is (is_auto == 0
&€ true). The algorithm finds that (Node 11) is the RHS of the and-operator in
(Node 5), and it searches for the first parent-and-operator for (Node 5). The first
parent-and-operator is (Node 0). The and-operator (Node 5) is in the LHS of the
parent-and-operator (Node 0), so the algorithm traverses the RHS of (Node 0), which
is (Node 2). (Node 2) is an or-operator, so it traverses its first child (Node 6) then
its child (Node 13). The algorithm finds that (Node 13) is a state statement and has
not been visited before when traversing the tree, so this path is neglected. The same
happens when traversing (Nodes 7, 15). The algorithm traverses (Node 8) then its
child (Node 17). It finds that state element (Node 17) is traversed before in (Node 5),
so the algorithm continues to traverse this path, and it traverses (Node 18), which
is the RHS of and-operator (Node 8). (Node 8) is constant-element DIR_MOTION_-
STATE_DISABLED. The algorithm adds it to scenario-string to be (is_auto == 0
66 true €6 DIR_MOTION_.STATE_DISABLED). (Node 18) is the RHS of and-
operator (Node 8), which is the RHS of and-operator (Node 0), which is the root,
so the traversing of the path ends and the value inside scenario-string is added to
the scenarios-list that contains all of the hazard scenarios. The final value of this
hazard scenario after simplification is (is_auto == 0 &€& DIR_MOTION_STATE_-
DISABLED,).

Table 2 compares the proposed work and the previous related work. The related
work focuses on the system and the software level of the software life cycle to model
and verify the system.
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The proposed system focuses on modeling the implemented software in
C-language and verifying the implementation correctness with the help of the un-
desirable hazard equation analysis using the built formal model.

Table 2
Comparison between proposed work and others

Depends on Depends Depends on DePends
Paper . on software on imple-
requirements system model .
model mentation
Proposed X X X v
system
[27] v v X X
[14] X X v X
[33] v v v X
[34] X X v X

5. Case studies

This section summarizes the model and the analysis systems on two real-world exam-
ples. It shows how our system is capable of detecting errors in the input C-project
and how it is able to generate real-time test cases to prove that the system may
be faulty under specific circumstances (if any exist). The case studies are described
in Section 5.1 and Section 5.2.

5.1. Case study 1 — auto pilot

Listing 5 contains part of the code for the state_run function that calls the do_state_-
disabled function. There is a purposeful typo in the function in Listing 5 in Line 4
that indicates that the condition should be STATE_DISABLED, not STATE_AUTO--
FORWARD. The UE-equation given by the user is (curr_state I= STATE_AUTO.--
DISABLED &8 output_state == DIR_MOTION_STATE_DISABLED). This means
that the hazard that we do not want to happen in the system is that the system
outputs STATE_AUTO_DISABLED for the out_state signal when input signal curr_-
state is DIR_MOTION_STATE_DISABLED. Variable curr_state is a system input.
Variable output_state is a system output.

Listing 5. Case Study 1 example

dir_motion_control_state_t state_run (const bool is_auto, const
direction_motion_direction_t direction_platform_curr)
{

if (curr_state == STATEAUTOFORWARD)
output_state = do_state_-disabled (is-auto, direction_platform_curr);
else if(curr_state = STATE AUTOFORWARD)
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7 output_state = do_state_auto_forward (is_auto ,
direction_platform_curr);

9 return output_state;

10 }

The system will analyze this UE-equation as described in Section 4.12. When
analyzing the do_state_disabled function call in Line 5 in Listing 5 using the above
UE-equation, the hazard scenarios are as follows:

o curr_state I= STATE_AUTO_DISABLED €56 is_auto == 0 €66 DIR_MOTION_-
STATE_DISABLED == DIR_MOTION_STATE_DISABLED
Element output_state in the UE-equation is substituted by DIR_MOTION_-
STATE_DISABLED, which is the LHS of the (==) operator.

o curr_state = STATE_AUTO_DISABLED &€& direction_platform_curr != DIR_-
UNKOWN &6 is_auto != 0 &€& DIR_MOTION_STATE_CONST_DIRECTION
== DIR_MOTION_STATE_DISABLED
Element output_state in the UE-equation is substituted by DIR_-MOTION-_-
STATE_CONST_DIRECTION. When simplifying this equation, its value is false
because of the term (DIR_MOTION_STATE_CONST_DIRECTION == DIR_-
MOTION_STATE_DISABLED,).

o curr_state != STATE_AUTO_DISABLED &6 direction_platform_curr == DIR_-
UNKOWN &6 is_auto I= 0 &6 DIR_MOTION_STATE_FAULT == DIR_MO-
TION_STATE_DISABLED
Element output_state in the UE-equation is substituted by DIR_MOTION_-
STATE_FAULT. When simplifying this equation, its value is false because of the
term (DIR_.MOTION_STATE_FAULT == DIR_MOTION_STATE_DISABLED).

The only scenario that does not evaluate to false is curr_state I= STATE_AUTO-_-
DISABLED &6 is_auto == 0 &€& DIR_MOTION_STATE_DISABLED == DIR_-
MOTION_STATE_DISABLED. The table generator module takes the responsibility
for generating the possible values for each system input in the hazard equation that
may cause the hazard to occur as shown in Figure 2 given the hazard scenarios from
the analyzer and the classes for each system input. The classes for a system input
are the range of values that can be given to this variable. In this case, the user can
define the range of values for curr_state as {STATE_AUTO_DISABLED, STATE.-
AUTO_FORWARD, STATE_AUTO_REVERSE, ...} and the range of values for is_-
auto as {0, 1}. Given this information, the system will substitute curr_state by the
values that will make the hazard equation happen. In this case, the value of curr_state
is STATE_AUTO_DISABLED, and the value of is_auto is 0; then, the hazard equation
after substitution is (STATE_AUTO_DISABLED != STATE_AUTO_-DISABLED &6
is_auto == 0 &€& DIR_-MOTION_STATE_DISABLED == DIR_MOTION_STATE_-
DISABLED), which evaluates to true.
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5.2. Case study 2 — auto parking

Listing 6 contains part of the code for an automatic parking module for a car. The first
function (ManageA_P_ClientMode) is called from the cyclic function of the automatic
parking module that executes every 25 milliseconds. This is responsible for updating
the automatic parking data and state machine. It is also responsible for reinitializ-
ing the module if the input electric system suffers from any failure.

Listing 6. Case Study 2 example
static void ManageA_P_ClientMode (void)

if (AP.inputs.electric.system = ELEC_SYS_STOP)

s }

{

A_P_Init();
}
else
{
UpdateA_P_Data () ;
UpdateA_P_StateMachine () ;
}
void A_P_Init(void)
{
ResetStateMachine () ;
InitA_P_OutputData () ;
}
static void ResetStateMachine(void)
AP.ctrl_state = A_P_FINISH;
}
static void UpdateA_P_Data(void)
{

bool is_obstacle_detected = IsObstacleDetected ();

AP.is_finished =

( ( (AP.ctrl_state =— A_P_FINISH)
[|/(AP.ctrl_state = A_P_ABORT)
[|(AP.ctrl_state = USER.GIVEN_.CTRL) )

&&(A_P.inputs.brake_pressure >= 80u)

&&(AP.is_vehicle_stopped != 0 ) )? 1:0;

The second function (A_P_Init) is the initialization function for the automatic
parking module that is responsible for initializing all of the global data as well as
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resetting the timers and output buffers. The third function (ResetStateMachine)
is responsible for resetting the state machine controls in the case of initializing the
automatic parking module. The fourth function (UpdateA_P_Data) is responsible
for updating the output data after performing the logic necessary for the automatic
parking module.

Let us consider that the hazard that we do not want to happen in our code is that
the automatic parking module is finished while the brakes are not pressed, the vehicle
is not stopped, or the automatic parking control state is not one of the following:
finished, aborted, or user given control.

The variable responsible for determining the completion state of the automatic
parking module is defined in Line 33. There is a purposeful typo in Line 38 where
we type A_P.is_vehicle_stopped == 0; however, for the automatic parking to be com-
pleted, the condition should be negated, and the == should be replaced by /=. The
UE equation is A_P.is_finished==1 €€ A_P.is_vehicle_stopped==0, which means that
the automatic parking is completed and the vehicle is not in a stationary state. Fig-
ure 10 shows the H-CRSM diagram for the ManageA_PClientMode function.

AP.inputs.electric_- AP.inputs.electric_-
system system
== ELEC_SYS_STOP != ELEC_SYS_STOP

(2) ()

UpdateA_P_Data()

)
UpdateA_P_StateMa-
A_P_Init() chine()

o

Figure 10. H-CRSM for ManageA_P_ClientMode function in Listing 6

Figure 11 shows the H-CRSM diagram for the A_P_Init function. Figure 12
shows the H-CRSM diagram for the ResetStateMachine function. Figure 13 shows
the H-CRSM diagram for the UpdateA_P_Data function.

Listing 7 shows part of the XML output for the H-CRSM model for the code
in Listing 6. This focuses on the globalMachine that contains the definitions for all of
the global variables in the automatic_parking.c file. The initialization node for A_P.is_-
finished variable is defined in Lines 6 through 9. It does not have any read accesses,
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and it has only one write access on transition T3 inside the UpdateA_P_Data function.
The initialization node for the A_P.ctri_state variable is defined in Lines 10 through 14.
This has a read access on transition T3 inside the UpdateA_P_Data function. It also
has only one write access on transition 72 inside the ResetStateMachine function. The
initialization node for the A_P.inputs.brake_pressure variable is defined in Lines 19
through 22. This has only one read access on transition 78 inside the UpdateA_-
P_Data function. The initialization node for the A_P.is_vehicle_stopped variable is
defined in Lines 23 through 26. This has only one read access on transition 7 inside
the UpdateA_P_Data function.
O

ResetStateMachine()

)

InitA_P_OutputData()

©

Figure 11. H-CRSM for A_P _Init function in Listing 6

®

A_P.ctrl_state = A_P_FINISH;

©

Figure 12. H-CRSM for ResetStateMachine function in Listing 6
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is_obstacle_detected = IsObstacleDetected()
A_Pis_finished = (((A-P.ctri_state ==
A_P_FINISH)||(A-P.ctrl_state ==
A_P_ABORT)||(A_P.ctrl_state =~ ==
USER.-GIVEN_CTRL))&&(A_P.inputs.brake_pressure> =
80u)&& (A_P.is_vehicle_stopped! = 0))71 : 0
Figure 13. H-CRSM for UpdateA_P_Data function in Listing 6
Listing 7. H-CRSM for the code in Listing 6 in XML format
1 <cfile name = "automatic_parking.c">
2 6oa
3 <machine name = "globalMachine" returnType = "void">
4 <container type = "function">
5 <variableInitializations>
6 <varInitNode name = "A_P.is_finished" type = "bool">
7 <is_func_param>false</is_func_param>
8 <accessInstance accessType = "WRITE" transition_id =
"UpdateA_P_Data-T3"/>
9 </varInitNode>
10 <varInitNode name = "A_P.ctrl_state" type = "enunm
AP_ControlState_e">
11 <is_func_param>false</is_func_param>
12 <accessInstance accessType = "READ" transition_id =
"UpdateA_P_Data-T3"/>
13 <accessInstance accessType = "WRITE" transition_id =
"ResetStateMachine -T2"/>
14 </varInitNode>
15 <varInitNode name = "A_P.inputs.electric_system" type = "
enum AP_ElectricSys_e">
16 <is_func_param>false</is_func_param>
17 <accessInstance accessType = "READ" transition_id = "
ManageA_P_ClientMode -T1"/>
18 </varInitNode >
19 <varInitNode name = "A_P.inputs.brake_pressure" type = "

enum AP_ElectricSys_e">
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20 <is_func_param>false</is_func_param>

21 <accessInstance accessType = "READ" transition_id = "
UpdateA_P_Data-T3"/>

22 </varInitNode>

23 <varInitNode name = "A_P.is_vehicle_stopped" type = "enum
AP_ElectricSys_e">

24 <is_func_param>false</is_func_param>

25 <accessInstance accessType = "READ" transition_id = "
UpdateA_P_Data-T3"/>

26 </varInitNode>

27 </variableInitializations>

28

The analysis tree for the code in Listing 6 when analyzing hazard equation A_-
P.is_finished==1 €69 A_P.is_vehicle_stopped==0 can be found in Figure 15, and the
rest of the diagram can be found in Figure 14. The hazard equation is broken into
a multiple condition element (Node 0). It is also broken into two children. The
first child (Node 1) is logical operation A_P.is_finished == 1. The second child
(Node 2) is logical operation A_P.events.is_vehicle_stopped == 0. (Node 1) is bro-
ken into a variable read element A_P.is_finished indicated as (Node 3) and a constant
expression indicated as (Node 4). (Node 3) is broken into the variable write element
for variable A_P.is_finished expressed as (Node 7). Based on the XML in Listing 7,
it has only one write access in function UpdateA_P_Data. Its value is substituted
by the RHS of the equal operation on transition 78 in function UpdateA_P_Data.
(Node 7) is broken into two children. The first child (Node 8) expresses the LHS of
the and-operation, which is (A_P.ctrl_state == A_P_FINISH)||(A_P.ctrl_state ==
A_P_ABORT)||(A_P.ctri_state == USER_-GIVEN_CTRL)). The second child
(Node 9) expresses the RHS of and-operation, which is A_P.is_vehicle_stopped! =
0&& A_P.inputs.brake_pressure >= 80u. (Node 8) is broken into two children. The
first child (Node 10) expresses the LHS of or-operation, which is A_P.ctrl_state==A_-
P_FINISH. The second child (Node 15) expresses the RHS of or-operation, which
is (A_P.ctrl_state == A_P_ABORT)||(A_P.ctrl_state == USER_GIVEN_CTRL).
(Node 10) is broken into two children. The first child (Node 14) expresses the LHS
of the equal operation. The second child (Node 15) expresses constant element A_P_-
FINISH. (Node 11) is broken into two children. The first child (Node 16) is the logical
operation on the LHS of or-operation, which is A_P.ctrl_state == A_P_ABORT. The
second child (Node 17) is the logical operation on the RHS of or-operation, which
is A_P.ctrl_state == USER_GIVEN_CTRL. (Node 16) is broken into two children.
The first child (Node 22) is the LHS of the equal operation, which is variable read
element A_P.ctrl_state. The second child (Node 23) is the RHS of the equal opera-
tion, which is constant element A_P_ABORT. (Node 17) is broken into two children.
The first child (Node 24) is the LHS of the equal operation, which is variable read
element A_P.ctri_state. The second child (Node 25) is the RHS of the equal oper-
ation, which is constant element USER_-GIVEN_CTRL. (Nodes 14, 22, and 24) are
variable write element A_P.ctrl_state. Their expansion is described in Figure 14.
(Node 9) is broken into two children. The first child (Node 12) is logical expression
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A_P.inputs.brake_pressure >= 80. The second child (Node 13) is logical expres-
sion A_P.is_vehicle_stopped == 0. (Node 12) is broken into two children. The first
child (Node 18) is variable read element A_P.inputs.brake_pressure. The second child
(Node 19) is constant element 80. (Node 18) is not expanded to any other write
elements, as the XML for the model shows that it does not have any write accesses
through the program, so it is considered to be a system input. (Node 13) is broken
into two children. The first child (Node 20) is variable read element A_P.is_vehicle_-
stopped. The second child (Node 21) is constant element 0. (Node 20) is not expanded
to any other write elements for the same reason as discussed for (Node 18). (Node 2)
is expanded into two children. The first child (Node 5) is variable read element A_-
P.is_vehicle_stopped. The second child (Node 6) is constant element 0. (Node 5) is
the same element as (Node 20).

ManageA_P_client g
|
|27

.1_1/3 !\:31 ™~
o~ A_P_Initz, ==33

ctrl_stateso P - ‘
.'lPJ‘I%I))Uf-“- EL\E(’]_ 1?esc‘f.5tafc"i\1achinc:sn‘ ‘ )
electric_systemss SY S_STOP3s CONTROL._ Ap.inputs. BLEC-

) electric_systemsr SY S_STOPas
MANOVER_FINISHsq

Figure 14. Analysis tree for code in Listing 6 when analyzing ManageA_P_ClientMode to
get values for global variable A_P.ctri_state

Figure 14 shows the remaining part of the analysis tree in Figure 15, which are
the children of (Nodes 14, 22, and 24). It shows the expansion of write access element
A_P.ctrl_state. As shown in Listing 7, variable A_P.ctrl_state has a write access inside
the ResetStateMachine function on transition 2. The system tries to find a path from
current function UpdateA_P_Data to function ResetStateMachine. The function call
graph is shown in Figure 16. ManageA_P_ClientMode (MCM) calls the following func-
tions: A_P_Init (Init), UpdateA_P_Data (UD), and UpdateA_P_StateMachine (USM).
The A_P_Init function calls the following functions: ResetStateMachine (RSM) and
InitA_P_OutputData (InitOD). The UpdateA_P_Data function calls function IsObsta-
cleDetected (IOD). The function call sequence to get from the read-access to the
write-access for variable A_P.ctrl_state is {UD, MCM, Init, InitOD}, as shown in
Figure 16.
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Figure 16. Function call graph for code in Listing 6

(Node 26) is function call element ManageA_P_client, which is traversed to
find the write accesses to global variable A_P.ctrl_state. This is expanded into
the logical or-expression (Node 27). (Node 27) represents two scenarios. The
first is (Node 28), which is the current value of variable A_P.ctrl_state when con-
dition A_P.inputs.electric_system == ELEC_SYS_STOP is not satisfied. The sec-
ond is (Node 29), which is the value A_P_FINISH that happens when condition
A_P.inputs.electric_system == ELEC_SYS_STOP is satisfied so that function Man-
ageA_P_ClientMode calls function A_P_Init that calls function ResetStateMachine to
update global variable A_P.ctrl_state to value A_P_FINISH.

When traversing the analysis tree in Figure 14, the following two scenarios are
generated:

1. A_P.ctrl_state €469 A_P.inputs.electric_system != ELEC_SYS_STOP.
2. A_P_FINISH && A_P.inputs.electric_system == ELEC_SYS_STOP.

When traversing Figure 14 to get the values for global variable A_P.ctrl_state
inside function ManageA_P_clientMode, the following scenarios are generated:

1. A_P.ctrl_state == A_P_FINISH €65 A_P.inputs.electric_system != ELEC_SYS._-
STOP &6 A_P.inputs.brake_pressure >= 80 €6 A_P.is_vehicle_stopped == 0.
2. A_P_FINISH == A_P_FINISH €& A_P.inputs.electric_system == ELEC_SYS_-
STOP &6 A_P.inputs.brake_pressure >= 80 €6 A_P.is_vehicle_stopped == 0.
3. A_P.ctrl_state == A_P_ABORT &¢& A_P.inputs.electric_system != ELEC_SYS_-
STOP &€& A_P.inputs.brake_pressure >= 80 €6 A_P.is_vehicle_stopped == 0.
4. A_P_FINISH == A_P_ABORT €6 A_P.inputs.electric_system == ELEC_SYS_-
STOP &€& A_P.inputs.brake_pressure >= 80 €6 A_P.is_vehicle_stopped == 0.

5. A_P.ctrl_state == USER_GIVEN_CTRL €& A_P.inputs.electric_system !=
ELEC_SYS_STOP €6 A_P.inputs.brake_pressure >= 80 €€ A_P.is_vehicle_-
stopped == 0.

6. A_LP_FINISH == USER_GIVEN_CTRL €& A_P.inputs.electric_system ==

ELEC_SYS_STOP €6 A_P.inputs.brake_pressure >= 80 €€ A_P.is_vehicle_-
stopped == 0.
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After running the simplifier, it gets rid of the fourth scenario, as condition A_P_-
FINISH == A_P_ABORT will evaluate to false. It gets also rid of the sixth scenario,
as condition A_P_FINISH == USER_GIVEN_CTRL will evaluate to false. The final
list of the possible hazard equations is as follows:

1. A_P.ctrl_state == A_P_FINISH €& A_P.inputs.electric_system != ELEC_SYS._-

STOP &6 A_P.inputs.brake_pressure >= 80 €6 A_P.is_vehicle_stopped == 0.

2. A_P_FINISH == A_P_FINISH & A_P.inputs.electric_system == ELEC_SYS_-

STOP &€& A_P.inputs.brake_pressure >= 80 €6 A_P.is_vehicle_stopped == 0.

3. A_P.ctrl_state == A_P_ABORT &¢& A_P.inputs.electric_system != ELEC_SYS_-
STOP &€& A_P.inputs.brake_pressure >= 80 €6 A_P.is_vehicle_stopped == 0.

4. A_P.ctrl_state == USER_GIVEN_CTRL &€& A_P.inputs.electric_system =
ELEC_SYS_STOP &€ A_P.inputs.brake_pressure >= 80 &€& A_P.is_vehicle_-
stopped == 0.

The case study runs on a Windows machine that has an I7 processor, 16 GB
of RAM, and six MB three-level cache. It took three minutes for the modeler and
pre-processor to generate the H-CRSM model. The C-code has 29,028 lines of code
after pre-processing and resolving all includes and definitions. It took 14 minutes to
build the analysis tree, traverse it, and generate the list of scenarios. The system
consumes 60 MB of memory during both the modeler and analysis phases.

6. Conclusion

The accidents that still happen nowadays due to buggy software are the trigger of
our research on finding hazards that may occur in the implemented systems. The
purpose of the work is to model and analyze safety critical systems that work in
real-time to generate a list of potential hazard scenarios. The H-CRSM formal model
is used to develop a novel modeling approach. It is used to parse real-time systems
that are written in ANSI-C, generate the AST, traverse the AST, and generate an
H-CRSM model. It extracts important semantics from the input C-code. C-LANG
is the best choice to parse the input C-code and generate the AST. The modeling of
the functions in the input C-project can be done in parallel due to the hierarchical
property of the model. The modeled machines are linked together after the end of the
modeling phase. This method is very helpful when modeling large systems. A new
approach for hazard analysis is proposed that handles time-critical safety systems.
The analyzer module takes as input the H-CRSM model as well as the hazardous
equation, which is analyzed by the H-CRSM model. This analysis produces a list of
hazardous scenarios that might occur in the ANSI-C input code. Case studies were
discussed to support the proposed methodology; namely, the generation of an analysis
tree and how the tree is traversed in order to produce a hazards list. The analyzer’s
strength lies in running it statically without the need to run the code in real-time. It
also accurately finds the exact values of the inputs to the system at certain times that
would result in hazardous situations. Two case studies are discussed to show how
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the implemented system can detect bugs that may occur in the input C-project. The
proposed system is not limited to C-Language but could be extended to any other
programming language.
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