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Abstract A conceptual model is a high-level graphical representation of a specific domain

that presents its key concepts and the relationships between them. In particu-

lar, these dependencies can be inferred from instances of concepts being a part

of big raw data files. This paper aims to propose a method for constructing

a conceptual model from data frames encompassed in data files. The result is

presented in the form of a class diagram. The method is explained with several

examples and verified by a case study in which the real data sets are processed.

It can also be applied for checking the quality of a data set.
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1. Introduction

One aim of big data analysis is to find out the relationships among the data. The data

can be stored in a variety of formats, typically in the form of tables with only basic

information like a column/row name or column/row type. Retrieving information

about the entities and the relationships among these entities from these tables can

be a challenging and time-consuming process; eventually, it may be presented in the

form of a conceptual model. It is especially important to have the means to present

these relationships in a meaningful and readable way [4]; one of these is a UML class

diagram. Other possibilities include ERD diagrams or semantic networks.

A conceptual model is a high-level representation of a target problem made from

the composition of concepts that are used to help people know, understand, or simu-

late the subject that a model represents. The term “conceptual model” may be used

to refer to models that are formed after a conceptualization or generalization pro-

cess [12]. Conceptual models are often abstractions of things in the real world, both

physical and social.

It should be underlined that the set of data usually represents some application

domain. So, when recreating a conceptual model based on the available data, it is

necessary to keep its compliance with the application domain. Semantic correspon-

dence between the conceptual model and the application domain is a crucial and very

sensitive point of the modeling. In conceptual modeling (as opposed to the numerical

analysis of big data), it is necessary to have some knowledge delivered by relevant

documentation or by domain experts.

Conceptual modeling is one step in the process of data analysis. After delivering,

the data should be cleaned and possibly preliminarily analyzed. When implemented

correctly, a conceptual model should accomplish the following [8]:

• enhance an individual’s understanding of the representative system;

• provide a point of reference for system designers to extract system specifications;

• document the system for future reference and provide a means for collaboration.

(provided that the model has acceptable fidelity to the modeled problem domain).

This paper aims to propose a method of revealing a conceptual data model

(a structural perspective only) from data frames – raw data delivered as a dataset

(e.g., a csv file). The proposed method can be applied for two purposes:

• discovering existing (in data) entity types (classes of objects) and the relation-

ships among them; the result can be used for different purposes (for example, to

visualize complex dependencies among the data) to document them (e.g., in the

form of an ontology) [15];

• checking the quality of the data describing a specific domain if the data is to be

used for different purposes; e.g., for validating the data against a real domain.

The proposed method discovers functional dependencies among the analyzed

data, gathers the attributes (names for data values) into classes, and finds any rela-

tionships among them. The process itself is adapted to object-oriented modeling –
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the result is represented as a UML class diagram – and takes the relationships specific

to object models into consideration; e.g., associations, association classes, generaliza-

tions, and compositions. UML is now considered to be a classic modeling language,

well-suited not only for the object-oriented paradigm but also used for conceptual

data modeling (e.g., [10]).

This paper presents an extended and refined version of the algorithm first de-

scribed in [6]. Also, the list of illustrating examples is outspread to cover all derivation

rules.

The rest of the document is structured as follows. Section 2 brings the basic defini-

tions necessary for understanding the algorithm of conceptual model creation. The next

section gives a short review of the relevant literature, and Section 4 discusses the prob-

lems with data cleaning as the data pre-processing process. Section 5 presents the al-

gorithm of conceptual model creation. Illustrating examples are given in Section 6,

while a simple case study is presented in Section 7. Section 8 concludes the paper.

2. Basic definitions

This section introduces a list of basic definitions necessary for further considerations.

Let us assume that a set of data is given in the form of a data frame DF=〈H,B〉,
where header H is a set of attribute names and B is a set of items (tuples). It is also

assumed that data frame DF is associated with a given application area, which is the

basis for the data frame interpretation.

Each attribute name a ∈ H has a data type Ta assigned, noted as a : Ta. For

a given attribute name a, its type is denoted by type(a). Taking into account an

undefined value of any attribute ⊥, the header of the data frame may be considered

as the set {〈a : Ta or a =⊥〉 | a ∈ H}.
Each item of the data frame is a partial function from the attribute names into

the respective data types. Notation 〈a, v〉 means value v is assigned to attribute a.

Hence, an item is a set {〈a, v〉 | a ∈ H}. The set of items is denoted by B.

Undefined value ⊥ is interpreted as missing or inapplicable. This means that the

value ⊥ of an attribute a ∈ H in a given item of a data frame represents valuable

information relating only to the set of attributes H\{a}.
The projection of an item t into a subset of attribute names A ⊆ H is defined as

t[A] = {〈a, v〉 | a ∈ A} ( [9]). B[A] denotes the set of all items t[A] belonging to B.

Let X, Y ⊆ H; by X → Y a functional dependency (FD) is denoted, which

means that, for any t1, t2 ∈ B if t1[X] = t2[X] then t1[Y ] = t2[Y ]; notation X 6 →Y

means that there is no FD between X and Y . A functional dependency X → Y

is minimal if removing an attribute from X makes it invalid [9]. An attribute A is

partially functionally dependent of set of attributes X, if there exists such an X ′ ⊂ X

that X ′ → A ( [7, 9]). A subset X such that X ⊆ Y ⊆ H is called a candidate key

with respect to Y if X → Y and X ′ 6 →Y for each X ′ ⊂ X ( [7]). By CK (Y ) is

denoted the set of all candidate keys with respect to Y .
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By X ⇒ Y , a weak functional dependency (WFD) is denoted, which means that

there exists X → Y after removing such items from B for which ⊥ is a value of any

attribute in B[X].

3. Related works

How the different types of dependencies among data can be retrieved is described

in [9], for example. In our approach, we only concentrate on functional dependencies

(and skip other types; e.g., inclusion, approximated FD, or conditional FD). We

follow a top-down procedure in which candidate FDs X→Y are derived first and

next examined (on real data) starting from X consisting of one attribute. Even for

large data sets, we take all items into account. The list of FDs is limited by the use

of pruning methods.

There is not much research addressing the same problem of inferring a conceptual

model from data. The closest one is [15], which presents the TANGO (Table ANal-

ysis for Generating Ontologies) method. This is ‘a formalized method of processing

the format and content of tables that can serve to incrementally build a relevant

reusable conceptual ontology’ [15]. The authors use different heuristics to build a ta-

ble from partially unstructured data. The result is called a normalized table. The

mini-ontologies retrieved from the tables are visually represented by an object in the

Object-oriented Systems Model (OSM) notation. Similar to our approach, the ele-

ments of the model are mined from data based on the functional dependencies and

inclusion dependencies, and the multiplicity is defined by observing the mandatory

and optional patterns in the data. However, the detailed algorithms of data extrac-

tion are not given. Another problem is that the resulting OSM model is difficult to be

interpreted in terms of the classes and their properties. All of the rectangles on the

model represent separate data sets that are somehow connected; e.g., a ‘country’ and

its ‘population’ are represented as separated but linked entities in OSM, while in the

UML ‘population’ and ‘country’ (name) will be structural features of the same class.

The other difference is that the tables in TANGO are generated automatically from

data, which sometimes leads to a strange structure with columns not containing real

data but serving for grouping purposes; e.g., a column containing in all rows the word

’Religions:’ followed by several columns informing about the percentage of a specific

religion in a country. We assume that the data is cleaned and any columns with no

information are removed before processing.

Another interesting bit of research is [5], in which the authors distill class dia-

grams from spreadsheets using the so-called Gyro approach. This approach assumes

that the data in spreadsheets is organized according to some patterns and separated

with empty cells, which determine the relationships among the entities. The recog-

nized pattern is translated into a parse tree and then into a class diagram. In the case

when more than one pattern can be applied to a specific set of data, the algorithm

returns the set of all. The method distinguishes between label cells, cells with values,

and cells with formulas (which is not the case in our approach). The formulas are

translated into methods.
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In [14], the authors also concentrate on patterns that are potentially used for

data in spreadsheets and propose a meta-model for their representation. Such a meta-

model can also be used later in our method for data normalization.

The opposite approach in which a conceptual model (in the form of an ontology) is

used for data extraction from web pages is presented in [2]. This approach starts with

the definition of an ontology instance from which a database schema is generated,

with matching rules for constants and keywords. After that, a record extractor is used

for data cleaning, and a recognizer is applied to find the parts in unstructured chunks

that match the rules. The last step is transforming the found data into a database

using the defined heuristics, which makes the data querying possible.

4. Data preparation

Data cleaning is the process of analyzing, detecting, and correcting the errors and

inconsistencies in a data set to improve the data quality [1,11,13]. Generating a con-

ceptual data model (domain model) based on raw data requires a preliminary data

analysis and, in most cases, improving its quality (in the process of data cleaning) to

ensure compliance with the represented domain of the considered problem.

In our experience, the critical issue in data analysis is to understand and interpret

a data set. Therefore, we believe that a preliminary assessment of the data sample

should be made before proceeding with the process of generating a conceptual data

model. This activity is particularly important when we do not know the attributes

of the analyzed data sample in detail. The minimal scope of data analysis should

include at least the following:

• number of attributes in data set with their value types;

• number of records (observations);

• number of undefined values in entire data set.

For numerical data, it is crucial to determine the number of unique values, the av-

erage value, and the minimum and maximum values. This allows us to evaluate the

values of the attributes in the context of the domain. For string/text data (categorical

attributes), it is recommended to obtain information on the number of unique values,

missing (n/a, null, etc.) values, and a sample of the most common attribute values.

The completeness of data values is one of the crucial aspects that has a signifi-

cant impact on the correct interpretation of potential dependencies among the data.

The input values should be consistent with acceptable domain values. Also, it is es-

sential that all values from these sets occur in the data sample in the case of finitely

enumerated domains.

For conceptual model extraction purposes, this approach maybe not be deficient.

The data set should be potentially enriched with a variety of possible variants of

the attribute values. Furthermore, attributes that can play roles as candidate keys

in the source dataset should have unique values, which can be checked by determining

the value of the so-called ‘unique strength’ (as a percentage) of each candidate key.
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A ‘unique strength’ of less than 100% indicates that duplicate values exist [16]. At this

stage, it is also worth considering the case of attributes that do not have specific values

or have a constant value. In the case when any attribute has no specified values or

all of the values are the same in the considered data set, then this attribute should

be rejected from the dataset.

In the end, it should be mentioned that, after presented an initial analysis, the

criteria for assessing the data quality must be determined and adopted by the analyst

(depending on the considered problem domain).

5. Algorithm of disclosing data conceptual model

This section outlines an algorithm that aims at a derivation of a conceptual model

(in the form of a UML class diagram) from the given data frame DF . The algorithm

is computationally very complex due to the large number of functional dependencies,

which is usually greater than the number of dependencies existing in the considered

domain. This is usually caused by the low quality of data that does not reflect all

possible cases in the reality. We propose a simple metric to prioritize functional de-

pendencies. Dependency X → Y has a higher rank over X ′ → Y if |X| < |X ′|. Theo-

retically, the computational complexity of the algorithm is in the order of O(m ∗ n!),

where n is the number of attributes in header H (describing a schema of the data

frame), and m is the number of entities in the data frame. For the reason of the

complexity, we apply some heuristics in the algorithm presented below to avoid the

complete search of a space of solutions. The applied heuristics were determined based

on previously made experiments.

5.1. Notation used

In further, the following notation is used:

• Cl(X) represents a class where X is a set of its attribute names.

• Cl(X, root) represents a class with attributes X marked as root.

• At(C) represents a set of attributes of class C.

• As(C1n1, . . . , Cknk) represents an n-ary association among C1, . . . , Ck classes

with multiplicities n1, . . . , nk at respective association ends.

• AC(X,C1n1, . . . , Cknk) represents an n-ary association class C with set of at-

tributes X, associated with classes C1, . . . , Ck where n1, . . . , nk are multiplicities

at respective association ends.

• Cm(C,C1n1) represents a composition relationship, where C is a composite and

C1 is a component with multiplicity n1 at its end.

• Gen(C1; C2) represents a generalization relationship, where C1 is a parent and

C2 is a child.

• Let fd be a functional dependency such that fd : X → Y . We say that X

is the source (source(fd) = X ), and Y is the target (target(fd) = Y ) of func-

tional dependency fd . The number of elements in X is called the grade of fd

(grade(fd) = |X |).
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For a set of attributes S ⊆ H, we define two auxiliary functions:

• S → – represents a set of attributes (disjoint with S) being functionally deter-

mined directly or indirectly by S as a whole and not defined by anything outside

S. More formally: S → = {S′: S → S′ and S ∩ S′ = ∅ }
• → S – a flattened set of subsets of attributes (disjoint with S) that functionally

determine S.

Formally: → S = {S′: S′ → S and S ∩ S′ = ∅ and ∀S′′ : S′′ ⊂ S′ ⇒ S 6 →S′′ }

5.2. Algorithm definition

5.2.1. Introduction

The top-down approach was used to present the algorithm. Main function

ModelGeneration calls a number of sub-functions defined separately either in pseu-

docode or by an activity diagram. The sub-function description presents its goal and

gives additional details. We assume global visibility of the data frame and its parts

(H–header, B–body) within the functions as well as visibility of the function results.

The activity flow of the ModelGeneration function is defined in (Fig. 1).

Figure 1. ModelGeneration function
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The main function consists of the seven stages (sub-function calls) described

below.

5.2.2. Stage 1 – finding functional dependencies

Functional dependencies are retrieved from data samples. We start with the selec-

tion of any singular attribute and check if it is a source for any dependency. If yes,

the found dependency is minimal, and no other checks of supersets of the selected

attribute are made. If not, we subsequently select sets of two, three, and so on

attributes, checking whether they are sources of any minimal dependency. The com-

puting complexity of this searching is O(m ∗ n!). Therefore, the length of the LHS

(Left Hand Side) of FD is limited to four attributes for practical reasons.

5.2.3. Stage 2 – finding partition

Our algorithm follows the divide-and-conquer strategy. The functional dependencies

found in the previous step determine a partial partition of set H; i.e., P = P1 ∪ P2 ∪
. . . ∪ PK , where Pi ∩ Pj = ∅, and Pj ⊆ H, and remainder O = H \ P . Each element

Pi is processed later, giving a piece of the class diagram.

Following the grades of the functional dependencies, the partition is determined

uniquely. It is calculated by the FindPartition function, which additionally identifies

a set of candidate keys CKi for each Pi . The next outcome is the remainder, and

the last is a set IDFi for each Pi , which contains the functional dependencies for the

further processing defined within Pi .

The FindPartition function uses three auxiliary functions (defined below in

a declarative way); i.e., FindKeyFD , FindSupersetOf and JoinDependencies. The

first returns key functional dependencies from H; i.e., those dependencies with a grade

equal to L (L is the function parameter) whose source is not defined functionally nor

is defined cyclically by the dependent elements. Such dependencies are the starting

points for class creation. The FindSupersetOf function selects (if they exist) from

the key dependencies (the keyFD parameter) those dependencies that have the low-

est grade (equal to K) and whose attributes partially define the attributes being the

source of the fd dependency (the function parameter). The last JoinDependencies

combines the found supersets (if any) into one more-complex functional dependency.

More formally:

FindKeyFD(L) = {fd ∈ FD : grade(fd) = L and

((→ source(fd) = ∅) or (→ source(fd) ⊆ source(fd)→))}
FindSupersetOf (fd ,K , keyFD) = {fdx ∈ keyFD: grade(fdx) = K and

source(fd) ∩ source(fdx) 6= ∅}
JoinDependencies(fdx ) = {

⋃
f∈fdx(source(f)} → {

⋃
f∈fdx(target(f))}

Example. Let us assume that we have H = {A,B,C,D,E, F}, and FD = {{B,C}
→ A, {B,E} → A, B → D, D → F}. The FindKeyFD function will return the

first three dependencies as interesting. The B → D is considered first, as its grade
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is equal to 1. The FindSupersetOf will return {B,C} → A, and {B,E} → A as

supersets of B → D. Next, the JoinDependencies function will combine them with one

more complex dependency {B,C,E} → A. Finally, as a result of the FindPartition

function, we obtain one partition element with one candidate key {B,C,E}, and the

following dependencies: IFD1 = { {B,C,E} → A,B → D,D → F}.

Algorithm 1: FindPartition

Data: H – a set of attributes

Result: P = {P1, . . . , Pk} – partition

CK = {CK1, . . . , CKk} – CKi is a set of candidates keys for Pi

O – set of attributes outside P

IDF = {IDF1, . . . , IDFk} – functional dependencies left for further consideration

begin
i←− 1

P ←− ∅
CK ←− ∅
IDF ←− ∅
for L← 1 to min(4, |H| − 1) do

keyFD ←− FindKeyFD(L)

for fd ∈ keyFD do

for K ← L + 1 to min(4, |H|) do
fdx←− FindSupersetOf(fd,K, keyFD)

if fdx 6= ∅ then
fdxJoined←− JoinDependencies(fdx)

Pi ←− source(fd) ∪ source(fd)→ ∪
source(fdxJoined) ∪ (∀Y ⊆ source(fdxJoined) : Y ∪ Y →)

CKi ←− {source(fdxJoined)}
else

Pi = source(fd) ∪ source(fd)→
CKi = {X : X ⊂ source(fd)→ and

X ⊂→ source(fd)} ∪ {source(fd)}
IDFi ←− (fd ∪ fdxJoined ∪ (∀x ∈ FD such that source(x) ⊆ Pi and

target(x) ⊆ Pi : x)) \ fdx
if ¬∃Pj ∈ P : Pj ∩ Pi 6= ∅ then

P ←− P ∪ Pi

CK ←− CK ∪ CKi

IFD ←− IFD ∪ IDFi

i←− i + 1 // change the partition element

O ←− H \ P

5.2.4. Stage 3 – processing partition

The goal of this stage is to generate a piece of a class diagram separately for each

partition element Pi . The elements were constructed in such a way that ensures

that the pieces are disjoint. The procedure reuses techniques known from relational
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databases and the normalization process; however, it adapts them to the object-ori-

ented paradigm. The class(es) generated in one step are considered to be a context

for the next-generation step in which the context is linked to the newly generated

elements. The ProcessPartitionElement procedure (see Fig. 2) processes transitive

dependencies recursively by the ProcessTransitiveDep function. Rulex functions per-

form simpler transformations – they are defined formally after the main function.

The FindPartialDep function takes the first candidate key as a parameter for Pi

and returns all dependencies in IFDi , whose targets are partially dependent from this

candidate key. The newly created elements (classes, relationships) are visible globally.

Figure 2. Definition of ProcessPartitionElement function

Rule 1 takes into a set of attributes as a parameter and creates a root class from

all of it.

Rule 2 takes two parameters: a set of candidate key CK for partition element P

and returns a newly created root class as a context and a reduced number of attributes

for further consideration.

Rule 3 .1 is called for a partial dependency fd when it is not a source for any

transitive dependency. It creates a new root class that is returned as a context.
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Rule 3 .2 is called when functional dependency fd (the parameter) is a source

for a transitive dependency. It creates a new root class (ctx) and returns a reduced

number of attributes for further processing (P ′).

Rule 4 .1 creates a class or association class to be linked (by composition or as-

sociation class) with the classes obtained from processing of the partial dependencies.

Rule 4 .2 works in a similar fashion as Rule 4 .1 . The only difference is that it is

called in the context of transitive dependencies; so, this is why the rule returns acon-

text (a class to which something will be connected in the next stage) and a reduced

number of attributes.

Rule 5 .1 and Rule 5 .2 are called internally within the ProcessTransitiveDep

function. Both create classes to be linked with the context by an association or

generalization (depending on the case). The second returns a new context for the

recursive calls.

Algorithm 2: ProcessTransitiveDep

Data: ctx – a set of classes, H – a set of attributes

begin
(P,CK,O, IDF ) = FindPartition(H)

for Pi ∈ P do

if there exists any transitive dependency in IDFi then
(ctx′, H ′)←− Rule5.2(ctx, CKi, Pi)

ProcessTransitiveDep(ctx′, H ′)

else
Rule5.1(ctx, CKi, Pi)

FindPartialDep(CK, IDF ) =

{fd ∈ IDF : source(IDF ) is partially dependent from CK}

Rule1 (P ) = Cl(P, root)

(ctx, P ′) Rule2 (CK,P ) =

C ←− Cl(
⋃

K∈CK:K→Y and 6∃Y→Z K ∪ Y, root)

ctx←− C

P ′ ←− P \At(C)

ctx Rule3 .1 (fd) =

C ←− Cl(source(fd) ∪ target(fd), root)

ctx←− C

(ctx, P ′) Rule3 .2 (fd) =

ctx←− Cl(source(fd), root)

P ′ ←− fd→
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Rule4 .1 (CK, localCtx) =

FlatSet←−
⋃

c∈localCtx(At(c))

if localCtx = {C1} then
C ←− Cl(CK → \At(C1))

Cm(C1, C n)

else if localCtx = {C1, . . . , Ck} and CK ⊆ FlatSet then

C ←− Cl(CK →)

AC(At(C), C1 n1, . . . , Ck nk)

else

Z ←− Cl(CK →)

C ←− Cl(CK \ FlatSet)

AC(At(Z), C1 n1, . . . , Ck nk, Cn)

(ctx, P ′) Rule4 .2 (CK, localCtx) =

FlatSet←−
⋃

c∈localCtx(At(c))

if localCtx = {C1} then
C ←− Cl(CK \At(C1))

Cm(C1, C n)

else if localCtx = {C1, . . . , Ck} and CK ⊆ FlatSet then

C ←− Cl(Y : CK → Y directly)

AC(At(C), C1 n1, . . . , Ck nk)

else

Z ←− Cl(Y : CK → Y directly)

C ←− Cl(CK \ FlatSet)

AC(At(Z), C1 n1, . . . , Ck nk, Cn)

ctx←− C

P ′ ←− CK →

Rule5 .1 (ctx, CK,P ) =

C ←− Cl(P )

if CK1 weakly defines any attribute from ctx then

Gen(ctx, C)

else

As(Cn1, ctxn2)

(ctx′, H ′) Rule5 .2 (ctx, CK,P ) =

C ←− Cl(CK1)

if CK1 weakly defines any attribute from ctx then

Gen(ctx, C)

else

As(Cn1, ctxn2)

ctx′ ←− C

H ′ ←− P \At(C)
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5.2.5. Stage 4 – processing remainder

In the fourth stage, the attributes outside the partition of initial set H are processed.

These belong to the results of the FindPartition function and could be somehow

connected to existing partition elements (by incoming dependencies). The processing

is done by the ProcessRemainder function, which works recursively until there is no

functional dependency between the input parameters.

Algorithm 3: ProcessRemainder

Data: H – a set of attributes

R – a subset of H

begin
rootClassesH = find all root classes created by ProcessPartitionElement for

set H

if there exists fd ∈ FD such that source(fd) ⊆ R and target(fd) ⊆ R then
(P,CK,O)←− FindPartition(R)

for Pi ∈ P do
ProcessPartitionElement(Pi, CKi)

rootClassesR = find all root classes created by ProcessRemainder for set R

Rule6.1(rootClassesR, rootClassesH,R,H)

ProcessRemainder(R \ P,O)

for each A ∈ R :→ A ⊂ (H \R) and A→= ∅ do
Rule6.2(rootClassesH,A,R,H)

Rule 6 .1 takes all root classes created by the specific recursive run of the

ProcessReminder function and links them to the classes created for the partition of

H. Rule 6 .2 takes a singular attribute A, creates a class for it, and links this class

to each class whose attributes define A functionally.

Rule6 .1 (ClassesR,ClassesH,R,H) =

for each Ci ∈ ClassesR do

for each Cj ∈ ClassesH such that At(Cj) ⊂ (H \R)

and there exists X ⊂ At(Ci) : X → Y and Y ⊆ At(Cj), do

As(Ci n, Cj 1)

Rule6 .2 (rootClassesH,A,R,H) =

C ←− Cl(A)

for each Ci ∈ rootClassesH : At(Ci) ⊂ (H \R)

and there exists X ⊂ At(Ci) : X → A, do

As(Ci n, C 1)
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5.2.6. Stage 5 – self associations

In the fifth stage, the associations within this class are identified for each previously

determined class. An identified association enables the modification of a class by

reducing a set of its attributes and replacing the reduced attributes by the association.

Let C be such a class and for K = {a1, . . . , an}, where K ∈ CK(C), there exists

a set of attributes {b1, . . . , bn} such that the two conditions are satisfied:

(a) {b1, . . . , bn} ⊆ At(C)\K such that type(bi) = type(ai), and the meanings of ai
and bi are the same (see Subsection 5.2.9) for i = 1, . . . , n,

(b) t[b1, . . . , bn] ⊆ t[a1, . . . , an].

If the above conditions are satisfied, this is interpreted as:

(Rule 7.1) The set of attributes {b1, . . . , bn} is redundant for class C, which means

that this class may be replaced by a class C ′′ = Cl(At(C) {b1, . . . , bn}).
(Rule 7.2) There is an association As(C ′ m1, C

′ m2) where multiplicities m1, m2 are

to be determined on the basis of tuples from DF that represent instances of

C ′. What is more, one end of the association will be given the {b1, . . . , bn}
role name to make tracing the source of the self-association possible.

5.2.7. Stage 6 – self-associations instead of binary associations

In the sixth stage, we consider pairs of previously identified classes. The aim is a refac-

torization of the association by discovering possible hidden generalizations.

Let C1 and C2, and As(C1 m1, C2 m2), where m1 = 1 or 0..1 and m2 = 0..*

or 1..*, are given. Moreover, let Ki ∈ CK(Ci) for i = 1, 2. The further proceedings

make sense if K1 6 →K2,K2 → K1,and type(K1) = type(K2) and the meanings of K1

and K2 are the same.

If K2 = At(C2), then:

(Rule 8.1) The associated pair of classes is replaced by class C1 and association As(C1

m1, C1 m2) (see Fig. 3a). The ‘many’ end of the association is given the

K2 role name.

(Rule 8.2) Class C2 is removed, and their associations/generalizations (if any) are

moved to class C1.

If K2 ⊂ At(C2), then a more complex analysis is required. Let us define Ai =

At(Ci)\Ki for i =1,2. Now, we analyze the semantics of subsets A1 and A2.

Let us assign the name A12 for the set of attributes in A1 and A2 that have the

same meaning (their names may be different, but the types must be the same). If

A12 is nonempty, then:

(Rule 8.3) The associated pair of classes is replaced by two or three classes (Fig. 3b):

a superclass C12 = Cl(K1 ∪ A12) and association As(C12 m1, C12 m2),

where multiplicities m1, m2 are to be determined from an analysis of the

set of respective tuples in DF . The names for those attributes with the

same semantics are taken from C1.
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Additionally:

(Rule 8.4) a subclass C11 = Cl(A1 A12) of C12 provided that set At(C11) is not empty

(Rule 8.5) a subclass C22 = Cl(A2 A12) of C12 provided that set At(C22) is not empty

(Rule 8.6) The existing associations/generalizations where C1 is placed on the end are

to be moved to that class in the hierarchy, which contains the attributes

that are the cause for the association/generalization.

Figure 3. Possible model refactorizations for binary associations

5.2.8. Stage 7 – post-processing

The seventh phase is a post-processing stage that connects separate subgraphs created

for the partition elements. In this phase, the classes resulting from the previous phases

are examined. For each pair of root classes Ci, Cj (i 6= j):

(Rule 9.1) a new many-to-many association As(Ci mi, Cj mj) is created with mi,mj

derived from an analysis of the set of tuples from DF that represent in-

stances of Cj and Cj .

5.2.9. Attempts to check meaning equivalence among attributes

Some transformation rules (e.g., in the sixth phase) require checking whether the

semantics of two attributes is the same. This could be done in different ways; e.g.,

by asking an expert. The problem with this solution is that the number of questions

directed to experts grows exponentially with the number of attributes, even if the

necessary conditions (e.g., type equivalences) are met. The decision process could be

supported with the calculation of some base measures, including:

• The ratio of the shared values in two attributes (or the set of attributes in the

case of complex candidate keys). If the value exceeds some predefined threshold

(to be set), either it is assumed that the semantics of the attributes is the same, or

an expert is asked for confirmation. This approach should be especially effective

for textual (categorical) values; e.g., towns, countries, first names.
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• The hierarchy depth for the transitive dependency (if any) between values in the

considered attributes. Let us illustrate this method with a simple example. As-

sume that we have two attributes (EmployeeId and BossId) with a functional

dependency between them (EmployeeId→ BossId). Some bosses play the role

of employees and have their bosses, which is reflected in the values of the at-

tributes. If the hierarchy depth is greater than a specified threshold (e.g., 2), one

can assume that a kind of interesting dependency between attributes exists. This

approach is recommended for number values, especially those used as identifiers.

6. Illustrative examples

This section helps in understanding the algorithm details. The examples were in-

tentionally prepared for this purpose with the use of test data (data sets containing

from several to several dozen items). The functional dependencies among the data

instances do not need to be fully conformant with commonly known domains.

The first explains the concept of partition elements – the result of the second

phase and how any discovered functional dependencies (in the first phase) help in

finding them. Assume we have the source data that is shown in Table 1.

Table 1
Source data for first example

Name [Text] Age [Number] IsFemale [Boolean]

John Kowalski 10 No

Ann Nowak 12 Yes

Agatha Smith 10 Yes

As it is easy to observe, the Name attribute is the only one with unique values;

therefore, it is a key candidate. This also functionally defines the other attributes

(Name → Age,Name → IsFemale). This means that all of them belong to the same

partition element. As there are no transitive nor partial dependencies, all of the

attributes will constitute one class (see Rule 1, Fig. 4).

Name Age IsFemale

Figure 4. Class generation – example 1

The second example shows how a class is created with two candidate keys read

from functional dependencies (Group,Time). The partitioning process returns one

partition element with both attributes. The remainder parts contain the Something

attribute. Again, Rule 1 produces one class. The Something attribute is not covered,

as there is no dependency that points to it – see Figure 5.
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Group Time Something

Figure 5. Class generation – example 2

The third example illustrates how to serve a transitive functional dependency (de-

rived from Group → Course → CourseName, and Group → CourseName → Course)

– see Fig. 6. The partitioning process returns one partition element with one can-

didate key (Group). The first run of the ProcessPartitionElement function creates

the Dummy1 class (Rule 2). The class contains the key as well as the attributes

defined by it (Room) unless they are involved in any transitive dependency. Such

attributes are processed by recursive function ProcessTransitiveDep. The first call

of it creates the Dummy2 class and links it with the one-to-many association with

Dummy1 (Rule 5.1).

Group Room Course CourseName

Figure 6. Generation of associations resulting from transitive FD

The next example shows how to create a generalization relationship based on

a weak functional dependency (see Fig. 7, WFD).

Id Name EmployeeId Salary Album AvgGrade

WFD

WFD

Figure 7. Generation of generalization relationship
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The data represents information about a person (Id ,Name) and two subtypes:

Student (represented by theDummy2 class) andEmployee (represented by theDummy3

class). TheapplicationofRule2produces theDummy1 class. TheProcessTransitiveDep

function starts with P1 = {EmployeeId ,Salary ,Album,AvgGrade} in which two parti-

tion elements are found, each of which is the source of a new class. These new classes

are connected with a generalization (Rule 5.1) with Dummy1 . The rules are applied for

disjoint and incomplete data.

The presence of partial dependencies activates another group of transforma-

tion rules. Let us present the following example. The file contains data about in-

voices, including InvoiceNr ,Date, and rows defined by: RowNr , Product (name),

product Quantity – see Fig. 8. The partition contains only one element, with pair

{InvoiceNr ,RowNr} as a candidate key. The FindPartialDep function returns one

functional dependency (InvoiceNr → Date) for which Rule 3.1 is run. This creates

the Dummy1 class, which is returned as the local context. Next, Rule 4.1 creates

a new class (Dummy2) and links it via composition with Dummy1 .

InvoiceNr Date RowNr Product Quantity

Figure 8. Generation of composition

The next example covers the case in which an association class is created as

a result. The test data is typical: we have Groups (of students) taking their classes

for a specific Course at a specific time. The students identified by Album have Name.

Students are given Grades – see Fig. 9. All attributes belong to the same partition

element, with pair {Group,Album} as a candidate key. Now, two partial functional

dependencies are present in the set of attributes. For each, a singular class is created

(the application of Rule 3.1) and added to the local context. Rule 4.1 creates the

Dummy3 association class (as the candidate key of the partition element is covered

by the attributes of the contextual classes) with its ends at Dummy1 and Dummy2.

Below, another example is shown that demonstrates the application of Rule 4.1.

The initial dependencies among the set of attributes are presented in Figure 10.

There are partial dependencies from candidate key K ={Album,Course,Date}
in H. Rule 3.1 is applied twice and produces a set of classes {Dummy1 =

{Album, StudentName}, Dummy2 ={Course, CourseName}} as a local context.
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Rule 4.1 produces a new class (Dummy3 = {Date}) and links all of the previously

mentioned classes via n-ary association class Dummy4 = {Grade}. In Figure 10,

the association class is represented by a casual class because of the limitations of the

notation used.

Group Time Course Album Name Grade

Figure 9. Generation of association class – example 1

Album StudentName Course CourseName Date Grade

Figure 10. Generation of association class – example 2
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Figure 11 shows an example in which a cascade of transitive dependencies

is served (Name → Birthdate → Age → Experience). First, the Dummy1 class

is created (Rule 2) with the Name attribute. The rest of the attributes are passed

to the ProcessTransitiveDep function. The attributes form one partition element.

Because it still contains transition dependencies, Rule 5.2 creates the Dummy2 class

with the Birthdate attribute (the class is linked via association with Dummy1),

and the function is called recursively with the limited set of attributes. At the end,

Rule 5.1 creates the Dummy3 class and links it with Dummy2.

Name Birthdate Age Experience

Figure 11. Servicing cascade of transition dependencies

The next example demonstrates the result of the fourth phase. Let us assume

that we have discovered the functional dependencies that are shown in Figure 12.

The partitioning process returns a partition that consists of two elements (Group is

a candidate key in the first, and Car is in the second). These two partition elements

are sources for the Dummy1 and Dummy2 classes. The Something attribute lies

outside the partition. As the remaining part does not contain any functional depen-

dency, Rule 6.2 is run immediately. This creates a new Dummy3 class and links it

via one-to-many associations with the previously created classes.

The model could be refactored within the fifth and sixth phases of the algorithm.

The following example demonstrates how a self-association replaces one of the class

attributes. Let us consider the functional dependencies from Figure 13. The applica-

tion of Rule 1 creates one Dummy1 class with the EmployeeId key. Now, we check

whether such an attribute exists with the same type (Number) and the same meaning

as the key has. We find one (BossId). After this, we check whether the values of the

BossId set are included in the values of the EmployeeId set. The answer is positive,

so the BossId attribute is removed (Rule 7.1) and replaced with a self-association

(Rule 7.2).
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The following example demonstrates another refactorization (the result of the

sixth phase) within which two classes that are connected via the binary association

are replaced by one class with a self-association. Let us consider the functional de-

pendencies in Figure 14. Stages 2–4 produce the Dummy1 class with one EmpId

attribute, the Dummy2 class with the BossId and BossName attributes, and the

one-to-many associations between them. The key of the Dummy1 class defines the key

of the Dummy2 class (their types and meanings are the same); the key of Dummy1

is its only attribute, so the associated pair of classes is removed. In its place, a copy

of the Dummy2 class is used with a self-association (Rule 8.1).

Group Room Car EngineType Something

Figure 12. Generation of shared class with associations

EmployeeId Name Age BossId

Figure 13. Generation of self-association

EmployeeId BossId BossName

Figure 14. Generation of self-association instead of binary association

Let us now present a more complex version of the previously examined re-

ality (see Fig. 15). Here, we have more attributes that describe both employ-

ees and bosses. Before we start the sixth phase, two classes had been created:

Dummy1(EmpId,EmpName,EmpAge) associated via many to one association with

Dummy2(BossId,BossName,BossSalary). The key of Dummy1 – EmpId – de-

fines the key of Dummy2 – BossId – functionally. So, the entry conditions for the

transformation rules are met. As the Dummy1 class not only contains the key, we

have to find out A12 – the set of attributes in both classes (without keys) that share the

same semantics. In this case, A12 = {BossName(= EmpName)}. Rule 6.3 creates
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the Dummy3 (C12) class with attributes {BossId,BossName} and a self-association

for it. Rule 8.2 creates the Dummy4 (C11) subclass with attribute {BossSalary},
and Rule 8.3 creates the Dummy5(C22) subclass with attribute {EmpAge}.

EmpId EmpName EmpAge BossId BossName BossSalary

Figure 15. Generation of self-association instead of binary association

The last example illustrates the application of the seventh phase. Let us assume

that we have data about students and courses not related by any functional depen-

dency (see Fig. 16). The set of attributes creates a partition with two elements – each

of which is the source of one root class: Dummy1 (for the courses), and Dummy2

(for the students), respectively. In the post-processing stage, a new many-to-many

association is created between them (Rule 9.1).

Album StudentName Course CourseName

Figure 16. Generation of self-association instead of binary association

The method for the conceptual model extraction from the data frames was imple-

mented in a prototype tool written in Java, which can read and interpret csv files. The

tool produces the resulting model using plantUML syntax (http://plantuml.com/),

which can be easily translated to a visual form. The implementation only produces

binary relationships (plantUML lacks support for n-ary associations) and considers

the composite keys of three attributes at most (in practice, it happens rather rarely

http://plantuml.com/
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that more items are necessary). The tool was tested with many simple examples

(including all of those presented above) and a few larger for which the authors know

the class diagram. In all of the considered cases, the implementation returned a cor-

rect or at least acceptable solution (e.g., inheritance would be better, but the binary

association can be used instead).

7. Case study

The aim of this section is to illustrate an application of the proposed method to a real

example. To make the illustration reliable and verifiable, we decided to embed it in

a well-known university domain. We gradually completed data that documented the

results of student evaluations prepared by different teachers and observed how these

increase would influence the obtained conceptual model. Finally, we gathered the

data from four teachers within one academic year.

The full list of attributes appears as follows: {Album, Surname, FirstNames,

Year of study, Semester, GroupID, CourseId, CourseName, SemType, AcademicYear,

Grade, Date, EmployeeId, EmployeeData, and Teacher title, where ‘Album’ is a unique

identifier for each student; ‘Surname’ is the student surname; ‘FirstNames’ is the list

of concatenated student’s names; ‘Year of study’ represents a value from 1 to 4 (the

actual year the student is in); ‘Semester’ represents a value from 1 to 7 (the actual

semester the student is in); ‘GroupID’ is a unique identifier of a group of students

that take a specific ‘CourseId’ (this identifier determines the form of a course; e.g.,

lecture, lab) of a specific ‘CourseName’ (the same course name can be applied for many

course ids); ‘SemType’ is an enumeration with two literals only (‘summer,’ ‘winter’);

‘AcademicYear’ is a string with two numbers (e.g., 2017/2018); ‘Grade’ represents

a student’s grade for a specific course id in a specific semester and academic year

(can be empty); ‘Date’ informs when the grade was registered by an academic teacher

identified by ‘EmployeeId’ and described by ‘EmployeeData’ (this attribute contains

a concatenation of the teacher surname and name). The last attribute (‘Title’) is an

enumeration representing the formal title of the academic teacher (e.g., prof., Ph.D).

During the first stage, we merge the data from four teachers (about 500 rows)

without any grades being included. This was the reason why the algorithm was not

able to determine a class for attributes ‘Grade’ and ‘Date’ – see Fig. 17a. After adding

grades to some courses, the model changed – see Fig. 17b. The program correctly

recognized an association class between Dummy2 (a class representing students) and

Dummy3 (a class representing a specific student group taught by a specific academic

teacher).

In the next step, we added data with grades for the second semester (almost 400

rows). Now, the algorithm was able to correctly separate a class representing teachers

(Dummy5 ) and courses (Dummy4 ) – see Fig. 18. The course can be assigned to many

groups (Dummy3 ). One group can gather students being in different semesters/years

of study and must be run in a specific semester type (association to Dummy7 ) and

within a specific academic year (association to Dummy8 ). It happened that a few
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students had to retake selected courses – such a fact was correctly identified by the

algorithm – Dummy2 is connected via association class (Dummy6 ) to a specific group

– Dummy3.

a) b)

Figure 17. Conceptual model resulting from 1st stage: a) data without grades; b) data with

grades

Figure 18. Conceptual model resulting from 3rd stage: data from whole academic year with

student grades
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8. Conclusions

This paper presents an approach to conceptual data modeling inferred from data

frames. The approach reuses known techniques from a database domain related to

the database normalization process; however, it adapts them to an object-oriented

paradigm and extends them with some additional rules (e.g., generation of composi-

tion, self-association, and generalization relationships, generation of sharable classes).

The main difference is that the set of functional dependencies is not explicitly defined

but is created during the data analysis process. The approach is very sensitive to

data quality, which makes data preparation a crucial preprocessing step. Better data

results in a better conceptual model.

Among other uses, the proposed method may be used to:

• Interpret a set of data in the absence of knowledge of the problem domain.

• Assess the quality of the sample data.

• Prepare data that should be compatible with the problem domain in question as

a software testing set.

• Support didactics in the field of data modeling.

The list of the known limitations of the proposed approach is as follows:

• Attributes are grouped in anonymous classes without meaningful names; e.g.,

Dummy1.

• Generalization relationship is recognized only if it is incomplete; i.e., some data

rows have keys of the children instances undefined for parent object.

• Data structure must not contain any patterns that influence data interpretation

(compare, e.g., [5]).

The limitations are going to be addressed in the near future; e.g., the names of

classes could be defined by reference to a domain ontology or a kind of universal glos-

sary (Wordnet). Another direction of potential research is to extend the consideration

for multi-file input or include quality measures for a sample of data and supplement

the missing acceptable data cases based on their preliminary assessment.

References

[1] Data Cleansing: Care for most valuable business asset. https://www.hitechbpo.

com/data-cleansing.php.

[2] Embley D., Campbell D., Jiang Y., Liddle S.W., Lonsdale D.W., Ng Y.-K.,

Smith R.D.: Conceptual-model-based data extraction from multiple-record Web

pages, Data & Knowledge Engineering, vol. 31(3), pp. 227–251, 1999. https:

//doi.org/10.1016/S0169-023X(99)00027-0.

[3] Embley D., Kurtz B.D., Woodfield S.N.: Object-Oriented Systems Analysis: A

Model-Driven Approach. Prentice Hall, USA, 1992.

[4] Embley D., Liddle S.: Conceptual Modeling, chap. Big Data – Conceptual Mod-

eling to the Rescue. Springer, Heidelberg, 2013.

https://www.hitechbpo.com/data-cleansing.php
https://www.hitechbpo.com/data-cleansing.php
https://doi.org/10.1016/S0169-023X(99)00027-0
https://doi.org/10.1016/S0169-023X(99)00027-0


236 Bogumila Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

[5] Hermans F., Pinzger M., Deursen van A.: ECOOP 2010 – Object-Oriented Pro-

gramming, chap. Automatically Extracting Class Diagrams from Spreadsheets,

pp. 52–75, Springer, Heidelberg, 2010.

[6] Hnatkowska B., Huzar Z., Tuzinkiewicz L.: Integrating research and practice

in software engineering, chap. A data-driven conceptual modeling, pp. 97–109,

Springer, Cham, 2020.

[7] Kedar S.: Database Management System. Technical Publications, USA, 2011.

[8] Kung C., Sölvberg A.: Activity modeling and behavior modeling. In: Proceed-

ings of the IFIP WG 8.1 Working Conference on Information Systems Design

Methodologies: Improving the Practice, pp. 145–171, North-Holland Publishing

Co., Amsterdam, 1986. http://dl.acm.org/citation.cfm?id=20143.20149.

[9] Liu J., Li J., Liu Ch., Chen Y.: Discover Dependencies from Data – A Review,

IEEE Transactions on Knowledge and Data Engineering, vol. 24(2), pp. 251–264,

2012. http://dx.doi.org/10.1109/TKDE.2010.197.

[10] Ma Z.: Fuzzy Database Modeling with XML, Springer, Boston, 2005. https:

//doi.org/10.1007/b104945.

[11] McKinney W.: Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython, 2nd Edition. O’Reilly Media, USA, 2017.

[12] Ross R.: Conceputal Model vs. Concept Model: Not the Same!, Business Rules

Journal, vol. 20, 2019. http://www.brcommunity.com/a2019/b977.html.

[13] Svolba G.: Data Quality for Analytics Using SAS, SAS Institute Inc., USA, 2012.

[14] Teixeira R., Amaral V. (2016) On the Emergence of Patterns for Spreadsheets

Data Arrangements. In: P. Milazzo, D. Varró, M. Wimmer (eds.), Software Tech-
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