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Abstract In this article, we introduce a new static analysis for numerical accuracy. We

address the problem of determining the minimal accuracy on the inputs and on

the intermediary results of a program containing floating-point computations

in order to ensure the desired accuracy of the outputs. The main approach is

to combine a forward and backward static analysis, done by abstract interpre-

tation. The backward analysis computes the minimal accuracy needed for the

inputs and intermediary results of the program in order to ensure the desired

accuracy of the results (as specified by the user). In practice, the informa-

tion collected by our analysis may help optimize the formats used to represent

the values stored in the variables of the program or to select the appropriate

sensors. To illustrate our analysis, we have shown a prototype example with

experimental results.
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1. Introduction

Numerical accuracy is a critical point in safe computations when it comes to floating-

point programs. Given a certain accuracy for the inputs of a program, the static

analysis computes a safe approximation of the accuracy on the outputs. This accuracy

depends on the propagation of the errors on the data and on the round-off errors on

the arithmetic operations performed during the execution.

In programs with floating-point computations, it is demanding to have numerical

accuracy in the results. Our approach is to combine a forward and a backward static

analysis, done by abstract interpretation. The forward analysis is a classical approach

where the errors on the inputs and on the results of the intermediary operations are

safely propagated to determine the accuracy of the results. Based on the results of

the forward analysis and on assertions indicating the accuracy required by the user

for the outputs at the end of the execution, the backward analysis will be carried

out. Backward analysis computes the minimal accuracy needed for the inputs and

intermediary results of the program in order to satisfy the assertions made. In order

to refine the results until a fixed-point is reached, the forward analyses and backward

analyses can be applied repeatedly.

Such static analysis are useful in several safety critical contexts. Here we use

our analysis as a general case which can be applied in many of the safety critical

applications. For instance, the explosion of the rocket-Ariane 5 [1], owing to a software

error in the inertial reference system. Specifically, a 64-bit floating-point number was

converted to a 16 bit signed integer which was larger than 32,767, the largest integer

in a 16 bit signed integer, and that lead to the failure. Another instance was Patriot

Missile [17] failed in detecting and intercepting an incoming Iraqi Scud missile and

killing 18 American army men during the Gulf war. The cause of the incident was an

inaccurate calculation of the time due to computer arithmetic errors.

Technically, we use abstract values written [a, b]p where a and b are floating-point

numbers defining an interval and p is an integer giving the accuracy. Intuitively, [a, b]p
is the set of numbers between a and b which have at least p correct digits.

2. Background

Abstract interpretation(AI) [7] is a theory of approximation in the field of semantics-

based program data flow analysis. The program execution is imitated by AI by ab-

stracting the possibles paths/states and then execute the abstraction of the program.

These abstractions are referred as abstract domain. To reach a fixed point, AI uses

ordering on abstract values. Top value represents all possible values and is denoted

as >. Some times it may take many iterations to reach a fixed point, for speeding

up this process AI uses widening operation [4] using the widening operator denoted

as 5.

Interval is considered the basic integer abstract domain. Figure 1 shows the

mapping of integers to the interval abstract domain. The abstract interpretation of
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of an integer expression is negative, positive or zero. The abstract domain which is

interval is sign interval. Interval domains represents the minimum and the maximum

number of closed interval. Interval domain is useful in many cases where the program

is usually bounded by some minimum and maximum. Consider a loop, the iterated

variable is initialized to minimum or maximum value at the entry of the loop and

until a maximum or minimum value is reached it is incremented or decremented.

Figure 1. Abstract interpretation: a lattice model for integers

There are many eminent scientists who work in this area. Abstract analysis on

floating-point computations lead to precision loss [14]. Goubault in this paper points

out that a wrong estimate of precision can be very expensive in safety critical applica-

tions. IEEE standard [15] gives the specifications for floating-point numbers. It also

gives a guidelines for floating-point arithmetic. The different aspects of floating-point

programs, the impact of this representation in computer programs and the representa-

tions and rounding errors is discussed in [13]. By showing various examples, Goldberg

concluded that how the computer builders can support floating-point in an efficient

way. Patrick Cousot and Radhia Cousot [5, 6] have concluded that the abstract in-

terpretation provides the theory of approximation related to the automate formal

methods. Titolo et al. [19] have presented a framework of abstract interpretation

for analysis of round-off errors in floating-point programs. A sound approximation is

done for the error accumulated over different floating-point computation path.

3. Related works

Floating-point programs can use abstract domains to set bounds on the ranges of

variables. One of the main work in this area is the tool Fluctuat [10] which quantifies

the round-off errors. For range computations, Gappa tool [11] generates a proof

checkable by interactive theorem prover.

Precimonious [18], a program analysis tool developed by Rubio-Gonzales et al for

tuning the precision of floating-point programs. It recommends a type configuration
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for program variables to improve the performance in floating-point programs. It also

evaluated various numerical programs to show the effectiveness.

FPTuner [3] uses the formal analysis via Symbolic Taylor Expansions, and error

analysis based on interval functions to approach precision. It generates and solves

a quadratically constrained quadratic program to obtain a precision-annotated version

of a given expression.

In the paper [9], Darulova et al presents a programming model where a compila-

tion algorithm that generates a finite-precision implementation that is guaranteed to

meet the desired precision with respect to real numbers.

In our approach, we determine the minimal accuracy required for the inputs to

achieve a certain level of accuracy in precisions in the results and the intermediary

operations.

4. Abstract semantics

4.1. Abstract domain

Let βp be the set of all binary representations of floating-point numbers with mantissa

of length p. Basically an element x ∈ βp is defined by the following representation:

x = ±b0.b1b2 . . . bp × 2e

where b0, b1, ...bp is the mantissa, p ∈ N and exponent range of floating-point e ∈
[emin, emax] [15].

Following the IEEE754 Standard [15], in the binary 64 format, we have 52 + 1

bits of mantissa, emin = −1022 and emax = +1023. Also we define:

β =
⋃
p∈N

βp

where βp is a set of all floating-point numbers with different length.

The IEEE754 Standard also defines some rounding modes [15], towards +∞
(rounding up or ceiling), −∞ (rounding down or floor), 0 (directed rounding towards

zero) and to the nearest (if the number falls midway, it is rounded to the nearest

value with an even least significant digit). Consider a normal float value 12.5, the

different rounding modes results as 13.0, 12.0, 12.0, 12.0/13.0(ties to even/ties away

from zero) respectively. Let us write ◦p,+∞, ◦p,−∞, ◦p,0 and ◦p,∼ the rounding func-

tions which round arbitrary numbers to numbers in precision p following the desired

mode. The IEEE754 Standard defines the semantics of the elementary operations by:

x~p,r y = ◦p,r(x ∗ y)

where ~p,r denotes floating-point operations (such as +, −, × or ÷) computed using

the rounding mode r and precision p and where ∗ denotes an exact operation.
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Let Ip be the set of all intervals for floating-point numbers with a specific precision

p. An element i] ∈ Ip, denoted i] = [f1, f2][p], is defined by two floating-point numbers

and a mantissa length p. We have:

Ip 3 [f1, f2]p = {f ∈ βp : f1 ≤ f ≤ f2} and I =
⋃
p∈N

Ip

Our abstract domain is 〈I,v,t,u,⊥I ,>I〉. The elements are ordered by:

[a, b]p v [c, d]q ⇐⇒ [a, b] ⊆ [c, d] and p ≤ q

where p and q and precisions of the intervals [a, b] and [c, d] respectively. In other

words, [a, b]p is more precise than [c, d]q if it is a smaller interval with a greater

accuracy.

The least upper bound and greatest lower bound [12] is referred as join (t) and

meet (u) operations and are defined by:

[a, b]p t [c, d]q = [◦r,−∞(u), ◦r,+∞(v)]r

with r = min {p, q}, [u, v] = [a, b] ∪ [c, d]

and

[a, b]p u [c, d]q = [u, v]r

with r = max {p, q}, [u, v] = [a, b] ∩ [c, d]

In addition, we have:

⊥I = ∅+∞ and >I = [−∞,+∞]0

where ⊥ is the least element referred as bottom and > is the greatest element referred

as top.

We define α : ℘(β) → I, the abstraction function such as for a set of floating-

-point numbers B with different precisions pi, 1 ≤ i ≤ n, we associate a value of I.

Let xmin = min(B), xmax = max(B) and p = min {q : x ∈ B and x ∈ βq} the

minimal precision in B. In other words, we have:

α(B) = [◦p,−∞
(

min(B)
)
, ◦p,+∞

(
max(B)

)
]p

where p = min {q : B ∩ βq 6= ∅}
(1)

Consider the example, where we take four floating-point numbers 2.25, 2.5, 2.875,

2.890625 with 4, 5, 6 and 7 bits of accuracy, respectively. We have:

B = {2.254, 2.55, 2.8756, 2.8906257}
min(B) = 2.25, max(B) = 2.890625 (2)

and

α(B) = [2.25, 3.0]4

The minimal accuracy is 4, ◦4,−∞(2.25) = 2.25 and ◦4,+∞(2.890625) = 3.0.
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Let γ : I → ℘(β), is the inverse of α and i] = [a, b]p. The concretization function

γ(i]) is defined as:

γ(i]) =
⋃
q≥p

{x ∈ βq : a ≤ x ≤ q} (3)

Let us consider the following example of equation (2) with floating-point interval with

their binary representation: [2.25, 2.890625]6. Here:

i] = [2.25, 2.891]6

γ(i]) can be represented as:

2.256 → 0 10000000 001000

2.56 → 0 10000000 100000

2.756 → 0 10000000 001100

...

Finally, using the functions of equations (1) and (3), we define the Galois con-

nexion [8] as:

〈B,⊆,∪,∩,⊥B ,>B〉 −−−→←−−−α
γ
〈I,v,t,u,⊥I ,>I〉 (4)

4.2. Transfer functions

In this section, we introduce the rules that compute the precision of the nodes in

a computation tree. Every program we write can be represented as control flow

diagram (CFG) which depicts the program point and the state of the variables in the

program at each control point. Using the CFG we can analyze the static behaviour of

the program. Each control point can be considered as a node. There can be forward

analysis or backward analysis or both can be done on the CFG. If we take a program

point p, in a forward analysis taking into account the nodes which were preceding

we can conclude the behaviour of the node at program point p. And in backward

analysis we try to reason the facts from p to reach successors. There are two classes of

transfer functions. We use the first for forward analysis and the second for backward

analysis. For each class, we give the transfer function for the two basic operations:

addition and multiplication.

4.2.1. Transfer functions for forward analysis

A forward analysis is one that for each program point computes information about

the past behavior.
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Transfer function for addition in forward analysis. Consider the addition of two

intervals x = [a, b]p1 and y = [c, d]p2 with a = s1·m1·2e1 , b = s′1·m′1·2e
′
1 , c = s2·m2·2e2

and d = s′2 ·m′2 · 2e
′
2 .

In the forward analysis, in order to estimate the precision for the result z = x+y

we take different cases. Let d = e2 − e1.

p =


min(p1, p2), if e1 = e2

min(p1 − 1, p2 + d− 1), if e1 > e2

min(p1 + d− 1, p2), if e1 < e2

Transfer function for multiplication in forward analysis. Consider the multiplication

of two intervals x = [a, b]p1 and y = [c, d]p2 with a = s1 ·m1 · 2e1 , b = s′1 ·m′1 · 2e
′
1 ,

c = s2 · m2 · 2e2 and d = s′2 · m′2 · 2e
′
2 . The resultant zp′ whose precision p′ is

estimated as:

p′ =
{
min(p1, p2)− 1, for all e1e2 cases

4.2.2. Transfer functions for backward analysis

A backward analysis is one that for each program point computes information about

the future behavior. Here, the addition and multiplication transfer functions will be

the same as that of the forward analysis. Only the computations are done in the

reverse order and we come to the minimal accuracy that is required for the inputs to

achieve an asserted precision for the final result.

Units in first place. In the numerical analysis, the accuracy of a result is sometimes

measured by the “unit in the last place (ulp)”. Sometimes delicate error estimations

in the ulp-concept have the drawback that it depends on the floating-point format

and needs extra care in the underflow range [16]. So we use “unit in the first place”

(ufp) or leading bit of a real number by:

0 6= r ∈ R ⇒ ufp(r) = 2log2brc

Consider xp and yq, where x and y are two floating-point numbers with p and q

precision accuracy respectively. While adding we get result rpr as follows:

rpr = xp + yq

Let εx and εy be the error in the float-number x and y respectively. That is:

εx ≤ 2i−p and εy ≤ 2j−q

where i = ufp(x) and j = ufp(y). We can find the error in result as:

εr = εx + εy
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Precision of the the result can be obtained as (see Fig. 2):

pr = ufp(r)− ufp(εr)

Figure 2. Precision of the result mapped using ufp

We take the same operands xp and yq to get the product rpr. That is:

rpr = xp × yq (5)

The error of x and y is represented as εx and εy and the resultant error is calculated

as εr. Here we calculate the error in the result as:

εr = (εx × y) + (εy × x) + (εx εy)

The precision in the result can be calculated as (see Fig. 2):

pr = ufp(r)− ufp(εr)

Using the result and one of the operands of the addition in forward analysis, we

do backward analysis and get the other operand. So we will take the operand(yq) and

result(rpr) from equation (5) to reach xp as follows:

xp = rpr − yq

The error and ufp can be calculated as follows:

1
2 ufp(x) ≤ εx ≤ ufp(x) (6)

1
2 ufp(y) ≤ εy ≤ ufp(y) (7)

Combining the equations (6) and (7) and also referring to equation (5), we get:

1
2 ufp(x) + 1

2 ufp(y) ≤ εr ≤ ufp(x) + ufp(y) (8)

We consider the left side of the equation (8):

1
2 ufp(x) ≤ εr − 1

2 ufp(y)

ufp(x) ≤ 2 εr − ufp(y)
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As we did backward analysis with addition using the result and one of the

operands of the addition in forward analysis, we are going to do backward analy-

sis on multiplication. We will use the result (rpr) and operand (yq) from equation (2)

to reach xp. We consider y ≥ 0.

xp = rpr ÷ yq (9)

Using the ufp error in equation (9), we get:

1
2 ufp(x) y ≤ εx y ≤ ufp(x) y (10)

1
2 ufp(y) x ≤ εy x ≤ ufp(y) x (11)

Combining equations (10) and (11), we get:

1
4 ufp(x) ufp(y) ≤ εx εy ≤ ufp(x) ufp(y)

1
2 ufp(x) y + 1

2 ufp(y) x ≤ 1
4 ufp(x) ufp(y) ≤ εr

2 ufp(x) y + ufp(x) ufp(y) ≤ 4 εr − ufp(y) x

ufp(x) ≤ 4 εr − ufp(y) x

2 y ufp(y)

5. A running example

In this section, we are going to show how our forward and backward static analyses

work on a sample code snippet, given in Figure 3.

(0) a = 0.0; c = 0.25; t = 0;

(1) Assert x[t] = [0, 1]32 for all t;

while (t < t_max)

{

(2) a = a * a;

(3) a = a * c;

(4) a = a + x[t];

t++; (5)

}

(6) y = 1.5 * a + 1.0;

(7) Assert y = ⊥16;

(8) End

Figure 3. Code snippet

In general, a forward analysis computes information from the beginning to the

end of the program and a backward analysis computes information from the end of

the program to the beginning. In order to take advantage of the backward analysis,

we consider that the desired accuracy (the number of correct bits) is specified by the
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user at the end of the program. So, we introduce an assertion at control-point (7),

stating that, at this point, y belongs to an unknown interval with 16 bits of accuracy.

We consider abstract values [a, b]p for the static code analysis. Let Fp be the set

of all floating-point numbers with accuracy p. Intuitively

a ∈ [a, b]p ⇔ a ∈ Fp : a ≤ x ≤ b

For example, in the code snippet of Figure 3, the assertion at control point (7) is

written y = [−∞,+∞]16. By extension, F∞ denotes the set of exact numbers, i.e.

the numbers with an infinite number of correct digits. Figures 4 and 5 show the detail

of forward and backward analysis respectively.

(2) a = [0.0, 0.0]53 × [0.0, 0.0]53 = [0.0, 0.0]53
(3) a = [0.0, 0.0]53 × [0.25, 0.25]53 = [0.0, 0.0]53
(4) a = [0.0, 0.0]53 + [0.0, 1.0]32 = [0.0, 1.0]32

(5) a = [0.0, 0.0]53 ∪ [0.0, 1.0]32 = [0.0, 1.0]32

(2)’ a = [0.0, 1.0]32 × [0.0, 1.0]32 = [0.0, 1.0]31
(3)’ a = [0.0, 1.0]31 × [0.25, 0.25]53 = [0.0, 0.25]31
(4)’ a = [0.0, 0.25]31 + [0.0, 1.0]32 = [0.0, 1.25]32

(5)’ a = [0.0, 1.0]32 ∪ [0.0, 1.25]32 = [0.0, 1.25]32

(2)’’ a = [0.0, 1.25]32 × [0.0, 1.25]32 = [0.0, 1.5625]31
(3)’’ a = [0.0, 1.5625]31 × [0.25, 0.25]53 = [0.0, 0.390625]31
(4)’’ a = [0.0, 0.390625]31 + [0.0, 1.0]32 = [0.0, 1.390625]32

(5)’’ a = [0.0, 1.25]32 5 [0.0, 1.390625]32 = [0.0, 2.0]32

(2)’’’ a = [0.0, 2.0]32 × [0.0, 2.0]32 = [0.0, 4.0]31
(3)’’’ a = [0.0, 4.0]31 × [0.25, 0.25]53 = [0.0, 1.0]31
(4)’’’ a = [0.0, 1.0]31 + [0.0, 1.0]32 = [0.0, 2.0]32
(5)’’’ a = [0.0, 2.0]32

(6) y = [1.5, 1.5]53 × [0.0, 2.0]32 + [1.0, 1.0]53
= [0.0, 3.0]32 + [1.0, 1.0]53 = [1.0, 4.0]33

Figure 4. Forward analysis using the code snippet

Forward analysis. We start with the forward analysis, given in Figure 4. First, a is

the input variable and c is a floating-point constant. By default we assume that they

have 53 digits of accuracy as for the Binary64 format [16]. At control point (1), an

assertion states that all the elements of the array x[t] belongs to the interval [0.0, 1.0]

and have accuracy 32. In practice, x[t] could be a sensor with a limited accuracy

or a sequence of values computed by another procedure with a limited accuracy. At

control points (2) and (3) x is multiplied by itself and then by c. At the first iteration,

this lets a unchanged, since a = [0.0, 0.0]53. Next, at point (4), a is incremented by

x[t] which results in the value [0.0, 0.0]53 + [0.0, 1.0]32 = [0.0, 1.0]32.
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(-7) y = [1.0, 4.0]33 ∪ ⊥16 = [1.0, 4.0]16
(-7) c = [0.25, 0.25]53

(-6) a = (([1.5, 1.5])−1)× ([1.0, 4.0]16 − [1.0, 1.0]53)
= [0.0, 2.0]15

(-5) a = [0.0, 2.0]32 ∩ [0.0, 2.0]15 = [0.0, 2.0]15
(-5) c = [0.25, 0.25]53

(-4) a = [0.0, 2.0]15
(
+ [0.0, 1.0]32)

)−1
= [0.0, 1.0]14

(-4) x[t] = [0.0, 2.0]15
(
+ [0.0, 1.0]14

)−1
= [0.0, 1.0]15

(-3) a = [0.0, 1.0]14
(
× [0.0, 0.25]53

)−1
= [0.0, 4.0]14

(-3) c = [0.0, 1.0]14
(
× [0.0, 4.0]14

)−1
= [0.0, 0.25]15

(-2) a = [0.0, 4.0]14
(
× [0.0, 2.0]32

)−1
= [0.0, 2.0]14

(-2) a = [0.0, 4.0]14
(
× [0.0, 2.0]14

)−1
= [0.0, 2.0]15

(-5)’ a = [0.0, 2.0]15 ∪ [0.0, 2.0]15 = [0.0, 2.0]15
(-5)’ a = [0.25, 0.25]53 ∪ [0.25, 0.25]15 = [0.25, 0.25]15
(-5)’ x[t] = [0.0, 1.0]32 ∪ [0.0, 1.0]15 = [0.0, 1.0]15

(-4)’ a = [0.0, 2.0]15
(
+ [0.0, 1.0]15)

)−1
= [0.0, 1.0]14

(-4)’ x[t] = [0.0, 2.0]15
(
+ [0.0, 1.0]14

)−1
= [0.0, 1.0]15

(-3)’ a = [0.0, 1.0]14
(
× [0.0, 0.25]15

)−1
= [0.0, 4.0]14

(-3)’ c = [0.0, 1.0]14
(
× [0.0, 4.0]15

)−1
= [0.0, 0.25]15

(-2)’ a = [0.0, 4.0]14
(
× [0.0, 2.0]15

)−1
= [0.0, 2.0]14

(-2)’ a = [0.0, 4.0]15
(
× [0.0, 2.0]15

)−1
= [0.0, 2.0]15

(-1) a = [0.0, 2.0]15
(-1) c = [0.0, 0.25]15
(-1) x[t] = [0.0, 1.0]15

Figure 5. Backward analysis using the code snippet

After execution of the first iteration, the control-flow comes back to point (2),

at the second iteration of the loop, denoted point (2)′ in Figure 4. As usually in

abstract interpretation, in order to over-approximate the whole concrete executions

of the code, at point (2)′, the value given to a is the join of a at points (2) and

(4). The second iteration is then executed, a is squared, multiplied by c and finally

incremented by x[t], yielding [0.0, 1.25]32. After the addition, the new value of a has

one more correct digit than the former. If a ∈ [0.0, 1.0]32 then a has 32 correct digits

and the error between a and the exact value a that it represents is bounded by:

|a− a| < 2−32

and the error on a×c is bounded by 2−33. Figure 4 shows one more iteration, starting

at point (2)′′ and terminating at point (4)′′.

Here, we observe that iterations may keep continuing, so at control point (2)′′′,

we do an over-approximation using a widening operation. In the theory of abstract in-

terpretation [6], the widening operators over-approximate over the abstract iterations.
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The chain of abstract iterations can go potentially forever. To enforce termination

to this iteration we use a widening operator denoted 5 by [5]. Widening/Narrow-

ing approach can improve the precision and the speed of convergence of the analysis

significantly. We use a staged widening which returns the next power of 2 when the

bounds of the intervals are increasing. This over-approximates a with the value [0, 2]32
at control point (2)′′′. Then, one more iteration is run and a fixed-point is reached.

Finally, the abstract value of y is evaluated at point (6).

Backward analysis. Backward analysis we start from control point (7) in a back-

ward flow denoted (−7) in Figure 5 in order to indicate that we are in the back-

ward phase, we benefit from the assertion y = ⊥16 and start from the result of the

forward analysis which is y = [1.0, 4.0]33. The join of both predicates yields the

other operand y = [1.0, 4.0]33 ∪ ⊥16 = [1.0, 4.0]16. Next, at point (6), the statement

y = 1.5× a+ 1 is is evaluated backward as a = 1.5−1y − 1, yielding a = [0.0, 2.0]15.

At control point(−4) and (−4)’, the transfer function for addition will be used with

the case e1 > e2 and the case e1 < e2 respectively. At control points (−3) and (−3)’,

the multiplication transfer function is used.

After two iterations of the backward analysis, a fixed-point is reached. As a final

result, we have inferred that in order to obtain a result y with 16 correct bits, the

input a must have at least 15 correct bits at the beginning of the execution. In

addition, c and the elements of the array a must also have at least 15 correct bits.

This information is obtained by combining the forward and backward analyses.

A simple forward analysis could only infer this property by successive tries, by as-

signing iteratively arbitrary accuracies to a, c and x at the beginning of the code and

by observing the results until the desired accuracy on the result is observed. Thus

Backward analysis helps in finding the minimal accuracy required for the inputs to

get the desired accuracy for the output.

6. Conclusions

The static analysis helps to identify and taking necessary steps in avoiding different

flaws that can happen in computations with floating-point values. In this paper, we

are addressing one of the open areas in the field of static analysis in safety critical prob-

lems to decide on the minimal accuracy required in inputs for achieving the desired

accuracy in outputs. We have presented a combined forward and backward analysis

of floating- point programs. An abstract domain for intervals with floating-point val-

ues has been defined and the transfer functions for basic mathematical operations like

addition and multiplication are also defined. As future work, we will be extending the

analysis for other mathematical operations like division and bisection of floating-point

intervals. Also a prototype for demonstrating the abstraction and concretization on

the domain is being implemented.
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