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Abstract This paper tackles the Multi-Robot Task Allocation problem. It consists of two

distinct sets: a set of tasks (requiring resources), and a set of robots (offering

resources). Then, the tasks are allocated to robots while optimizing a certain

objective function subject to some constraints; e.g., allocating the maximum

number of tasks, minimizing the distances traveled by the robots, etc. Previous

works mainly optimized the temporal and spatial constraints, but no work

focused on energetic constraints. Our main contribution is the introduction

of energetic constraints on multi-robot task allocation problems. In addition,

we propose an allocation method based on parallel distributed guided genetic

algorithms and compare it to two state-of-the-art algorithms. The performed

simulations and obtained results show the effectiveness and scalability of our

solution, even in the case of a large number of robots and tasks. We believe that

our contribution is applicable in many contemporary areas of research such as

smart cities and related topics.
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1. Introduction

A multi-robot system (MRS) is a set of robots that are designed to communicate and

cooperate with each other in order to achieve some common goals [54]. In the last

decades, MRSs have been used to solve many real-world problems such as smart secu-

rity [31], the search and rescue of victims [37], environmental monitoring [17, 35, 46],

and health-care [45]. In an MRS, we usually face some challenging problems like task

allocation, coalition formation, object detection and tracking, communication relay,

and self-organization [23]. In this paper, we deal with the task allocation problem.

The Multi-Robot Task Allocation problem (MRTA) is informally defined as

follows: “given two sets of robots and tasks, the purpose is to allocate tasks to

robots while optimizing some criteria (i.e., objective function) under several con-

straints” [30, 36, 49]. The problem is known to be NP-hard; solving it in an optimal

way is a great challenge, especially when heterogeneous robots, complex tasks, and

dynamic environments should be considered [41]. In order to understand the MRTA

problem, the following sections will give some useful definitions.

1.1. Basic definitions

Definition 1.1 A robot is an autonomous entity that acts in an environment and is

capable of performing some actions [41]. If an MRTA problem is taken into account,

a robot is then typically modeled as a material point; i.e., the physical layer is omitted.

Definition 1.2 A robot group is a set of robots working together to achieve a common

goal. If a given group is dynamic, then it is called a “coalition”; i.e., formed to perform

a task and dissolved just after its accomplishment [43].

Definition 1.3 A task is an action to be performed by one or several robots [4, 14].

Definition 1.4 If a task is considered, a “time window” is an interval in which the

lower and upper values are “the earliest start time” and “the latest finish time,”

respectively. If the earliest start time is not provided, then the latest finish time is

called the “deadline.” A time window is closed if both times are given [41].

Definition 1.5 Synchronization constraints specify temporal restrictions on the tasks

[41]; e.g., “tasks t1 and t2 must start at the same time.”

Definition 1.6 Precedence constraints specify relationships between tasks [41]; e.g.,

“task t2 should start after task t1 is finished.”

Definition 1.7 A schedule is a table in which each task has a time window [40]. In

some cases, each robot has its own schedule; but in other cases, all robots share the

same schedule.

Definition 1.8 If a schedule is taken into consideration, a makespan is the difference

between the finishing time and starting time of its last and first tasks [41].

Definition 1.9 Given robot r and task t, if r is capable of performing t, then one can

define application u(r, t), which is called a “utility” of r for t [26].
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1.2. Temporal models

Time can be modeled as time points (e.g., 4 pm) or intervals (e.g., [1–5pm]). In prac-

tice, time representation as intervals is frequently adopted. Intervals might be used

to express temporal constraints on tasks (as can be seen in Figure 1) [3]. Otherwise,

temporal constraints can be modeled as graphs called “Simple Time Networks” [15],

where nodes represent time points and weighted arcs express temporal constraints.

Figure 1. Different types of temporal constraints between tasks X and Y

1.3. Taxonomies of MRTA problems

There are three taxonomies for the categorization of MRTA problems. For simplic-

ity, we call them “Taxonomy 1,” “Taxonomy 2,” and “Taxonomy 3,” respectively,

according to their chronological order of appearance.

1.3.1. Taxonomy 1

In 2014, Gerkey and Matarić [19] proposed an elegant taxonomy for the categorization

of MRTA problems. It considers the characteristics of robots, tasks, and assignments

as follows:

• Single-task robots (ST) vs. multi-task robots (MT):

1. ST: each robot can only do one task at a time.

2. MT: some robots can simultaneously do several tasks.

• Single-robot tasks (SR) vs. multi-robot tasks (MR):

1. SR: each task requires exactly one robot for its accomplishment.

2. MR: some tasks require the cooperation of several robots for their accom-

plishment.

• Instantaneous assignments (IA) vs. time-extended assignments (TA):

1. IA: tasks are allocated to robots considering only current information (i.e.,

no temporal model is available).

2. TA: tasks are allocated to robots considering both current and future infor-

mation (i.e., a temporal model is used).
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1.3.2. Taxonomy 2

In 2013, Ayorkor Korsah and his co-authors [26] improved the taxonomy of Gerkey

and Matarić by considering dependencies between robots and tasks as follows (it

concerns the estimation of utility values):

• No dependencies (ND): the utility of robot r for task t depends on r and t.

• In-schedule dependencies (ID): the utility of robot r for task t depends on the

schedule of r.

• Cross-schedule dependencies (XD): the utility of robot r for task t depends on

the schedules of all robots in the system; “however, schedules are static.”

• Complex dependencies (CD): the utility of robot r for task t depends on the

schedules of all robots in the system; “however, schedules are dynamic.”

1.3.3. Taxonomy 3

In 2017, Nunes and his co-authors [41] extended the taxonomy of Gerkey and Matarić

by developing the “time-extended assignments (TA)” axis in order to include temporal

and ordering constraints. This latter now considers two sub-axes as follows:

• TA: TW: temporal constraints are considered and expressed in the form of “time

windows.”

• TA: SP: ordering constraints are considered and expressed in the form of “syn-

chronization and precedence constraints.”

1.4. Contribution and paper organization

We propose a distributed solution for solving strongly constrained MRTA problems;

it considers energetic, spatial, and temporal constraints on the robots and tasks. We

have two main contributions. First, we use energetic constraints in MRTA problems;

i.e., the robots’ and tasks’ energetic consumptions are not omitted. Actually, previous

works have not really addressed this aspect – they were mainly axed on temporal

and spatial constraints. Only one paper has dealt with energetic constraints [53], but

in a superficial way: the quantities of the consumed energies are given and supposed

to be constant. In our work, these quantities are dynamically computed using estab-

lished physics laws. This constraint is expressed as follows: “each robot has a gauge of

energy.” Second, we propose some objective functions and modify the MRTA mathe-

matical formulation of [41] by adding two equations expressing energetic constraints.

The remainder of the paper is organized as follows. Section 2 gives an overview of

the literature on MRTA problems. Section 3 explains the proposed solution. Section 4

demonstrates the simulations and obtained results as well as their discussions. Finally,

a conclusion and some perspectives are given in Section 5.

2. Related work

The MRTA problem shares some common points with the K-traveling repairmen

problem (K-TRP) [18] and M-traveling salesmen problem (M-TSP) [7], which are
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variants of the traveling salesman problem (TSP). The aim of K-TRP is to find tours

between the repairmen and customers that minimize the average waiting times for

the customers. The aim of M-TSP is to determine tours between salesmen and cities

that minimize the average distance that all salesmen should travel; besides, each city

should be visited one time. The MRTA problem considered in this paper deals with

energetic constraints. In the literature, there are several approaches that solve the

TSP and its variants [22,34,51,52].

In combinatorial optimization, MRTA problems are known to be strongly

NP-hard [19, 26]. The numbers of tasks and robots are two crucial features in this

kind of problem. It is computationally very expensive to consider all possible combi-

nations of tasks and robots in order to find an optimal solution. Hence, approaches

based on metaheuristics are used to speed up the task-allocation process and maintain

their efficiency and scalability [8, 16,32,34,50].

Centralized approaches dealing with MRTA problems use a central robot that

communicates with the other robots and computes optimal allocations between the

robots and the tasks. Thus, the objective function is easily optimized as long as all

required information is available [9, 20]. Centralized approaches have several advan-

tages and disadvantages. Among their advantages: i) the objective function is easily

optimized; ii) the implementation is simple; and iii) the rates of communication are

greatly reduced. Among their drawbacks: i) handling real-world and large-scale sce-

narios is difficult [56]; ii) maintaining a permanent connection between the central

robot and other robots is quite hard; (iii) limited range of communications between

the central robot and other robots; iv) considerable load of calculations on the cen-

tral robot; and v) if the central robot fails, then the system will as well. Distributed

approaches overcome these disadvantages.

In distributed approaches, all robots execute the same allocation algorithm indi-

vidually and simultaneously. Usually, distributed methods adopt consensus steps in

order to ensure the convergence to a coherent allocation regardless of the used network

topology [48]. Consensus steps use additional computations, which can lead robots to

take a long time to converge to a coherent allocation – i.e., slowing the convergence of

these approaches [2]. Auction-based algorithms [5,29,42,53] are typically distributed

methods that have been adopted to solve MRTA problems. These algorithms are effi-

cient and produce suboptimal solutions [19]. In auction-based methods, robots place

bids on tasks based on the available information; the tasks are then assigned to robots

with the highest bids. The auctioneer (the central robot) may be one of the system’s

robots or any other central system [27,44]. In MRTA problems, there is usually a syn-

ergy between the tasks and the robots [58]; e.g., “we consider a set of tasks and

a robot. If the total cost of simultaneously allocating these tasks to the robot is less

than the sum of the individual allocation costs, then we have a positive synergy; con-

versely, we have a negative synergy.” We have three types of auction-based methods.

Single-round combinatorial auctions [55] put the tasks into groups and then calculate

the bids of each robot. These auctions can produce near-optimal allocations; however,



8 Farouq Zitouni, Saad Harous, Ramdane Maamri

their time complexity increases exponentially with the number of tasks. In sequen-

tial single-item auctions [38], only unassigned tasks are allocated during each round.

This process is repeated until all of the tasks are assigned. In sequential simultaneous

auctions [20], only one task is allocated to a robot at a time. A major limitation of

auction-based algorithms is the used network topology, as robots should communicate

with the auctioneer.

Market-based approaches [16] have been successfully applied to efficiently solve

many MRTA problems and find near-optimal solutions in a distributed manner.

Groups of robots cyclically trade tasks to minimize their costs. A cost is considered

when a robot visits a task location; this might be its energetic consumption, distance

traveled, or time to reach a target [28]. Auctions are commonly used in market-based

approaches to allocate tasks to robots [38]. The process is composed of several bidding

rounds in which the robots place bids on tasks. A robot that has placed a bid lower

than any other robot wins and is allocated to the considered task. The advantage of

using market-based approaches is that, when local costs are minimized, global costs

are minimized as well [16].

Choi, Brunet, and How [10] propose an algorithm called the Consensus-Based

Bundle Algorithm (CBBA), which combines two approaches (consensus and auctions)

in order to merge their advantages. In CBBA, the winning bid values are determined

using the consensus process. Zhao, Meng, and Chung [58] describe an algorithm called

PI, which is an improved extension of CBBA. This algorithm optimizes the objective

function of the considered problem and outperforms most of the developed algorithms

based on CBBA [6, 11, 13, 21, 24]. Its main idea is this: “a local contribution value is

calculated when a task is assigned to a robot, then the overall cost could be decreased

if these values satisfy certain constraints.” Both CBBA and PI algorithms are robust

with respect to the network topology used. However, they suffer from sub-optimality,

as greedy-based strategies are used in the task-inclusion phase, and they cannot han-

dle the dynamic rescheduling. Also, they are inefficient when communications are

unstable.

There are many papers that have proposed different solutions to MRTA prob-

lems [39, 57]. Agarwal, Kumar, and Vig [1] propose an application for solving the

problem of multi-objective coalition formation using the Pareto Archived Evolution

Strategy algorithm. This method is centralized and does not take dynamic scenar-

ios into account. Luo, Qin, and Lim [34] describe a dynamic rescheduling module

for the PI algorithm in order to permit real-time dynamic online rescheduling. This

work is quite inefficient, especially when new information arrives frequently. Zitouni

and Maamri [60] propose a solution that combines two algorithms: firefly algorithm

and Powerset. Zitouni and Maamri [59] describe a solution that combines quantum ge-

netic algorithms and reinforcement learning. Zitouni, Maamri, and Harous [61] present

a solution that combines three metaheuristics: firefly algorithms, quantum genetic al-

gorithms, and an artificial bee colony. These three approaches are inefficient when

communications are unstable. Lozenguez and his co-authors [33] combine clustering
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and Markov Decision Processes to allocate a set of exploration tasks to a group of

mobile robots. This method is centralized and does not take dynamic scenarios into

account.

3. Proposed solution

We propose an efficient solution for solving heavily constrained MRTA problems.

Section 3.1 presents a description of the problem. Section 3.2 shows the modified

mathematical formulation where energetic constraints are added. Section 3.3 describes

the proposed objective functions. Finally, the allocation methodology is explained in

Section 3.4.

3.1. Problem description

We deal with MRTA problems where each robot can perform only one task at a time

and some tasks require the cooperation of several robots for their accomplishment.

Also, we consider time-extended assignments where temporal constraints are ex-

pressed in the form of time windows. The found allocations respect the energetic,

spatial, and temporal constraints on the robots and tasks as well as optimize a given

objective function; e.g., minimizing the traveled distances.

We assume that we have a set of n robots B = {b1, . . . , bn} and a set of m

tasks T = {t1, . . . , tm}. When a task is available for allocation, it is announced to the

robots. Next, the robots cooperate to compute an allocation for this task. Finally, the

considered task is allocated to the appropriate robots. Table 1 summarizes the used

notations, variables, and symbols that we will use to explain our solution.

Table 1
Notations used in paper

Notation Meaning

vb Velocity of robot b

mb Mass of robot b

(xb, yb, zb) Coordinates of robot b

ab Altitude of robot b relative to ground

Eb
K Kinetic energy of robot b

Eb
P Potential energy of robot b

Ub Battery voltage of robot b

Ab Battery capacity of robot b

η Peukert’s exponent of robot batteries

Rb Battery hour-rating of robot b

Gb Gauge energy of robot battery

(xt, yt, zt) Coordinates of task t

DURt Duration of task t
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Table 1 (cont.)

Notation Meaning

ESt Earliest start time of task t

St Estimated start time of task t

LSt Latest start time of task t

EFt Earliest finish time of task t

Ft Estimated finish time of task t

LFt Latest finish time of task t

|A| Cardinality of set A

TT b
〈t1,t2〉 Time taken by robot b to move from task t1 to task t2

DEb
〈t1,t2〉 Energy consumed by robot b to move from task t1 to task t2

EEb
〈R,t〉

Energy consumed by robot b to perform task t. Symbol R expresses

relationship between b and t

where:

ab =
√

(zb)2 (1)

EbK = 0.5×mb × (vb)
2 (2)

EbP = 9.81×mb × ab (3)

TT b〈t1,t2〉 =

√
(xt2 − xt1)2 + (yt2 − yt1)2 + (zt2 − zt1)2

vb
(4)

3.2. Mathematical formulation of MRTA problems

If an MRTA problem is taken into account and we wish to allocate task t ∈ T to

robot b ∈ B, then it is quite natural to consider an allocation relationship between

them. Intuitively, this allocation relationship is expressed as follows: “b is capable of

doing t.” Actually, this relationship is directly linked to the chosen problem. In our

case, we chose to use sensors as the relationship between tasks and robots; i.e., the

tasks need sensors, and the robots offer them.

We suppose that we have a set of k sensors Ω = {ω1, . . . , ωk}. Set ℘(B) =

{{b1}, {b2}, . . . , {b1, . . . , bn}} represents all robot groups that can be formed from B.

Set Ωb ⊆ Ω represents the sensors of robot b. Set Ωt ⊆ Ω represents the sensors needed

by task t. In addition, we define indicator oC〈b,ω〉 ∈ {0, 1}, which means “if robot b ∈ C
offers sensor ω ∈ Ωb to group C ∈ ℘(B) \ ∅, then it takes a value of 1; otherwise, it

takes a value of 0.” Set ΩbC = {ω|oC〈b,ω〉 = 1} represents all sensors that b ∈ C offers

to C ∈ ℘(B) \ ∅ (ΩbC ⊆ Ωb). Therefore, we give the following corollary that expresses

the allocation relationship between a task and a robot group.
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Corollary 3.1 Given task t ∈ T and robot group C ∈ ℘(B)\∅, task t can be allocated

to robot group C if the following two conditions (expressed by Equations (5) and (6))

are simultaneously satisfied. ⋂
ΩbC = ∅ (5)

⋃
ΩbC = Ωt (6)

Equation (5) means that a given sensor could not be offered by two distinct robots

from the same group to the same task. Equation (6) means that all of the sensors

that a task needs should be offered by robots of the same group. Finally, we give

the modified mathematical formulation of the MRTA problems [41]. Equations (5)

and (6) are our contributions and express the energetic constraints.

We optimize a considered objective function f(.) subject to Equations (7)

through (17):

• Equation (7): “each task t is allocated to one robot group C” at most.

∀t ∈ T :
∑

C∈℘(B)\∅

sCt ≤ 1 (7)

• Equation (8): “if a task t is allocated to a robot group C, then all required sensors

must be available.”

∀t ∈ T∀C ∈ ℘(B) \ ∅ :
∑
b∈C

∑
ω∈Ωb

oC〈b,ω〉 = |Ωt| × sCt (8)

• Equation (9): “energy gauge of robot b is valid.”

∀b ∈ B : 0 ≤ Gb ≤ 100 (9)

• Equation (10): “starting time of task t is valid.”

∀t ∈ T : ESt ≤ St ≤ LSt (10)

• Equation (11): “finishing time of task t is valid.”

∀t ∈ T : EFt ≤ Ft ≤ LFt (11)

• Equation (12): “duration of task t is long enough.”

∀t ∈ T : (Ft − St) ≥ DURt (12)

• Equation (13): “moving time between two consecutive tasks is long enough.”

∀t, t′ ∈ T∀b ∈ B : St +DURt + TT b〈t,t′〉 −M × (1− db〈t,t′〉) ≤ St′ (13)
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• Equation (14): “robot energy needed to reach a given task and perform it is

enough. Symbol N is a threshold.”

∀t, t′ ∈ T∀b ∈ B : Gb −DEb〈t,t′〉 −
∑
ω∈Ωb

(DURt′ × oC〈b,ω〉 × EE
b
〈ω,t′〉)−

M ′ × (1− db〈t,t′〉) > N

(14)

• Equation (15): “indicates if robot b offers sensor ω to robot group C.”

∀b ∈ B∀C ∈ ℘(B) \ ∅ : oC〈b,ω〉 ∈ {0, 1} (15)

• Equation (16): “indicates if task t is allocated to robot group C.”

∀t ∈ T∀C ∈ ℘(B) \ ∅ : sCt ∈ {0, 1} (16)

• Equation (17): “indicates if robot b does task t then task t′.”

∀t, t′ ∈ T∀b ∈ B : db〈t,t′〉 ∈ {0, 1} (17)

3.3. Proposed objective functions

First, we present the formal definition of the nine applications that we will use to

define the proposed objective functions.

• The application defined by Equation (18) assigns a positive value to each robot

sensor, which represents its cost.

cost : (B,Ω) → R+

(b, ω) 7→
{
cost(b, ω), if ω ∈ Ωb

0, otherwise

(18)

• The application defined by Equation (19) assigns a positive value to each robot

sensor, which represents its working current.

workingcurrent : (B,Ω) → R+

(b, ω) 7→
{
workingcurrent(b, ω), if ω ∈ Ωb

0, otherwise

(19)

• The application defined by Equation (20) assigns a positive value to each sensor

needed by a task, which represents its reward.

reward : (T,Ω) → R+

(t, ω) 7→
{
reward(t, ω), if ω ∈ Ωt

0, otherwise

(20)
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• The application defined by Equation (21) assigns a positive value to each sensor

needed by a task, which represents its working duration.

workingduration : (T,Ω) → R+

(t, ω) 7→
{
workingduration(t, ω), if ω ∈ Ωt

0, otherwise

(21)

• The application defined by Equation (22) calculates the Euclidean distance sep-

arating two tasks.

distance : (T, T ) → R+

(t, t′) 7→
√

(xt − xt′)2 + (yt − yt′)2 + (zt − zt′)2
(22)

• The application defined by Equation (23) calculates the gain robot b will get

if it is allocated to task t′, knowing that b is already allocated to task t (γ is

a regularization parameter).

gain : (B,℘(B) \ ∅, T, T ) → R+

(b, C, t, t′) 7→ [
∑
ω∈ΩbC

reward(t′, ω)]× e−γ×(TT b〈t,t′〉)2 (23)

• The application defined by Equation (24) calculates the percentage of consumed

energy that robot b spends when it moves from task t to task t′.

moving : (B, T, T ) → R+

(b, t, t′) 7→ 100×
TT b〈t,t′〉×(

EbK+EbP
Ub

)η

Rb×(A
b

Rb
)η

(24)

• The application defined by Equation (25) calculates the percentage of consumed

energy that robot b spends when it uses its sensors to achieve task t.

sensor : (B, T,Ω) → R+

(b, t, ω) 7→ 100× DURt×workingduration(t,ω)×(workingcurrent(b,ω))η

Rb×(A
b

Rb
)η

(25)

• The application defined by Equation (26) calculates the rate of the offered sensors

of robot b to group C.

rate : (B,℘(B) \ ∅) → R+

(b, C) 7→ |ΩbC |
|Ωb|

(26)

Now, we give the formal definitions of the proposed objective functions. Coeffi-

cients α and β are used to accentuate the equation terms.
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• The objective function defined by Equation (27) is used to minimize the costs of

the tasks.

f1 : (B,℘(B) \ ∅, T, T ) → R+

(b, C, t, t′) 7→ (|C|)α ×
∑
b∈C [( gain(b,C,t,t′)

rate(b,C) )β
∑
ω∈ΩbC

cost(b, ω)]
(27)

• The objective function defined by Equation (28) is used to maximize the rewards

of the robots.

f2 : (B,℘(B) \ ∅, T, T ) → R+

(b, C, t, t′) 7→ ( 1
|C| )

α ×
∑
b∈C [( rate(b,C)

gain(b,C,t,t′) )β
∑
ω∈Ωt

′
C
reward(t′, ω)]

(28)

• The objective function defined by Equation (29) is used to maximize the benefits

of the robots.

f3 : (B,℘(B) \ ∅, T, T ) → R+

(b, C, t, t′) 7→ max(f2(b, C, t, t′)− f1(b, C, t, t′), 0)
(29)

• The objective function defined by Equation (30) is used to minimize the traveled

distances of the robots.

f4 : (B,℘(B) \ ∅, T, T ) → R+

(b, C, t, t′) 7→ (|C|)α ×
∑
b∈C [( gain(b,C,t,t′)

rate(b,C) )β × distance(t, t′)]
(30)

• The objective function defined by Equation (31) is used to minimize the travel

times of the robots.

f5 : (B,℘(B) \ ∅, T, T ) → R+

(b, C, t, t′) 7→ (|C|)α ×
∑
b∈C [( gain(b,C,t,t′)

rate(b,C) )β × TT b〈t,t′〉]
(31)

• The objective function defined by Equation (32) is used to minimize the consumed

energies of the robots.

f6 : (B,℘(B) \ ∅, T, T ) → R+

(b, C, t, t′) 7→
(|C|)α ×

∑
b∈C [( gain(b,C,t,t′)

rate(b,C) )β ×moving(b, t, t′)]

+(|C|)α ×
∑
b∈C [( gain(b,C,t,t′)

rate(b,C) )β
∑
ω∈ΩbC

sensor(b, t′, ω)]

(32)
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3.4. Allocation methodology

We suppose that we have an environment that contains some tasks to be allocated.

Also, some robots are distributed in the environment and should cooperate to achieve

the considered tasks. Each robot b has a list of neighbors Γb that contains close robots

(i.e., we say that a robot b is close to another robot b′ if the distance between them

is less than a given threshold). Therefore, the robots’ behaviors are summarized as

follows.

1. The robots move randomly in an environment and look for tasks to accomplish.

“The way of how tasks are discovered” is abstracted, as this is not the focus of

this research paper.

2. If a robot discovers a task, then it should determine the information about it; i.e.,

the position, time window, needed sensors, etc. Next, message “M1” is broadcast

to all robots to inform them about the availability of a task that needs to be

allocated.

3. When message “M1” is received, robot b should make sure that it is able to

perform considered task t. Therefore, robot b i) verifies whether it has the sensors

that are required by task t, ii) confirms whether it can reach the position of task

t before its latest start time, and iii) examines whether its energy is enough

to move to task t and achieve it. In summary, if conditions i), ii), and iii) are

simulataneously satisfied, then we say that robot b is able to perform task t.

Eventually, if robot b is able to perform task t, then message “M2” is broadcast

to its neighbors; otherwise, it broadcasts message “M3” to them.

4. Each robot counts the number of received “M2” messages and forms correspond-

ing group of robots Γ′b (Γ′b ⊆ Γb). Group Γ′b is composed of its neighbors that

are able to perform considered task t. It is worth pointing out that each robot b

belongs to its list of neighbors Γb.

5. When the Γ′b list is built, each robot b executes a genetic algorithm for task t as

follows:

Encoding scheme and initial population: an individual is composed of one

chromosome. Chromosome Φ represents a group of robots for the consid-

ered task, and its length is |Φ|; therefore, each gene corresponds to a sen-

sor. Besides, the gene values are strings: if the value of a gene is ⊥, then

it means that the corresponding sensor is not required by the considered

task; otherwise, we should find a robot name. This means that this robot

offers the corresponding sensor to the considered task. For example, if

we consider Ω = {ω1, ω2, ω3, ω4, ω5}, Ωt = {ω2, ω3, ω5}, Ωb1 = {ω1, ω2},
Ωb2 = {ω2, ω3, ω4} and Ωb3 = {ω3, ω4, ω5}, then one chromosome could

be encoded as Φ =[⊥, b1, b2,⊥, b3]; i.e., sensor ω1 is not needed by task t,

sensor ω2 is offered by robot b1, and so on. The initial population of

each robot b is composed of N individuals created from the Γ′b list; i.e.,

(b′ ∈ Φ)⇒ (b′ ∈ Γ′b).
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Fitness function: fitness function F (Φ) assigns a numerical value to each chro-

mosome that measures its quality. This value is used to sort and compare

the chromosomes. We use Equation (33) to calculate the fitness value of

a chromosome.

F (Φp) =
fi(Φp)∑N
q=1 fi(Φq)

, (33)

where Φp is the pth individual, N is the size of the population, and fi is

one of the objective functions defined by Equations (27) through (32). In

order to avoid the premature convergence and maintain a fairly constant

selective pressure, each objective value is then scaled using Equation (34)

“sigma truncation scaling [12]” as follows:

fi(Φp) =
fi(Φp)−

∑N
q=1 fi(Φq)

N − σ
σ

, (34)

where terms
∑N
q=1 fi(Φq)

N and σ are the average and standard deviation, re-

spectively.

Selection: each robot uses tournament selection to create a sub-population,

which is called the mating pool. To do this, i) k individuals are randomly

selected from the current population (e.g., k ≤ N
4 ) and ii) the individual

with the best fitness value is taken and inserted into the mating pool. The

remaining (k − 1) individuals are returned to the current population. This

process is repeated until the size of the mating pool reaches a given size N ′;

e.g., N ′ ≤ N
2 .

With this method, each robot ensures that bad individuals are not selected

and the best ones will not dominate. Actually, the value of k is directly

related to the selective pressure; i.e., a reasonable value would ensure a near-

-optimal solution [47].

Crossover: once the mating pool is created, each robot applies the crossover

operator. Its goal is to create individuals for the next population. Initially,

the next population contains individuals from the mating pool; the rest of

the individuals will be created using the crossover operator.

To do this, each robot b chooses two random robots b′ and b′′ from its list of

neighbors Γb and send them message “M4” to ask for an individual. When

message “M4” is received, robots b′ and b′′ select a random individual from

their respective mating pools and answer robot b. It is worth pointing out

that the following cases are allowed: b = b′, b = b′′, or b′ = b′′. When the

two individuals are received, each robot applies a uniform crossover [47] on

them to produce a new one. The principle of uniform crossover is shown in

Figure 2.
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Figure 2. Principle of uniform crossover operator

This process is repeated until the size of the next population becomes the

same as the current population. Henceforth, the next population becomes

the current one.

Mutation: the random initialization of the first population could sometimes

limit the good exploitation of the search space. We can avoid this problem

by using the mutation operator.

The mutation is applied as follows: each robot b chooses i) a random indi-

vidual from its current population and ii) a random robot b′ from its list of

neighbors Γb. Then, robot b sends message “M5” to robot b′. When message

“M5” is received, robot b′ also selects a random individual from its current

population and swaps it with robot b.

6. When all robots finish the execution of their genetic algorithm, each determines

its local best allocation and sends a reply message to the robot that sent message

“M1.”

7. When all local best allocations are received, the robot having initiated the allo-

cation request determines the best global allocation and notifies all robots about

its decision.

8. Finally, the robots concerned with the global best allocation should move to reach

the position of the considered task.

9. Steps 1 through 9 are repeated for each discovered task.

4. Simulation and result discussion

We evaluate the performance of our solution by comparing it to two state-of-the-art

solutions [53]. Wei, Hindriks, and Jonker [53] propose two acceptable solutions to

the MRTA problem in a foraging field where some robots’ groups are requested to i)

search for targets (i.e., tasks) in an environment and ii) retrieve them and take back

to a home base.

The first solution of [53] presents an auction-based approach extended from

sequential-single-item (SSI) auctions. It has been shown that SSIs can provide a good

compromise between computational complexity and solution quality if the set of tasks

is initially known [25,28]. The first solution is abbreviated “AUCTION.” The second

solution in [53] provides a prediction approach where each robot should predict the

decisions of the other robots about task allocation without using auctions or nego-

tiations. The second solution is abbreviated “PREDICTION.” Finally, the solution

proposed in this paper is abbreviated “DistMRTA.”
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We carry out an experimental study (simulation) to compare the performance

of “AUCTION,” “PREDICTION,” and “DistMRTA” in terms of completion time.

The following parameters are taken into account: i) size of environment; ii) size of

robot groups; and iii) initial robot positions. Table 2 shows the different experimental

configurations used to perform the comparison.

Table 2
Experimental configurations used for comparison.

Solutions Size of the environment Size of robots’ groups Initial robots’ positions

AUCTION,PREDICTION,DistMRTA SMALL,LARGE 1,5,10 CLOSE,DISPERSAL

We use two environments: “SMALL” or “LARGE” (i.e., size of the environment).

All solutions were tested with one, five, and ten robots. We use two alternatives

for robot deployment: all robots are initially in the same place (i.e., “CLOSE”) or

are dispersed in the “DISPERSAL” environment. The goal of the simulations is to

accomplish ten tasks that are in the environment; their locations are set randomly.

To compare “AUCTION,” “PREDICTION,” and “DistMRTA” performance, we

use completion time as an evaluation criterion. Each configuration 〈solutions, size of

the environment, size of robot groups, Initial robot positions, number of tasks 〉 was

run 50 times in order to reduce the variance and filter noise effects in our experiments.

Figure 3 shows the results of the comparative study.

Figure 3. Completion time for comparative study
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In the first case (i.e., one robot), we observe that the completion time of all

tasks is almost the same because no workload is shared between robots. It is worth

mentioning here that the execution time of the robot programs might also influence

this criterion. However, it is clear that “DistMRTA” gives the best performance when

compared to “AUCTION” and “PREDICTION.”

In the remaining cases (i.e., five and ten robots), we observe that “DistMRTA”

gives the best completion time, followed by “PREDICTION” and finally by “AUC-

TION.” This is clearly visible when the size of the environment is “LARGE”: the

completion time of “PREDICTION” and “AUCTION” are nearly twice and thrice as

long, respectively. These trends are explained as follows:

1. In “AUCTION,” the auctioneer should consider all of the robots’ bids in a round

then determine the winners. Obviously, the completion time increases with

the number of robots. However, the completion time constantly decreases in

“DistMRTA” because the number of bids diminishes; e.g., a robot performing

a task cannot submit a bid on a new one because its energy is not enough to

move to a new task.

2. In “PREDICTION,” a robot is prohibited from submitting a bid on a new task

if it is currently allocated to another one. Actually, this is not optimal, especially

in the case when the tasks are critical. However, a robot can submit a bid on

a new task in “DistMRTA” even when it is currently carrying out another one;

e.g., a robot performing a task that will finish soon can submit a bid on a new

one.

Finally, we find out that the initial robot deployment is directly related to the

size of the environment and number of robots (and consequently to the completion

time of all tasks). As a conclusion, the initial robot deployment is very important in

MRTA problems.

5. Conclusion and perspectives

We dealt with MRTA problems that considered spatial, temporal, and energetic con-

straints. A distributed solution based on parallel distributed guided genetic algorithms

is proposed for allocating tasks to some group of robots. Six objective functions that

express spatial temporal and energetic constraints have been proposed and exten-

sively discussed. A well-known mathematical formulation of MRTA problems [41] is

modified, and two equations that express energetic constraints have been proposed

and explained. Finally, we compared our solution to the two state-of-the-art solu-

tions described in [53]. The simulation result of our solution outperforms this pair

of approaches in terms of completion time. In the case when we utilized ten robots,

our solution improved the completion time of the two methods by 50 and 67%, re-

spectively. In the future, we plan to use real robots to assess the performance of our

solution.
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