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OBJECT POSE ESTIMATION
IN MONOCULAR IMAGE
USING MODIFIED FDCM

Abstract In this paper, a new method for multi-object detection and pose estimation in a monoc-
ular image is proposed based on the FDCM method. This method can detect an object
with a high-speed running time even if the object was under partial occlusion or bad
illumination. Additionally, it only requires a single template without any training
process. In this paper, a new method (MFDCM) for 3D multi-object pose estimation
in a monocular image is proposed, which is based on the FDCM method with major
performance improvements in accuracy and running time. These improvements were
achieved by using the LSD method instead of a simple edge detector (Canny detector),
using an angular Voronoi diagram instead of calculating the 3D distance transform
image, a distance transform image, and an integral distance transform image at each
orientation. In addition, the search process in the proposed method depends on a line
segment-based search instead of the sliding window search in the FDCM. As a result,
the proposed method is more robust and much faster than the FDCM method, and
the position, scale, and rotation are invariant. In addition, the proposed method was
evaluated and compared to different methods (COF, HALCON, LINE2D, and BOLD)
using a D-textureless dataset. The comparison results show that the MFDCM has
the highest score among all of the tested methods (with a slight advantage from the
COF and BLOD methods) while it was a little slower than LINE2D (which was the
fasted method among the compared methods). Furthermore, it was at least 14-times
faster than the FDCM in the tested scenarios. The results prove that the MFDCM
is able to detect and 3D pose estimate of object in a clear or clustered background
from a monocular image with a high-speed running time, even if the objects are under
partial occlusion; this makes it robust and reliable for real-time applications.
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1. Introduction

In many industrial application cases, the accuracy and automation level would be

significantly improved if the objects were robustly detected and pose estimated using

a monocular image.

Although there has been much research in the 3D object pose-estimation field,

the problem of robustly recognizing and pose estimating a textured or untextured 3D

object in a clustered scene from a monocular image in a reasonable amount of time

is still unsolved. Besides, most of the previously proposed methods depend on two

or more cameras or RGBD cameras, which are difficult to use because they are too

expensive, the calibration process for multi-camera system is too complex, or the size

of the equipment is too large.

In this paper, a new method is presented to detect and 3D pose estimate multi-

objects in a monocular image that is based on the FDCM method with effective

modifications.

To evaluate the proposed method, it was compared to the FDCM [21] in

a clustered background and under partial occlusion. It was also compared to the

COF [20], HALCON [31], LINE2D [11], and BOLD [33] methods using a D-textureless

dataset [33] consisting of 9 different objects (with a total of 54 images for all objects).

The objects appeared in different rotation angles with scale variants and while fea-

turing cluttered backgrounds and occlusions.

2. Related works

Many methods for 3D object pose estimation from monocular images have previously

been proposed. They can be classified into main groups, which are view-based meth-

ods, template-based methods, feature-based methods, and descriptor-based methods.

In view-based methods, the comparison result among precomputed 2D views of

the object and the query image defines the position of the object. To accelerate the

running time in these methods, the similar viewpoints will be merged [15, 17, 24,

28, 36]. Some of the view-based methods fixed the distance between the camera and

the object (like the object exists on a table or conveyor belt) with a known constant

distance from the camera. This leads to a reduction in the search space [34, 35].

The template-based methods depend on template-matching methods to de-

tect and pose estimate an object in a monocular image [3, 11–13, 22, 23, 27, 29, 32, 37].

These use whole 2D projection images from various viewpoints, as their model tem-

plates successfully deals with textureless objects. However, they suffer from speed

degradation when the numbers of templates are increased for covering a wider range

of 3D object posing.

Some of the existing methods reduce the search space to a planar object scenario

with scale and small affine transformation; in this case, they depend on contour-

matching methods and contour descriptors to detect and pose estimate [7, 8, 16, 25,

30, 38, 39, 41].
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The feature-based methods used feature-matching techniques between the

query image and 3D object features, which are called feature-based methods

[1, 5, 20, 26, 40]. By using the corresponding points of an extracted feature (like

the gray value, edges, or the intersections of straight lines), the position of the object

in 3D space is estimated. They must deal with a large number of corresponding points

between the image features and the object features. In addition, the clustered scene

will increase the number of extracted features rapidly and, thus, the search space and

consumed time.

In descriptor-based methods, the artificial views of an object are created and

used to train the classifier, which is used to detect and pose estimate the object

in a query image by corresponding the process between the object descriptors and

the descriptors derived from the query image [4, 9, 12, 14, 15, 19, 20, 24, 43]. The

descriptor-based methods have a great advantage (which is outstanding performance

in several scenarios), but they are restricted to the recognition of textured objects,

as only then can meaningful descriptors be determined (while most of the industrial

objects are untextured).

Besides the previous groups, recent methods have been used to detect and 6DOF

pose estimate textureless objects in a monocular image [2, 6, 18, 42]; they use a convo-

lutional neural network to detect and pose estimate. They provide high performance

even if the object feature a clustered background or was under partial occlusion, but

these methods need a training process that takes a long time.

3. Background and notations

3.1. FDCM

The DCM cost can be calculated based on the distance and direction of the edges

between the query image and template as follows [14, 21]:

dDCM (U, V ) =
1

n
min
vj∈V

(|ui − vj |+ λ|φ(ui)− φ(vi)|), (1)

where U = {ui} and V = {vj} are be the template sets and the query image edge

maps respectively, the chamfer distance between U and V is given by the average

of distances between each point ui ∈ U and its nearest edge in V , n = |U | and λ

weighting factors, and φ(x) means the edge direction at x.

To increase the speed of the matching process in the DCM, the directions of the

edges will be quantized into k directions and using distance transform to simplify

the calculation. Besides, a sliding window is used, and chamfer distance dDCM is

calculated at each window position. If the chamfer distance value is less than the

thresholding value, then the current sliding window position will be stored as a de-

tected target object in the query image [14, 21].

The FDCM has some improvements from the DCM (as follows): Line Segments:

In the FDCM, to approximate the template and the query edge image to the line
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segments, the RANSAC line-fitting method was used. Integral Distance Transform:

Figure 1 describes the distance transform calculation steps in the DCM and FDCM

as follows:

1) Line Segments: In the FDCM, to approximate the template and the query edge

image to the line segments, the RANSAC line-fitting method was used.

2) Integral Distance Transform: Figure 1 describes the distance transform calcula-

tion steps in the DCM and FDCM as follows:

• Depending on its direction, the edges in the image are grouped into k direc-

tions as shown in Figure 1b.

• For each orientation, the corresponding 2D distance transform is calculated

– Figure 1c.

• By using orientation cost, the distance transform is updated – Figure 1d.

• The final step is computing the integral distance transform for each ori-

entation as shown in Figure 1e, then the dDCM cost can be calculated as

follows:

dDCM (U, V ) =
1

n

∑
lj?Lu

|IDT3v(ej .φj)− IDT3v(sj .φj)| (2)

Figure 1. Steps of distance transform calculation using DCM and FDCM [21]

3) Region Search Optimization: To accelerate the searching process, the FDCM

suggests that, if the chamfer distance cost at the current location is much larger

than the thresholding value of the target object, then the nearby regions could

be skipped. As a result, the search process will be greatly accelerated [21].

Although the FDCM is much faster than the DCM, it still has increased con-

suming time and cannot be used in real-time applications because it still has two

time-consuming steps (the line fitting and distance transform).

In this paper, the FDCM was improved by modifying some steps and used to

detect and pose estimate an untextured object in a monocular image based on its

single template image.
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4. Modified FDCM

Although the FDCM has many advantages over the DCM, it still has large consuming

time and cannot be used in real-time applications. In this paper, the FDCM was

modified and used to detect and pose estimate the object in a monocular image using

a single template image.

In this paper, the FDCM was modified and improved using the following steps.

4.1. Replace the line fitting method

In the FDCM method, the line-fitting stage consists of the following steps [21]:

1) Detect edges in image using canny detector.

2) Several points and their orientation will be selected randomly from edge image

to define lines.

3) Support for each edge includes its points that close to line are closed and con-

nected to these points.

4) Line segment that has greatest support will be stored if it has enough points.

5) Repeat 1)–4) until there are not enough points to support any new line.

In previous steps, the edge-detection process generates lines randomly with a low

probability of finding strong support. This causes many false attempts, which is very

time-consuming.

In the proposed method, a line segment detector (LSD) [10] for edge extraction

is used because it is faster and more robust than a normal edge detector (Canny edge

detector).

4.2. Angular Voronoi diagram

The continuous angle is quantified into k discrete orientations. In each orientation,

a distance transform image, a 3D distance transform image, and an integral distance

transform image are calculated. So 3 · k times pixel traversal of the query image is

required. The author of FDCM suggests that 60 orientations are sufficient. However,

180 times pixel traversal is very time-consuming. In addition, the angle discretization

will lose some angle accuracy [21].

In the proposed method, this step was replaced by calculating the Voronoi di-

agram. The angle of a pixel is assigned by the inclination angle of its closest line

segment, and each angle value will be represented by different-colored regions as

shown in Figure 2c.

The chamfer distance in the proposed method between the template and point

set in the query image can be computed using the 2D distance transform tensor and

angular cost as follows:

dDCM (U, V ) =
1

n

∑
lj∈Lu

∑
pi∈lj

[DT (pi) + λ|φj − V D(pi)|], (3)
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where pi is the ith point from line lj , φj the orientation of lj , and DT and VD the

distance transform image and Voronoi image, respectively. Only two tensors are

necessary. By using the previous step, the proposed method is k · 3/2 times faster

than the FDCM.

a) b)

c)

Figure 2. Distance transform and angular Voronoi diagram: a) original image; b) distance

transform; c) Voronoi diagram

4.3. Line-based matching

In the DCM method, the search process was very time-consuming; for an r · c query

image with k directions, there are r · c · k candidate locations (which could number

in the millions). Despite the fact that the FDCM reduces this number by skipping

some nearby regions, it is still very large.

In the proposed method, searching for the target object in the query image

consists of the following steps:

1) The extracted lines from the template image and the query image by using the

line segment detector will be stored and sorted from long to short, respectively.

2) For each sorted line in the query image, the template lines are scaled and rotated

as the longest template line segment is aligned with the tested line in the query

image.

3) Then, the cost is calculated between the template and the current position in the

query image to decide whether there is a target in the current location.
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4) If no target is found using the longest line segment, a new search begins using

the second-longest line segment in the template image.

5) The process will continue to the fifth-longest line segment.

By using the previous steps, the number of tested locations drops from the mil-

lions to the thousands in addition to making the proposed method scale- and rotation-

invariant.

Although the running time of the proposed method depends on the complexity

of the background, it still much faster than the FDCM and DCM (even with clustered

background scenarios).

The difference between the proposed method (MFDCM) and original method

(FDCM) [21] can be summarized with the following points:

• Edge detector (Canny detector) in the FDCM was replaced by a line segment

detector (LSD), which allows the proposed method to detect edges faster and

more robustly than with a normal edge detector.

• In the FDCM method’s 3D distance transform image, a distance transform image

and integral distance transform image at each orientation should be calculated

(which is very time-consuming), while in the MFDCM, this step was replaced by

calculating the Voronoi diagram (which makes the MFDCM more accurate and

much faster than the FDCM).

• To make proposed method (MFDCM) position, scale, and rotation invariant

with high-speed running time, the line-based matching method was used instead

of sliding window method.

5. Object pose estimation using MFDCM

To detect and pose estimate the object using the MFDCM method, only the template

image from the top viewpoint is needed as illustrated in Figure 3b. As a result, the

coordinates of the object’s center and rotation angle are calculated as illustrated in

Figure 3a.

a) b)

Figure 3. Distance transform and angular Voronoi diagram: a) pose estimation using

MFDCM; b) template image
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6. Results and discussion

To evaluate the proposed method, we compared our method with the FDCM using

its code provided by the author [21] in an unclustered black background as well as

a clustered background using a computer with Windows 7 46 bit, core i5, and 6 Gbytes

memory. Table 1 shows a comparison of the results in the planer object with a black

background as shown in Figure 4 and Figure 5.

Table 1
Consumed time in black background scenario

Consumed Time (ms)

Algorithm Line Fitting Distance Transform Matching Total

FDCM 70.25 52.32 20.67 143.24

Proposed(MFDCM) 3.25 3.5 2.19 8.94

a) b)

Figure 4. Object 1 with black background: a) detected object; b) angular Voronoi diagram

a) b)

Figure 5. Object 2 with black background: a) detected object; b) angular Voronoi diagram
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Table 2 shows a comparison of the results in the planar object with a clustered

background and under partial occlusion as shown in Figure 6 and Figure 7.

Table 2
Consumed time with clustered background and under partial occlusion scenario

Consumed Time [ms]

Algorithm Line Fitting Distance Transform Matching Total

FDCM 74.27 59.51 30.63 164.41

Proposed (MFDCM) 2.18 4.6 4.57 11.35

a) b)

Figure 6. Object 2 with clustered background and under partial occlusion: a) detected

object; b) angular Voronoi diagram

a) b)

Figure 7. Object 2 with very clustered background and under partial occlusion: a) detected

object; b) angular Voronoi diagram
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By comparing the consumed time of our proposed method (the MFDCM with

Scale-Invariant) with the FDCM in each scenario (black background and clustered

background), our method can detect and pose an estimation of a textured and untex-

tured object approximately 14 times faster than the FDCM in both scenarios.

In addition, the proposed method was compared with the other four meth-

ods (the COF [20], HALCON [31], LINE2D [11], and BOLD [33] methods) using

a D-textureless dataset [33] on the same PC (Core i5 2.4GHz, 6 GB RAM). The

D-Textureless Dataset contains 54 images of 9 kinds of texture-less objects such as

spanners and nippers; these appeared in various rotation angles and scales under

cluttered backgrounds and occlusions. Examples of the detection results based on the

MFDCM are presented in Figure 8 and Figure 9.

Table 3 shows the score and processing time when the false positives per image

(FPPI) is 1. From a comparison of the results, the MFDCM (proposed) has the

highest correct detection rate among all of the tested methods (with a small advantage

over the COF and BLOD methods), while it outperformed LINE2D and HALCON.

The MFDCM was a little slower than LINE2D (which was the fastest among the

compared methods), and the MFDCM was much faster than BLOD and HALCON.

According to the previous results, the MFDCM shows top-class performance in speed

and accuracy.

Figure 8. Example of pose estimation results on D-Textureless dataset
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Figure 9. Example of pose estimation results on D-Textureless dataset. These were marked

using green lines

Table 3
Consumed time in black background scenario

HALCON

[31]

LINE2D

[11]

BOLD

[33]

COF

[20]

MFDCM

(Proposed)

DR [%] 45.8 51.0 85.1 85.8 89.4

Time [ms] 380.5 47.8 177.9 53.9 51.2
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Our proposed method (MFDCM) requires no training process – it only needs

a template image and a global chamfer distance thresholding value. The proposed

method can detect and pose estimate textured and untextured objects in a clear or

cluttered background under partial occlusion and bad illumination with a fast running

speed (approximately 40 fps), which allows the proposed methods to be used robustly

in real-time applications.

7. Conclusion

In this paper, a robust and fast method for object 3D pose estimation in a monocular

image was presented. It only requires a template image without any preprocessing

steps.

The proposed method was faster than FDCM and more robustness because of

major improvements achieved by following steps:

• Replacing Edge detector (Canny detector) with line segment detector (LSD),

which allows the proposed method to detect edges faster and more robustly than

with a normal edge detector.

• Using Voronoi diagram instead of calculating the integral distance transform at

each orientation.

• Using the line-based matching method in the searching step instead of the sliding

window method.

These improvements make the proposed method position, scale, and rotation

invariant with high-speed running time, as the two most time-consuming steps in the

FDCM method were simplified and accelerated.

Additionally, by comparing the proposed method with the COF, HALCON,

LINE2D, and BOLD methods, it has the highest detection score among all of the

tested methods (with a small advantage over the COF and BLOD methods), while it

was a little slower than LINE2D the which was fasted among the compared methods).

The experimental results show that the proposed method is able to detect and

pose estimate textured and untextured objects in a clear or clustered background

from a monocular image with high-speed running time, even if the object is under

partial occlusion or bad illumination; this makes the proposed method robust and

reliable for real-time applications.
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