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Abstract Several computing courses allow students to choose which programming lan-

guage they want to use for completing a programming task. This can lead to

cross-language code plagiarism and collusion in which the copied code file is

rewritten in another programming language. In response, this paper proposes

a detection technique that is able to accurately compare code files written

in various programming languages but with limited effort in accommodating

such languages at the development stage. The only language-dependent feature

used in the technique is a source code tokenizer; no code conversion is applied.

The impact of coincidental similarity is reduced by applying a TF-IDF-inspired

weighting in which rare matches are prioritized. Our evaluation shows that the

technique outperforms common techniques in academia for handling language-

conversion disguises. Furthermore, it is comparable to these techniques when

dealing with conventional disguises.
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1. Introduction

In some computer science courses, students are free to choose their preferred program-

ming language for completing assignments. This can lead to an issue when plagiarism

or collusion occurs; most existing detection techniques are not specifically designed

to handle such cases in a cross-language manner where the involved source code files

are written in different programming languages [2, 21].

Some detection techniques have addressed the issue by considering the source

code as raw text [7, 50], removing any needs for language-specific components. Even

though this kind of approach is applicable, it may lack effectiveness [43, 44]. Occa-

sionally, a given source code can be inaccurately tokenized since text grammars are

different from source code grammars.

To maintain the tokenization (and detection) accuracy, two language-dependent

solutions exist: converting one code to another programming language [33, 39], and

converting both codes to a particular intermediate format [5, 34]. These solutions

are backed with the claim that most programming languages share the same features

(and these features are reversible across the languages). However, the claim only works

when the programming languages are equally developed. For an extreme example,

Pascal does not have the list comprehension that can be found in Python, since

such comprehension has just recently been found useful and Pascal’s development is

slower than Python’s. Another possible issue related to such a conversion is that

the mapping programming syntax from one language to another can be demanding;

some programming languages are extremely different in terms of lexical and structural

representation (e.g., R and Java).

This paper proposes a language-dependent technique that accurately parses

source code tokens but with less effort in accommodating new programming lan-

guages; it only requires one source code tokenizer per language, which can be easily

obtained with the help of ANTLR [38] and its predefined grammars1. Code con-

version (which complicates the accommodation of new programming languages on

existing language-dependent techniques) is excluded and the token strings are com-

pared directly, assuming that some crucial tokens for raising suspicion (e.g., identifiers,

keywords, constants, and arithmetic operators) are not affected by programming lan-

guage conversion. Considering only non-coincidental matches can be used for raising

suspicions, a TF-IDF-inspired weighting [13] is also applied. This accentuates the

impact of such matches by assigning a higher score to the rare ones.

Among language-dependent techniques, our technique seems to be the first of its

type that requires only ANTLR tokenizers for detecting cross-language source code

plagiarism and collusion. It also seems to be the first one that uses TF-IDF-inspired

weighting in accentuating the impact of non-coincidental matches between tokens

from different programming languages. Due to its language dependency, the parsing

mechanisms are more accurate than those that ignore language-specific features (e.g.,

treating source code as text).

1https://github.com/antlr/grammars-v4

https://github.com/antlr/grammars-v4
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2. Related works

Source code plagiarism and collusion occur when a person steals another person’s

source code and claims it as theirs [11,19,47]. Several automated detection techniques

have been proposed to capture such a misbehavior [49]. They commonly compare the

source code files in a pairwise manner in which pairs with high similarity degrees are

considered to be suspicious. It is true that a high similarity can occur due to various

reasons besides plagiarism and collusion [55]. For example, some students may use

the same library to solve a particular task. Hence, the suspected pairs need to be

observed further by examiners on most occasions [35].

Based on how they measure similarity, these detection techniques can be classified

into two categories: attribute counting-based and structure-based techniques [3]. The

former measures similarity by counting how many similar characteristics are shared

between given source code files, while the latter focuses more on comparing their

structures.

Ottenstein’s work [37] is argued to be the earliest among the attribute counting-

based techniques. It relies on four Halstead metrics [22] to determine source code

similarity. Arguing that these metrics were not representative, the metrics was then

extended by considering more factors [3, 16] in which some of them are contextual

(like source code tokens) [4, 23]. The similarity measurement was also updated by

adopting algorithms from other domains such as information retrieval [12, 18, 26],

clustering [1,24,36], and classification [50,56]. Occasionally, algorithms from some of

these domains were applied altogether [14,46].

Structure-based techniques are argued to be at least as effective as attribute

counting-based techniques [52], even though they are considerably slower [49]. These

techniques rely on various structures for comparison. Some of the structures are source

code token strings [8,29,41], abstract syntax trees [20,30,53], parse trees [48], program

dependency graphs [32], and low-level token strings [25,42].

Since attribute counting-based and structure-based techniques have their own

characteristics and combining them may lead to more benefits [25], hybrid techniques

have been introduced. A structure-based technique can be more time-efficient if the

source code pairs are limited to those that share a high attribute counting-based

similarity degree [9, 49]. On the contrary, an attribute counting-based technique can

be more effective if its results are combined with a structure-based technique’s re-

sult [15,40,45].

Most detection techniques assume that all inputted source code files are written

in the same programming language [2,21]. This can be an issue when more than one

programming language is allowed to complete a particular assessment. Plagiarism

and collusion may involve two or more programming languages, which is outside the

coverage of these techniques.

Some detection techniques deal with such an issue in a language-independent

manner (i.e., no language-specific components are required) by considering a given

source code as text. For example, Flores et al. [18] parse given source code files
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to 3-gram characters and, therefore, measure the similarity with Cosine correlation.

Another example is the work of Brixtel et al. [7], which determines similarity through

multiple text granularity levels (starting from the character level to the document

level).

To capture a shared semantic across source code files, another work by Flores

et al. [17] relies on latent semantic analysis (LSA) [13] in which all of the code files are

simply fed to the LSA. This kind of technique was also performed by Ullah et al. [51].

Classification algorithms is also applicable for language-independent techniques

in which one instance refers to a source code pair and its target class defines whether

the pair is suspicious. Ullah et al. [50] consider source code words as learning features

and, therefore, raise the suspicion for some pairs with the help of multinomial logis-

tic regression [6]. Yasaswi, Purini, and Jawahar [56] classify the suspicion through

a character-level language model and a support-vector machine [10]. Language-in-

dependence can also be applied by encapsulating an existing text-based similarity-

detection tool. For instance, Allyson et al. [4] rely on a text-based similarity-detection

tool by applying five normalization rules to the source code beforehand. Petrik, Chuda,

and Steinmüller utilize a UNIX diff command to determine similarity. They firstly

compare given source code files in multiple representations; after this, the similarity

degree is calculated by averaging the results.

It is true that treating source code as text enables the detection of cross-language

plagiarism and collusion with minimal effort. Nevertheless, this treatment may re-

duce the detection accuracy [44]; the source code can be inaccurately parsed since

source code grammars are different from text grammars. For instance, statement

countMAX+=1; can be considered to be one word according to text grammars since

no spaces are involved between the tokens.

To maintain accuracy, several detection techniques tokenize the source code files

and convert them to a particular intermediate representation. Arwin and Tahaghoghi

[5] generate such a representation with the help of GNU compiler collection. Rabbani

and Karnalim [42] utilize .NET Common Intermediate Language as the intermediate

representation for source code files written in various .NET programming languages

(e.g., C# and Visual Basic).

Converting to a particular intermediate representation can be easy if the conver-

sion tools (e.g., GNU compiler collection and .NET compiler) cover all of the code

files’ programming languages. However, since most conversion tools cover only a lim-

ited number of languages, it is possible that one or more of the used programming

languages are not covered. When this occurs, such a conversion should be created

from scratch, which can be demanding.

3. Method

Cross-language source code plagiarism and collusion can be detected either by ignor-

ing language-specific features or converting the code files to a particular intermediate

representation. The former guarantees the ease of integrating new programming lan-
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guages but with a trade-off in the accuracy of the token parsing. The latter keeps such

accuracy but requires a considerable amount of effort in integrating new programming

languages. There is a need to propose a detection technique that can somehow balance

these two; it should be easy to integrate new programming languages while keeping

the token parsing’s accuracy.

This paper proposes a cross-language source code plagiarism- and collusion-

detection technique. Unique to this, it is language-dependent (which makes it more

accurate in tokenizing source code and detecting similarity) but with limited effort in

covering new programming languages. It only requires a source code tokenizer, which

can be easily generated with ANTLR [38] and its provided grammars2. Figure 1 shows

how our proposed technique works in five stages.

Figure 1. Our proposed cross-language source code plagiarism- and collusion-detection tech-

nique. It accepts source code files as its input and, therefore, generates suspected source

code pairs through five consecutive stages

At first, the source code files are tokenized with their corresponding tokeniz-

ers and then compared directly with the Running Karp-Rabin Greedy String Tiling

(RKR-GST) algorithm. Such a direct comparison is based on the assumption that

some crucial tokens for raising suspicion (e.g., identifiers, keywords, constants, and

arithmetic operators) are represented in the same way across programming languages.

The similarity degree is then calculated with the help of a TF-IDF-inspired weight-

ing [13], which prioritizes rare matches to accentuate the impact of non-coincidental

similarity. Finally, all source code pairs are sorted based on their similarity degree in

descending order and displayed as the result.

2https://github.com/antlr/grammars-v4

https://github.com/antlr/grammars-v4
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3.1. Source code tokenization

This stage converts inputted source code files to token strings in which one code file

corresponds to one string. At first, it detects the programming language of each code

file by checking the file extension. For instance, a code file’s language is C# if its

file extension is .cs. Afterwards, each code file is tokenized with its corresponding

language-dependent tokenizer; all non-semantic-preserving tokens such as comments

and whitespaces are removed. An example of this sub-stage can be seen in Figure 2.

If the file extension is not recognizable, the code file will be excluded from the com-

parison.

Figure 2. Example of converting Python code file to token string

To mitigate the number of non-recognizable code files, it is important to provide

tokenizers for most of the frequently used programming languages. Currently, our

detection technique covers ten languages: C, C++, C#, Java, Javascript, Kotlin,

Pascal, Python, R, and Scala. Other programming languages can be accommodated

with the help of ANTLR [38] and its provided grammars.

We are aware that tokenization can be featured with additional preprocessing

steps such as stop words or template code removal. However, these steps are not

implemented in our proposed technique; they are commonly language-dependent,

and creating them separately per programming language can be demanding. This

will contradict the fact that our technique takes the benefits of language dependency

with a minimum effort. Furthermore, their generalized benefit (which is mainly for

accentuating the impact of non-coincidental matches, assuming these matches rarely

occur) can still be obtained with the help of our TF-IDF-inspired weighting (which

will be described later).

3.2. Source code pairing

At this stage, each inputted code file is paired with other code files, resulting in

K(K − 1)/2 comparisons (where K refers to the number of inputted code files). In

such a manner, all possible pairwise combinations are listed.

The pairing mechanism starts by storing all of the inputted code files in an array.

The array is then iterated from the first to second-to-last element; each element will

be compared to the other elements that are positioned after that element. The last

element is not included in the iteration, as it has no elements following it.
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To illustrate this, let us assume that we have three inputted code files (labeled

code1, code2, and code3 ). With our pairing mechanism, these files are initially stored

in an array in that order. The iteration starts with code1, with the resulting code1 -

code2 and code1 -code-3 as comparison pairs. It is then continued to code2, which

adds code2 -code3 to the comparison pairs. The iteration stops prior to processing

the last element, which is code3. As a result, three comparison pairs are generated:

code1 -code2, code1 -code-3, and code2 -code3.

3.3. RKR-GST-based similarity measurement

For each comparison pair from the second stage, the matched regions will be gener-

ated at this stage, involving the token strings obtained from the first stage. These

strings are compared to each other using Running Karp-Rabin Greedy String Tiling

(RKR-GST) [54]. For sensitivity, RKR-GST’s minimum matching length is set to

two, which means that all of the matched regions whose lengths are higher than or

equal to two will be listed.

As the token strings can come from different programming languages, it is ex-

pected that the resulting matches are limited to crucial tokens for raising suspicions

like identifiers, keywords, constants, and arithmetic operators. These tokens’ repre-

sentation is seldom changed as the result of programming language conversion.

3.4. TF-IDF-inspired weighting

Suspicion can only be raised when the matches are non-coincidental. Assuming that

rare matches are non-coincidental, they are prioritized at this stage by weighting each

token occurrence with the token’s inverse document frequency (IDF) score, which is

proportional to the token’s rarity.

The IDF score for each token is calculated as in (1). It divides the total number

of code files in collection (N ) with the number of code files containing given token

(Nt); both N and Nt are incremented by one just to avoid division by zero.

IDF (t) =
N + 1

Nt + 1
(1)

Each programming language will have its corresponding IDF score set that is

stored as a language-specific index. The index is a hash map containing a key-score

tuple, where “key” refers to the token mnemonic, and “score” refers to the number

of code files containing that token.

Per comparison pair, its similarity degree will be calculated as in (2) after each

token is weighted with their corresponding language-specific IDF score; c1 and c2

are the code files, while M represents the matched regions. It averages the matched

proportion of the code files. Matched proportion (mp) for each code file is determined

with (3) by summing the IDF score of matched region (cm) toward code file (c)

and then dividing it with the total IDF score of that code file. The IDF score for

a particular region (or the whole parts) of the code file can be calculated as in (4). It
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simply sums up the IDF scores of all tokens covered by that region; each token’s IDF

score is taken from its respective language-specific IDF index.

sim(c1, c2,M) =
mp(c1,M) + mp(c2,M)

2
(2)

mp(c,M) =

∑
m∈M idf ts(cm)

idf ts(c)
(3)

idf ts(c) =
∑
t∈c

idf(t) (4)

It is worth noting that this kind of weighting can also be beneficial in detecting

conventional source code plagiarism and collusion in which both the original and

copied code files are written in the same programming language. The impact of rare

matches (which appears to be non-coincidental) will be accentuated.

3.5. Similarity ranking

The comparison pairs are sorted based on their resulting similarity degrees at this

stage. Pairs with high similarity degrees are placed at the top, which means that

they are quite suspicious.

3.6. Language-specific IDF index generation

TF-IDF-inspired weighting depicts the need for language-specific IDF indexes, which

can be generated from either an internal or external dataset. If the former is chosen,

the indexes will be generated toward the inputted source code files; this will be per-

formed between the source code tokenization and the pairing. Otherwise, the indexes

will be built separately with different source code files; this should be done prior to

the execution of our technique.

Language-specific IDF indexes are generated in a threefold manner. First – the

given source code files (either from an internal or external dataset) are grouped based

on their corresponding programming languages (via their file extensions). Second –

each of the files is converted to a token string with its corresponding language-specific

tokenizer. Third – per the programming language, distinct tokens are listed, and each

is assigned with its IDF score calculated as in (1), where N is the number of code

files, and Nt is the number of code files that contain the token.

4. Evaluation

This section describes how the proposed technique was evaluated, which datasets and

metrics were used on this evaluation, and what findings could be concluded. The

datasets and metrics are explained first, followed by the evaluation methodology and

results.



TF-IDF-inspired detection for cross-language source code plagiarism and collusion 121

4.1. Evaluation datasets

Three datasets were used in this evaluation. They are denoted as introductory, design

pattern, and same-language datasets. The first two are cross-language datasets where

the similarity disguises are about rewriting the source code files in other program-

ming languages. In the final one, the similarity disguises are conventional, focusing

on lexical, structural, and/or semantic change (but without programming language

conversion).

The introductory dataset was created by rewriting seven original code files in

a Java dataset [28] adapted from Liang’s book [31] to eight other programming lan-

guages: C++, C#, Javascript, Kotlin, Pascal, Python, R, and Scala. These code files

cover seven introductory materials: the output, input, branching, looping, function,

array, and matrix. The dataset results in 63 code files (7 original and 54 copied files);

it evaluates the proposed technique in dealing with programming language conversion

on introductory courses.

The design pattern dataset was also created by rewriting several Java source code

files in other programming languages. Twenty-three design pattern code files from

Tutorialspoint3 were considered as the original code files, which were then translated

in four other programming languages: C++, C#, Python, and Kotlin. As a result, the

dataset contains 115 code files in total (23 original and 92 copied files); it evaluates the

proposed technique in dealing with programming language conversion on advanced

courses (as design patterns are seldom used by novice programmers).

The same-language dataset is the Java dataset used for creating the introductory

dataset [28]. Each original code file was copied and modified according to the last six

levels of similarity disguise taxonomy [16] (the first level was excluded, as it depicted

no disguises) by nine teaching assistants. To guarantee that all of the copied code

files were at their correct disguise level, any copied code files that violated their

corresponding disguise level rules were removed. Per the original code file, the non-

copied ones were then created by 15 other teaching assistants. The assistants were

asked to solve the same problem tasks but without any access to either the original or

copied code files. As a result, each original code file has up to 54 copied code files and

15 non-copied code files, resulting in 467 code files in total. This dataset evaluates the

impact of the proposed technique while dealing with conventional similarity disguises.

Similarity disguise taxonomy [16] maps the disguises to seven levels, where each

level covers each of its lower level’s coverage. Rephrased by Karnalim and Budi [27],

these levels are as follows:

• Level 0: Verbatim copy,

• Level 1: Comment and whitespace modification,

• Level 2: Identifier renaming (e.g., variable or function name),

• Level 3: Component declaration relocation (e.g., variable or function),

3https://www.tutorialspoint.com/design pattern/
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• Level 4: Method (or function) structure change,

• Level 5: Program statement replacement,

• Level 6: Logic change.

4.2. Evaluation metrics

Two metrics are used in this evaluation: the similarity degree of the suspected pairs,

and mean average precision (MAP) [13]. On the similarity degree of the suspected

pairs, a detection technique is considered effective if it can enhance the similarity

degree of the suspected pairs, as these pairs should be perceived as identical regardless

of their disguises. Per the dataset, the suspected pairs are generated by pairing each

original code with its copied code files. This results in 56 pairs for the introductory

dataset, 92 pairs for the design pattern dataset, and 355 pairs for the same-language

dataset.

MAP [13] is an Information Retrieval metric for measuring effectiveness calcu-

lated as in (5), where Q are the queries, and aprec(q) is the average precision for

a particular query q. Average precision is measured as in (6); TP are true positives

and prec(tp) is the precision for the top-M results (in which M is the position of tp).

The precision for top-M results is the number of true positives on the top-M positive

results normalized by M.

MAP =

∑
q∈Q aprec(q)

|Q|
(5)

aprec(o) =

∑
tp∈TP prec(tp)

|TP |
(6)

In our context, the queries refer to the original code files, while the true positives

refer to their copied code files and the positive results refer to the union of their copied

and non-copied code files. For each original code file on the introductory and design

pattern datasets, the non-copied code files are the copied files of other original code

files. As a result, the introductory dataset has 7 original files with 8 copied and 49

non-copied files each. The design pattern dataset has 23 original files; each of them

is featured with 4 copied and 88 non-copied files.

We are aware that the effectiveness can be measured with other popular metrics:

precision, recall, and f-score; however, these are not included for three reasons. First –

MAP covers precision to some extent, as the former is derived from the latter (but with

more sensitivity to rank position). Second – recall is not applicable, as our technique

involves no minimum threshold for suspicion. Unlike many detection techniques,

all of the comparison pairs are listed in descending order based on their similarity

degrees, giving more freedom to the examiners for deciding when they need to stop

observing pairs from the top of the list. We believe that hypothetically incorporating

the minimum threshold specifically for this metric is unnecessary; on most occasions,

recall is inversely proportional to precision (or MAP in our case). Third – the f-score
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is also not applicable since it is the harmonic mean between precision and recall (while

recall is not applicable in our context).

4.3. Evaluation methodology

This evaluation aims to answer three research questions:

• R1: Is the proposed technique more effective than common techniques in

academia for dealing with programming language-conversion disguises?

• R2: Do external IDF indexes enhance the effectiveness of the proposed technique

in dealing with programming language-conversion disguises?

• R3: Is the proposed technique comparable to common techniques in academia

for dealing with conventional similarity disguises?

The first research question was addressed by comparing the proposed technique

(with internal IDF indexes on board, referred as idfw) to common techniques in

academia [49] based on the similarity degree of the suspected pairs and MAP. These

common techniques in academia were slightly modified to deal with cross-language

source code plagiarism and collusion. They work in a similar fashion to our proposed

technique except for the fact that TF-IDF-inspired weighting is replaced with either

average normalization (whose calculation can be seen in 7) or maximum normalization

(whose calculation can be seen in 8); c1 and c2 are the numbers of tokens for both code

files, and T are the numbers of matched tokens. The common technique with average

normalization is referred to as avgn, while the counterpart is referred to as maxn. In

terms of the evaluation datasets, the introductory and design pattern datasets were

used, as they exclusively applied programming language-conversion disguises.

avgsim =
2 ∗ T
c1 + c2

(7)

maxsim =
T

min(c1, c2)
(8)

To address the second research question, the proposed technique was further de-

rived to two sub-techniques. The first one relies on the internal dataset for generating

IDF indexes (referred as idfw), while the other relies on the external dataset (referred

to as idfw ext). These sub-techniques were then compared to each other on the intro-

ductory and design pattern datasets, which applied programming language-conversion

disguises. This comparison utilized the same metrics as in the first research question:

the similarity degree of the suspected pairs and MAP.

Considering the fact that we were only able to build the external dataset for eight

programming languages (Java, C++, C#, Javascript, Kotlin, Pascal, Python, and R),

only source code files written in these languages were considered while addressing the

second research question. However, we do believe that these files are still sufficient to

draw some findings, as only the introductory dataset is affected with this reduction

(with seven copied files excluded).
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Each external dataset was built based on ten GitHub trending projects for that

language on February 7, 2019. The projects were selected based on their descending

rank order, with projects whose sizes are larger than 20 MB being skipped.

The third research question was addressed in a similar fashion to the first re-

search question. It compared the proposed technique (idfw) to common techniques

in academia (avgn and maxn), with the similarity degree of the suspected pairs and

MAP as the evaluation metrics. However, the comparison was performed on the

same-language dataset instead of the introductory and design pattern datasets; this

dataset exclusively applied conventional similarity disguises.

4.4. R1 findings

Figure 3 shows that our proposed technique (idfw) generates a higher similarity de-

gree range as compared to common techniques in academia (avgn and maxn). On

average, it is 8.1% higher than avgn while outperforming maxn by 1.4%. Such a phe-

nomenon also occurs on the design pattern dataset (see Fig. 4). idfw ’s average score

is 7.1% higher than avgn and 3.8% higher than maxn. This is to be expected, as idfw

accentuates the impact of rare matches, and some of the copied code files share such

rare matches with their original code files.

Figure 3. Similarity degree distribution for avgn, maxn, and idfw toward introductory

dataset

When the copied code files are grouped together based on their programming

language, Figure 5 shows that idfw outperforms avgn in all programming language

categories except Pascal on the introductory dataset. In that language, idfw ’s aver-

aged similarity degree is 3.8% lower. Further observations show that , Pascal shares

fewer crucial tokens with Java (for raising suspicion) as compared to other program-

ming languages. For example, Pascal uses “<>” to check inequality, while Java uses

“! =”.

Figure 5 shows that, on the introductory dataset, idfw is able to outperform

maxn in five programming languages (C#, Javascript, Python, R, and Scala) while
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performing worse on the remaining languages. Such an inconsistency is expected, as

maxn is able to ignore some mismatched tokens once the number of matched tokens

is equal to the shorter token string size.

Figure 4. Similarity degree distribution for avgn, maxn, and idfw toward design pattern

dataset

Figure 5. Similarity degree distribution for avgn, maxn, and idfw toward introductory

dataset per programming language

On the design pattern dataset, Figure 6 shows that idfw outperforms both avgn

and maxn in most programming languages except Kotlin. Kotlin’s object-oriented

syntax employs additional tokens such as internal and override. idfw considers these

new tokens as mismatches since they are Kotlin-specific.

As depicted in Figure 7, idfw yields higher MAP than avgn on both the introduc-

tory and design pattern datasets (by 9.7% and 4.7%, respectively). idfw prioritizes

rare matches by assigning them with higher IDF scores; such rare matches are fre-

quently found on copied code files.
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Figure 6. Similarity degree distribution for avgn, maxn, and idfw toward design pattern

dataset per programming language

Figure 7. MAP for avgn, maxn, and idfw on introductory and design pattern datasets

When compared to maxn, idfw is far more effective; its MAP is 12.1% higher

on the introductory dataset and 15.4% higher on the design pattern dataset. Both

differences are even greater than those involving avgn; one possible reason behind this

is that maxn occasionally excludes some crucial tokens from consideration (for raising

suspicion) once the number of matched tokens exceeds the shorter token string size.

4.5. R2 findings

The use of external IDF indexes boosts the similarity degree of suspected source code

pairs on the introductory dataset. Figure 8 shows that, on average, our technique

with external IDF indexes (idfw ext) outperforms the same technique with internal

IDF indexes (idfw) by 16.2%. This positive impact also occurs on the design pat-

tern dataset, even though the resulting difference is smaller. According to Figure 9,

idfw ext yields an 8.8%-higher similarity degree than idfw. External IDF indexes

are larger in size as compared to their internal counterparts. Such a large difference
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therefore increases the weights of identifiers, constants, and arithmetic operators –

tokens that are rare and crucial for raising suspicion in both datasets (as language

conversion does not affect these tokens).

Figure 8. Similarity degree distribution for idfw and idfw ext toward introductory dataset

Figure 9. Similarity degree distribution for idfw and idfw ext toward design pattern dataset

When the dataset is grouped per programming language, external IDF indexes

are still favorable than their internal counterparts (see Figs. 10 and 11). Only Kotlin

shows a reduction with such kind of usage on the introductory dataset. Further

observation shows that Kotlin’s external IDF indexes are built from object-oriented

code; this does not suit the introductory dataset’s procedural code.

Nevertheless, an increased similarity degree does not always entail higher MAP.

As seen in Figure 12, idfw ext yields lower MAP than idfw. Its MAP is 1.1% and

0.4% lower on the introductory and design pattern datasets, respectively. A possible

reason behind this is that the external indexes share different term-importance values

than the evaluation datasets, resulting in inaccurate weight proportion. For example,

identifier counter may be rare on the evaluation dataset but common on the external

indexes.
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Figure 10. Similarity degree distribution for idfw and idfw ext toward introductory dataset

per programming language

Figure 11. Similarity degree distribution for idfw and idfw ext toward design pattern dataset

per programming language

Figure 12. MAP for idfw and idfw ext on introductory and design pattern datasets
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4.6. R3 findings

In general, our proposed technique (idfw) generates a lower similarity degree than

common techniques in academia (avgn and maxn) when dealing with conventional

similarity disguises (see Fig. 13). It only leads to a 29.7% averaged similarity degree,

while avgn and maxn generate 81.2 and 86.5%, respectively. This finding is natural

since most of the matched tokens are keywords on the same-language dataset; in

addition, their impact is mitigated by TF-IDF-inspired weighting due to their frequent

occurrences.

Figure 13. Similarity degree distribution for avgn, maxn, and idfw per plagiarism level

toward same-language dataset

Even though idfw ’s similarity degree is significantly lower than both avgn and

maxn, it still shares the same characteristic with these two. The similarity degree is

inversely proportional to the disguise level; higher disguise levels are harder to detect,

as they share fewer tokens.

When perceived from a disguise-level perspective, Figure 13 depicts that the

greatest difference between idfw and avgn occurs on Level-2 (which concerns identifier

renaming). On both idfw and avgn, the renamed identifiers are considered to be

mismatches toward their originals, as they have different mnemonics. However, idfw

weighs such mismatches to a greater degree due to their rare occurrences.

Compared to maxn, the greatest difference occurs on Level-4 (see Figure 13).

This level is about function structure change; most of its implementation is about

replacing method calls with their corresponding contents or vice versa. maxn is in

favor of this since the level leads to higher token size differences between original and

plagiarized code; this difference is exclusively ignored by maxn.

According to Figure 13, Level-1 is where idfw shares the smallest difference to-

ward avgn and maxn. This is expected, as that level’s disguises do not affect the

token string. These only disguise the focus on comments and whitespaces, which are

automatically discarded at the tokenization stage.
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The idfw ’s low similarity degree does not mean that it is less accurate than avgn

and maxn for dealing with conventional similarity disguises. Figure 14 shows that

idfw is comparable to avgn and maxn. On average, it is still more accurate than

avgn (with a 1.4% difference) even though it is less accurate than maxn (with a 1.1%

difference).

Figure 14. MAP for avgn, maxn, and idfw per plagiarism level toward same-language dataset

On the first disguise level, idfw is the only technique that cannot generate 100%

MAP. Several copied files share fewer tokens with their originals than non-copied ones,

which prevents them from being placed at the top of the results. Level-2 is also a level

that does not favor idfw, as its disguises focus on identifier renaming. The renamed

identifiers are considered to be mismatches and are weighted higher on idfw due to

their rarity. On other levels, idfw commonly outperforms avgn and/or maxn.

5. Conclusion and future work

This paper proposes a cross-language source code plagiarism- and collusion-detection

technique. Despite the fact that the technique is language-dependent, it can accom-

modate new programming languages with a minimum amount of effort. For each

language, it only needs a source code tokenizer; this can be generated with the help

of ANTLR [38]. The technique works by applying language-dependent tokenizers,

comparing the token strings with RKR-GST in a pairwise manner, and sorting the

pairs based on their similarity degrees (calculated with the help of a TF-IDF-inspired

weighting).

According to our evaluation, several findings can be concluded. First, for dealing

with language-conversion disguises, our proposed technique is more effective than

common techniques in academia. Second, the use of external IDF indexes can enhance

the resulting similarity degree but not the accuracy (MAP) in dealing with language-

conversion disguises. Third, when handling conventional similarity disguises, our

proposed technique is comparable to common techniques in terms of MAP, but it

generates a lower similarity degree. Fourth, the technique is favorable on advanced

disguise levels.
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In future work, we plan to handle identifier renaming disguise (which is one

of the weaknesses of our technique). All identifiers will be renamed based on their

first-occurrence order (as inspired by [25]). Furthermore, we also plan to evaluate

a technique on similarity disguises that combines language-conversion and conven-

tional disguises. It is possible that, in addition to converting the code to another

programming language, the culprit also applies some other modification.
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