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garding the accuracy of the approximation of the set of discrete metric sources
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1. Introduction

Meshes are used in many applications – the simulation of processes, visualization,

object reconstruction, image analysis, etc. In each case, a mesh must meet a number

of criteria related to the geometry of the domain and other requirements specific

to the issue. In the process of generating and adapting meshes, it is important to

properly determine the desired size and shape of the elements at each point of the

modeled object. Geometric- and problem-specific information may be inconsistent

and introduce different descriptions of the desired mesh element size in some sub-

domains. At the preprocessing stage, it is necessary to gather and unify various bits

of information; at that point, the appropriate methods dedicated to smoothing the

sizing should be applied. Automated determination of the proper size and shape

specifications plays a key role in effective mesh generation.

There are two ways to adjust element size and mesh gradation. The first approach

is based on an a posteriori and iterative remeshing evaluation [8, 9]. Other methods

that are more widespread nowadays correct and smooth the so-called sizing field

before the actual mesh generation. A separate problem in this second approach is

how to store, retrieve, and process metric information for this field. The auxiliary

structures dedicated to this purpose may have the form of a Cartesian mesh (either

homogeneous [21] or adapted [3]), background mesh [7,19,20,23], or quadtree/octree

[18, 22, 23]. Recently, the application of a kd-tree was also proposed by the authors

of [16]. Each of these structures has its advantages and disadvantages. It is necessary

to assess the size of the memory required by the structure as well as the time it

takes to create and access the information. It should not be forgotten that, in the

mesh-generation process, the structure will be continuously searched to determine the

appropriate size field at the specified point of the domain. While a background mesh

is more easily adapted locally and generally takes up less memory, for example, finding

the item containing the queried point of space takes a lot of time. Tree structures

(octree and kd-tree) may need more memory, but they are more efficient with respect

to time. In the methods developed by the authors, an octree as well as kd-tree control

space1 is used.

Some authors rely on the sizing field mainly for the length of the mesh edges,

which (depending on the method) may result in the limitation of the adaptation to

isotropic meshes. In our approach, the basic value stored in the control space is the

metric, which also makes it easy to generalize the problem of mesh adaptation to

anisotropic meshes. The use of metrics in the process of constructing meshes is now

widespread [1, 2, 5, 6, 17].

1The control space (CS) is defined here as an auxiliary structure extending the concept of a sizing
field responsible for providing the necessary or beneficial information at any point in the meshing
domain (e.g., the required element size and shape, local metric gradation) during the mesh-generation
process.
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We use a Riemannian metric M that varies locally in different subdomains and

which is then introduced into the generator as the operator defining the desired size

and shape of the elements. Additionally, the concept of metric transformation ten-

sor M was introduced in order to increase the efficiency of using the metric in the

generator. The relationship between metric M and tensor M has been described in

detail in previous works (e.g., [12–14]). The sources of the metric are different de-

pending on the nature of the area and the specific application of the mesh, so they

may have an unacceptably large discrepancy. A metric taken from many sources

must therefore be properly introduced and unified in the control space. The meth-

ods used to create and adapt the octree control space are described in greater detail

in [10,13,15]. In [16], a kd-tree-based control space structure was proposed and com-

pared with octree. Tests were based on the adaptation of a control space structure to

continuous metric sources. This paper focuses on the problem of adapting a control

space to discrete metric sources combined with adjusting the metric gradation in the

control space.

2. Kd-tree and octree structures

The considered structure of a discrete control space is based on a three-dimensional

tree. The proposed kd-tree structures were created based on a general form of kd-tree [4]

with modifications introduced by the authors (with respect to the kd-tree application

as a control space structure for mesh generation and adaptation).

The single main node of the tree is the size of the meshing domain bounding box.

During adaptation, the tree nodes (called tree elements for consistency with the mesh-

ing terminology) are successively split, forming new cuboid tree elements. The leaf

nodes (tree leaves) are mainly used to store metric-related information; other (non-

-leaf) tree elements contain information about the split. The information about the

metric is stored in the form of a control node structure consisting of two fields: the met-

ric transformation tensor and coordinates associated with this node.

Three variations of kd-trees and three variations of octrees were implemented:

• kd-tree-L (KL) – kd-tree structure with control nodes stored in leaves,

• kd-tree-Li (KLi) – kd-tree structure with control nodes stored in leaves and

additional interpolation of metric based on adjacent leaves using formulas derived

from 27-nodes quadratic hexahedral shape functions,

• kd-tree-V (KV ) – kd-tree structure with control nodes stored in vertices of

leaves and interpolation of metric using 8-node linear shape functions,

• octree-L (KoL) – octree structure with control nodes stored in leaves,

• octree-LB (KoLB) – balanced octree structure with control nodes stored in

leaves,

• octree-V (KoV ) – octree structure with control nodes stored in vertices of leaves

and interpolation of metric using linear shape functions.
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On the main level, each tree structure contains a pointer to the root of the tree.

Vertex-based trees (KV and KoV ) also have an additional container for metric control

nodes, which are referenced in the leaves. The connectivity organization of the vertices

in the tree leaves is shown on Figure 1.

Figure 1. Local connectivity of leaf edges with subsequent kd-tree splits (2D case for clarity)

The procedure of retrieving the metric value at any point within the meshing

domain using the tree-based control space structures begins with finding the tree leaf

containing the given point (starting from the main tree element and traversing the

elements following the splitting information stored in the non-leaf elements). Then,

depending on the tree type, the metric is either returned directly from the control node

stored in this leaf (KL, KoL and KoLB) or the resultant metric value is calculated

using a set of control nodes (from the leaf vertices or leaf neighbors) and a set of

appropriate shape functions (KLi, KV and KoV ).

The elements of the trees may contain the following data (depending on the type

of tree and the type of tree element):

• Metric values – stored only in the leaves in the form of control nodes. For leaf-

based trees, one control node is stored in each leaf with coordinates equal to the

middle of the leaf box. For vertex-based trees, the control nodes are stored in the

container defined on the main level of the tree; each leaf stores eight references

to control nodes. In this way, the control nodes may be shared between some

neighboring tree elements (Fig. 1).

• Splitting data – used only in the non-leaf tree elements. For kd-trees, the axis

and value of the splitting hyperplane is stored together with two references to the

children elements. For octree structures, the splitting (middle) point is stored

together with eight references to the children elements.

• Neighboring tree elements – stored only in the leaves in the form of references

to the adjacent tree elements. This information is required in order to facilitate

the sharing references to the control nodes for the vertex-based trees, the inter-

polation of the metric values for KLi, balancing KoLB , and the smoothing of the

gradation of the leaf-based trees.
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3. Adaptation of control space

Two families of control space structures based on an octree and kd-tree are described

in this article. The presented work concentrates on the adaptation of a control space

structure resulting from the insertion of additional discrete metric sources. These

types of sources provide only partial information about the metric available at dis-

crete points. Such metric information can also be introduced in various time frames;

e.g., resulting from the subsequent stages of creating the mesh. The area of influence

of individual sources depends on their locations and the metrics associated with them;

however, it should be noted that the difficulty is also due to the fact that they are

potentially unevenly distributed. Discrete sources can define very diverse metrics; as

a consequence, this requires the smoothing of the metric field and, thus, the control

space. Regarding complexity, it is also important that there may be a potentially

large amount of source data. All of these factors make it necessary to modify the pro-

cedures of construction and adaptation of the control space (as compared to the case

of continuous sources).

3.1. Introduction of discrete metric sources

For each point-source Q with associated metric (Q,MQ), the following general pro-

cedure is used first:

1. Retrieve current metric MCS(Q) from the control space (CS).

2. If metric difference δM is very small (Equation (1)), no adaptation is necessary

(stop)

δM(MQ,MCS(Q)) < εδ (1)

where δM is a metric non-conformity measure2 [17].

3. Calculate new metric transformation tensor M′Q as an intersection3 (minM) [15]

of the metric tensor defined in the point-source and the metric tensor calculated

from the current CS:

M′Q = minM(MQ,MCS(Q)) (2)

4. If the modification is negligible (Equation (3)), no adaptation is necessary (stop)

δM(M′Q,MCS(Q)) < εδ (3)

2The metric non-conformity coefficient of two metric tensors M1 and M2 is calculated as the
Euclidean norm of total residual ||M−1

1 M2 +M−1
2 M1 − 2I||.

3The intersection of the metric tensors is calculated as a simultaneous reduction of the quadratic
forms and can be geometrically interpreted as an ellipsoid, with the largest volume contained within
the ellipsoids associated with the two metric tensors.
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5. If the size of the current leaf (calculated as max(lxM, l
y
M, l

z
M) with respect to the

metric stored in the point-source where ldM is the metric length of a leaf along

dimension d) is larger than the prescribed threshold (lmin), the leaf is split, and

the procedure is recursively run for the leaf containing the new point-source. The

maximum depth of the tree is also enforced.

6. After the structure has been adapted, the intersection operation for each control

vertex Vi of the leaf containing the new point-source is used:

MVi
← minM(MVi

,MQ)

The above procedure is general, but the fundamental operation of adapting the

tree structure – the splitting of the leaves – is different between the implemented tree

variations following the different data stored in the leaves of these structures. How-

ever, before the cuboid element of the kd-tree can be split, it is necessary to select the

splitting plane.The splitting methods should be adapted to the discrete distribution

of the metric sources. Compared to the procedures for continuous sources, two other

splitting methods were chosen in this case that are better-suited to the available dis-

crete metric information and less computationally expensive. The following methods

were investigated:

1. Longest Axis (sL). The element is split in the middle of the longest axis with

a plane perpendicular to this axis (Fig. 2a).

2. Golden Ratio (sG). The element is split by a plane perpendicular to the longest

axis using the golden ratio formula, where the point-source should lie in the

smaller part of the division if possible (Fig. 2b).

3. Minimum Element (sM ). The element is split by a plane perpendicular to the

longest axis, setting the splitting plane close to the point-source (with a length

margin of half of lmin) (Fig. 2c).

In all cases, the lengths of the nodes’ dimensions are calculated in metric space.

Q

a a

(a) sL (a = 1
2
ldM)

Q

a b

(b) sG ( b
a

= 1.618 . . .)

Q

a

(c) sM (a = 1
2
lmin)

Figure 2. Methods of choosing splitting plane

3.2. Adjusting metric gradation

The metric field stored in the control space structure may come from different sources.

In order to properly guide the meshing procedure, the metric field may need to be

adjusted in a way that results in the desired transition of elements in the created

meshes.
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The procedure of enforcing the desired gradation of the mesh in control space is

based on an elementary operation of adjusting the metric for a pair of points according

to the defined gradation ratio parameter [13]. The general procedure consists of the

following steps:

1. Gather all control nodes from the whole tree.

2. Construct the adjacency information, storing all of its neighboring nodes for each

control node:

• for trees with control nodes stored in the tree vertices – the set of neighboring

nodes consists of all control nodes from the vertices that are connected to

the vertex of the selected node with a leaf edge (Fig. 3b),

• for trees with control nodes stored in the tree elements – the set of neigh-

boring nodes is gathered by inspecting all six faces of the selected leaf and

including the control nodes from the nearest neighboring leaves for each face

of the selected leaf (Fig. 3a).

Due to the locality of the connections between the tree vertices (Fig. 1), the

maximum number of adjacent control nodes is limited to six in each case.

3. Create an active queue initially containing all control nodes.

4. While the active queue is not empty:

(a) remove control node c∗ from the beginning of the queue,

(b) for each node ci adjacent to c∗, perform the elementary operation of smooth-

ing a pair of nodes (c∗, ci),

(c) insert all modified control nodes at the end of the queue.

c

(a) leaf-based trees

c

(b) vertex-based trees

Figure 3. Determining adjacency of control nodes (2D case for clarity)

4. Tests

The tests were designed to measure the quality of the created trees and the perfor-

mance of the procedure of the control space adaptation. In all cases, the control

space was created in domain D1 = [−1, 1]× [−1, 1]× [−1, 1] and initialized as a single

tree leaf with a metric set of Mmax, which defines an isotropic metric with lengths

of elements equal to half of the domain diagonal. Then, a number of discrete metric

point-sources were generated and successively inserted into the control space. After

inserting all point-sources, the gradation of the control space was adjusted respecting

the prescribed parameter of the maximum gradation ratio.
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In order to evaluate the required density of the discrete metric sources and its

influence on the adaptation quality, the set of metric sources was created by sampling

the predefined surfaces with the selected density. Different surfaces were tested as the

base of the generated points, among which were the following:

• sphere with center at point [0,0,0] and radius of 0.8,

• intersecting planes described by following equations:

– x = −0.5, y = u, z = v

– x = u, y = −0.2 + au, z = v with a = 0.0 or a = 0.2.

For each selected point on the probed surface, the metric is assigned as

M =

 h−21 (x, y, z) 0 0

0 h−22 (x, y, z) 0

0 0 h−23 (x, y, z)

 (4)

where h1, h2, h3 are the lengths of the elements along the main directions. For greater

flexibility in the tests, an additional parameter (san = [sa, sn]) was used; this allows

us to introduce anisotropic metric sources by means of scaling the metric by sa in all

directions and then by sn in the direction normal to the probed surface.

4.1. Test design

The adaptation process of all of the presented tree structures was analyzed. The tests

were executed with varying densities of the input metric sources (ρm ∈ {1.0, 0.5, 0.2} –

the lower the value, the higher the density of the sources). Other parameters changing

during the tests were the minimum length of leaf edges lmin, maximum depth of the

tree, approximation accuracy threshold δτ , gradation ratio gr, and coefficient san.

Three methods for splitting the tree element boxes were tested: the longest axis (SL),

golden ratio (SG), and minimum element (SM ). For each case, the following quantities

were measured:

• average access time (ta) – a uniform grid of points in D was created; for each

point, the metric value was retrieved from the tree structure, then the average

value was calculated;

• creation time (tc) – total time required for adaptation of the tree structure to

the given set of discrete metric sources;

• approximation error (δmax) – maximum value of difference δM between the kd-

tree’s/octree’s approximation and the value computed directly from the set of

metric sources;

• tree size – the number of tree elements, number of metric values stored in the

tree, and total memory usage of the tree structure (mu).

5. Analysis of results

A presentation of all of the obtained results is not possible due to their size, which

is a consequence of the many parameters taken into account. Because of this, only
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selected results are presented. The tables below are limited to selected cases where the

point sources were generated on a sphere. The other tested examples gave comparable

characteristics of the results and led to similar conclusions. In the presented case,

structures were created with coefficients gr = 1.25 and san = [2.0, 1.0], and the

maximum tree depth for the kd-trees is equal to 42; for the octree structures, this is

equal to 14.

The analysis was mainly carried out while paying particular attention to the

computational and memory efficiency of various versions of the kd-tree and octree

structures as well as the approximation accuracy for these structures4.

5.1. Time and memory efficiency

Table 1 contains selected results showing the effect of given approximation accuracy

threshold δτ on the size of the trees for the two chosen densities of the metric sources.

Table 1
Tree-size [MB] created for selected sphere model

ρm = 1 ρm = 0.2

tree split δτ = 1 δτ = 0.5 δτ = 0.2 δτ = 1 δτ = 0.5 δτ = 0.2

KL
sL 17.07 41.32 67.56 20.64 78.85 285.82

sG 8.16 33.13 62.29 9.42 59.32 341.10

sM 5.27 5.64 4.28 6.45 8.90 13.78

KV
sL 51.10 127.15 210.21 61.15 234.30 853.81

sG 24.81 102.72 194.87 28.24 179.42 1041.96

sM 16.37 17.69 13.50 19.21 26.56 41.37

KLi
sL 17.07 41.32 67.56 20.64 78.85 285.82

sG 8.16 33.13 62.29 9.42 59.32 341.10

sM 5.40 5.64 4.28 7.17 9.48 13.87

KoL – 16.36 52.35 94.23 18.76 72.33 269.14

KoLB – 528.22 599.33 635.08 856.71 998.83 1033.88

KoV – 42.89 143.35 282.76 47.83 186.04 701.23

The size of the trees KoLB is remarkably larger than the rest. On the other

hand, the kd-trees with splitting sM are too small. As a detailed further analysis

has shown, these trees have been insufficiently adapted to the metric field. For the

remaining trees, the prescribed δτ for a given source density has a significant impact

on the size of the trees regardless of their type. The density of the metric sources

affects the size of the trees, but not that much. It can be seen that the sizes of

the vertex-based trees are larger, which is understandable in view of how the metric

information is stored in them. Comparing splitting methods sL and sG, it is worth

noting that splitting sG results in kd-trees of smaller sizes in most cases; however,

with the high source density and high required accuracy, the proportions change to

the disadvantage of this technique.

4The tests were performed using the computational resources of the Zeus supercomputer: https:
//www.top500.org/system/177388.

https://www.top500.org/system/177388
https://www.top500.org/system/177388
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Table 2 illustrates the results for the creation and adaptation time tc of the

control spaces. Except for KoLB trees (for which the tc time is far too long), the

creation time is slightly shorter for the trees based on leaves. This time naturally

increases with the density of sources ρm and required accuracy δτ (but differently for

each type of structure).

Table 2
Adaptation time tc [µs] for tree structures created for selected sphere model

ρm = 1 ρm = 0.2

tree split δτ = 1 δτ = 0.5 δτ = 0.2 δτ = 1 δτ = 0.5 δτ = 0.2

KL
sL 6.38 9.24 15.32 6.52 20.17 98.00

sG 2.39 10.70 12.30 4.58 14.45 63.90

sM 1.41 1.96 1.73 9.83 7.35 9.42

KV
sL 8.62 28.90 63.91 13.64 57.05 548.15

sG 3.26 21.79 53.54 7.39 37.21 856.65

sM 4.09 4.83 3.87 9.42 11.99 15.85

KLi
sL 3.71 15.56 15.33 11.81 25.41 65.62

sG 1.74 7.03 13.36 9.82 20.13 68.65

sM 1.78 2.34 2.19 11.98 17.19 19.58

KoL – 4.57 14.35 25.81 6.70 20.58 67.03

KoLB – 184.71 211.18 217.12 558.58 597.29 597.52

KoV – 10.72 28.28 75.01 9.64 34.11 235.39

The access time is presented in Table 3. It can be seen that the tree size has

no significant effect on the access time; the access time is more related to the type

of tree.

Table 3
Access time (ta) [µs] for tree structures created for selected sphere model

ρm = 1 ρm = 0.2

tree split δτ = 1 δτ = 0.5 δτ = 0.2 δτ = 1 δτ = 0.5 δτ = 0.2

KL
sL 2.96 1.48 1.11 1.48 1.11 1.85

sG 2.22 2.22 1.11 1.11 1.48 1.48

sM 2.96 3.70 3.70 5.56 3.70 4.07

KV
sL 1.85 2.22 1.85 2.22 1.85 1.85

sG 2.22 1.85 1.85 1.85 1.85 3.33

sM 4.07 3.70 4.07 4.07 4.81 4.44

KLi
sL 7.41 12.59 7.78 7.78 7.78 7.78

sG 7.41 7.41 9.26 7.78 8.15 8.15

sM 10.74 13.33 12.96 10.37 14.07 13.70

KoL – 0.74 0.74 0.74 0.74 0.37 0.74

KoLB – 1.48 2.22 2.22 3.33 3.33 2.96

KoV – 1.85 1.11 1.11 1.11 1.11 1.11
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The method of creating KLi determines the longer access times. Octree structures

are large in size; on the other hand, they offer rather short access times. Longer access

times for the kd-trees with the sM splitting method are again associated with their

incorrect adaptation to the given metric.

5.2. Approximation accuracy

The evaluation of the accuracy of the approximation of the metric field was performed

by means of two coefficients. Coefficient δSmax was calculated as the maximum metric

difference between the original data (the set of discrete metric sources) and the metric

field in the control space tree structure (measured for all coordinates of the discrete

metric sources). δRmax is the maximum metric difference computed via a regular prob-

ing of the whole testing domain D. In this case, the metric retrieved from the adapted

control space was compared to the metric value calculated directly from all discrete

metric sources using gradation adjustment for each tested point.

The only non-zero values of δSmax are observed for KLi because of the way this

tree is created (where complex metric interpolation is used). It can be concluded

that the application of complex metric interpolation methods for control space tree

structures does not significantly improve the quality of these structures.

Table 4 shows the values of coefficient δRmax for the selected model of metric source

distribution. The results are satisfactory except for KoLB structures and kd-trees with

sM splitting. The lowest values were noted for KV trees with splitting sL. Although

the size of these types of trees are slightly larger and the times of their creation are

slightly longer than the others, they give acceptable access times and provide the best

accuracy.

Table 4
Accuracy δRmax for tree structures created for selected sphere model

ρm = 1 ρm = 0.2

tree split δτ = 1 δτ = 0.5 δτ = 0.2 δτ = 1 δτ = 0.5 δτ = 0.2

KL
sL 1.78 1.83 2.31 1.74 1.69 1.70

sG 1.62 1.68 1.70 1.62 1.66 1.69

sM 6.48 8.06 8.06 6.48 8.06 8.06

KV
sL 0.30 0.37 0.43 0.30 0.37 0.35

sG 1.67 1.59 1.42 1.64 1.63 1.59

sM 6.48 8.06 8.06 7.05 8.06 8.06

KLi
sL 1.20 1.12 1.15 1.20 1.20 1.20

sG 1.11 1.02 1.04 0.89 0.83 0.86

sM 6.70 8.06 8.06 6.53 8.06 8.06

KoL – 1.83 1.90 1.94 1.80 1.70 1.64

KoLB – 6.88 6.00 5.99 5.20 4.70 5.97

KoV – 1.79 1.62 1.04 1.96 1.76 1.75
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An analysis of all of the results leads to one more conclusion regarding the per-

missible tree depth. This depth cannot be too small, as this results in the creation of

structures that do not sufficiently approximate the metric field (especially the varied

one). Setting a maximum depth for kd-trees to 20 made refining the approximation

accuracy threshold almost pointless, as the trees were not able to sufficiently adapt

to the higher quality requirements. On the other hand, if the permissible depth is too

high, the tree may be too large and unnecessarily increase the time and memory cost

of the mesh-generation process. In the performed tests, the selected depth of 42 levels

for the kd-trees and 14 for the octrees was sufficient to observe the effect of modi-

fying the other parameters in most cases (the approximation accuracy threshold or

density of the input metric sources). Still, for some types of trees (mostly octrees

and vertex-based kd-trees), the possibility of deeper tree refinement (enforced with

a lower value of the approximation accuracy threshold) had the undesired effect of

substantially increasing the tree size while only slightly improving the δRmax value and

actually decreasing the resultant mesh quality (as mentioned in the next paragraph).

5.3. Impact on created meshes

In order to verify the correctness of the construction procedures for the control spaces,

appropriate meshes were created for all of the considered cases with the anisotropic

mesh generator developed by the authors. The generator uses an iterative Delaunay

triangulation technique with local non-Eculidean metric transformation [11].

The quality of the mesh was measured using coefficient LR (among others), which

determines the ratio of the number of edges with a metric length within a range of

[0.8, 1.25] to the total number of edges in the mesh (the ideal metric length of the

edges is equal to 1). The obtained values of this coefficient for the selected case are

included in Table 5.

Table 5
Mesh quality coefficient LR for tree structures created for selected sphere model

ρm = 1 ρm = 0.2

tree split δτ = 1 δτ = 0.5 δτ = 0.2 δτ = 1 δτ = 0.5 δτ = 0.2

KL
sL 0.67 0.66 0.66 0.67 0.67 0.67

sG 0.66 0.66 0.66 0.66 0.67 0.67

sM 0.21 0.13 0.12 0.21 0.13 0.12

KV
sL 0.72 0.69 0.65 0.72 0.72 0.70

sG 0.66 0.65 0.62 0.67 0.67 0.66

sM 0.22 0.14 0.12 0.22 0.14 0.12

KLi
sL 0.69 0.68 0.68 0.70 0.69 0.69

sG 0.69 0.68 0.67 0.69 0.69 0.69

sM 0.22 0.13 0.14 0.22 0.13 0.12

KoL – 0.68 0.68 0.68 0.68 0.69 0.68

KoLB – 0.45 0.47 0.49 0.40 0.43 0.45

KoV – 0.66 0.69 0.69 0.65 0.67 0.69
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It can be seen that, for kd-trees with sM splitting, the quality of the mesh is

low. Not much better results were obtained for the KoLB trees. Other results are

comparable; KV trees with sL splitting guarantee the best mesh quality.

It should also be noted that it is not necessary to excessively increase the required

accuracy of the control space (by decreasing coefficient δτ ). Often, better results can

be achieved with δτ = 0.5 rather than δτ = 0.2 (with the addition of a smaller tree

size).

The figures below show examples of meshes (in cross-sections) generated using

the developed control space structures. The mesh from Figure 4a was generated

on the basis of the KV tree, which was created for discrete sources on the sphere

sampled with density ρm = 1. The threshold δτ used in this example was 1, with

gr equal to 1.25. The tree was split by the sL method. The maximum permissible

depth of the tree was set at 30. The metric sources was set with some anisotropy

(san = [4.0, 0.25]), which caused the effects seen in the figure – the mesh elements

in the area of the sphere are slightly elongated in a certain direction. The obtained

LR-value was 0.7, and the generated mesh has 291,570 elements.

(a) KV , LR = 0.7, NT=291,570 (b) KoV , LR = 0.79, NT=350,293

Figure 4. Examples of meshes generated based on different control space structures

Figure 4b presents a mesh created using octree KoV . For the density of the

sources on the sphere, coefficients δτ and gr were assumed as with the example from

Figure 4a. The elements visible in the vicinity of the sphere are smaller and denser,
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as no anisotropy was introduced into the source metric in this case. The obtained

LR-value was 0.79 in this case, and the number of mesh elements is 350,293.

Figure 5 shows the mesh generated for the intersecting planes created using

anisotropic metric sources.

Figure 5. Example of mesh generated for metric sources distributed along intersecting planes

6. Conclusions

As in [16], it has been shown that kd-trees are useful for constructing control space

structures. This time, the focus was on the introduction of discrete metric sources into

these structures. In most test cases, the kd-tree structures resulted in better meshes

produced by the mesh generator at a lower memory cost for storing the control space

structures. The leaf-based kd-tree seems to be a good overall candidate – simple, fast,

and memory efficient. Leaf-based kd-trees with interpolation may result in a better

quality of the generated meshes in some cases but at the cost of the increased com-

plexity and lower speed. Vertex-based kd-trees are able to provide the best results in

term of the resultant mesh quality; however, the downside is the increased size of the

structure.

These tests were performed using evenly spaced metric sources. Further studies

will provide for tests using more-anisotropic metric sources and irregular locations. It

is also necessary to analyze the combination of both continuous and discrete metric

sources in a single control space structure in order to properly assess the suitability

of particular structures.
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