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Abstract In this work, we use the single-threshold and double-threshold set-membership
affine projection algorithm to censor non-informative and irrelevant data in
big data problems. For this purpose, we employ the probability distribution
function of the additive noise in the desired signal and the excess of the mean-
squared error (EMSE) in steady-state to evaluate the threshold parameter of
the single -threshold set-membership affine projection (ST-SM-AP) algorithm
intending to obtain the desired update percentage. In addition, we propose the
double-threshold set-membership affine projection (DT-SM-AP) algorithm to
detect very large errors caused by unrelated data (such as outliers). The DT-
-SM-AP algorithm is capable of censoring non-informative and unrelated data
in big data problems, and it will promote the misalignment and convergence
speed of the learning procedure with low computational complexity. The syn-
thetic examples and real-life experiments substantiate the superior performance
of the proposed algorithms as compared to traditional algorithms.
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1. Introduction

Big data is a growing area that means large volumes of structured, semi-structured,
and unstructured data that poses a challenging job to be processed by using conven-
tional approaches and databases. It is a technique for acquainted decision-making uti-
lizing analytical methods to explain any data set that is massive enough that it needs
the use of high-level programming skills and techniques to turn the data into an asset
for a company [9]. Data abundance is an omnipresent characteristic in machine learn-
ing, adaptive filtering, and big data applications, and it leads to high computational
burden, wastes of energy and time, and memory usage. By employing data redun-
dancy, we can develop the learning achievement and decrease the computational load.
A practical method for using data redundancy is by examining non-informative data.
There are various papers benefiting from data censoring, such as censoring outliers
in radar data [8], big data processing [5,30], multi-sensor systems [29], sensor-centric
data reduction [15], wireless sensor networks [14], and data selective adaptive filters
for sparse systems [7, 20, 23]. These works explain the benefits of censoring data as
compared to using all of the data.

Set-membership filtering (SMF) is a useful approach in apportioning data into
informative and non-informative data sets [6]. In this technique, we evaluate, choose,
and process the data at each iteration instead of assessing all of the data in the learning
process. SMF algorithms implement a new update whenever the error is larger than
a decided value and an incoming dataset comprises sufficient innovation. Contrarily,
the SMFmethod stops the algorithm from realizing new updates; consequently, we will
experience a decrease in computational resources. The most famous SMF algorithms
are the set-membership normalized least-mean-square [1,28] and the set-membership
affine projection [19] algorithms, where they reduce computational costs by exploiting
data redundancy. In addition, there are many variants of SMF algorithms in the
literature [2, 4, 7, 11,13,17,18,22,24].

SMF is a practical technique for censoring data in big data problems; however,
owing to the massive volume of data, it would be more efficient to previously manage
the volume/portion of data we want to use in the learning process. In real problems,
various limitations can affect our capability to process incoming data, like restrictions
on the available energy, time, memory, etc. Hence, to defeat the limitations and
obtain the preferred outcome, we must be able to define the informative incoming
data. In this work, by reviewing [27], we utilized the sought-after probability of
updating coefficients to approximate the threshold parameter in the single-threshold
set-membership affine projection (ST-SM-AP) algorithm to censor non-informative
data.

SMF algorithms (including ST-SM-AP) control incoming data based on the abso-
lute value of the error signal. In other words, if the energy of the error is greater than
the threshold, the ST-SM-AP algorithm updates the adaptive coefficients of the sys-
tem; otherwise, they remain unmodified. Very large errors do not always demonstrate
the existence of informative data. To be more accurate, sometimes we perceive very
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large error due to the presence of some unrelated data (such as outliers); in these sit-
uations, censoring the data is more efficient. Thus, we introduce the double-threshold
set-membership affine projection (DT-SM-AP) algorithm that assumes a satisfactory
range for the absolute value of the error to cut non-informative and irrelevant data
and avoid undesirable updates. The DT-SM-AP algorithm executes the update when
the absolute value of the error is between two threshold parameters [3].

This work is organized as follows. Section 2 reviews the set-membership filtering
approach. Section 3 describes the ST-SM-AP algorithm. Section 4 introduces the
approximate of the threshold parameter to censor non-informative incoming data.
Section 5 proposes the DT-SM-AP algorithm. Simulations and real-life experiments
are presented in Sections 6. Finally, conclusions are drawn in Section 7.

Notations: Scalars are presented as lower-case letters, and vectors (matrices)
are denoted by lower-case (upper-case) boldface letters. At given iteration k, the
optimum solution, weight vector, and input vector are represented by wo, w(k), and
x(k) ∈ RN+1, respectively, where N is the adaptive filter order. For a given iteration
k, the error is described by e(k) , d(k) −wT (k)x(k), where d(k) ∈ R is the desired
signal, and (·)T shows for the vector and matrix transposition. Furthermore, P [·] and
E[·] stand for the probability and expected value operators, respectively. Moreover,
0 stands for the zero vector.

2. Set-membership filtering

The SMF approach proposed in [6,26] is suitable for adaptive filtering problems that
are linear in parameters. Thus, for a given input signal vector x(k) ∈ RN+1 at itera-
tion k and filter coefficients w ∈ RN+1, the output signal of the filter is obtained by

y(k) = wTx(k) (1)

where x(k) = [x0(k) x1(k) · · · xN (k)]T and w = [w0 w1 · · · wN ]T .

For a desired signal sequence d(k), estimation error sequence e(k) is computed as

e(k) = d(k)− y(k) (2)

The SMF criterion aims at estimating parameter w such that the magnitude of
the estimation output error is upper-bounded by a constant γ ∈ R+ for all possible
pairs (x, d). If the value of γ is suitably selected, there are various valid estimates for
w. The threshold is usually chosen based on a priori information about the sources of
uncertainty. Note that any w leading to an output estimation error with a magnitude
smaller than γ is an acceptable solution. Hence, we obtain a set of filters rather than
a single estimate.
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Let us denote as S the set comprised of all possible pairs (x, d). We want to find
w such that |e| = |d−wTx| ≤ γ for all (x, d) ∈ S. Therefore, feasibility set Θ will be
defined as

Θ ,
⋂

(x,d)∈S

{w ∈ RN+1 : |d−wTx| ≤ γ} (3)

so that the SMF criterion can be stated as finding w ∈ Θ.
In the case of online applications, we do not have access to all mem-

bers of S. Thus, we consider the practical case in which only measured data
is available and develop iterative techniques. Suppose that set of data pairs
{(x(0), d(0)), (x(1), d(1)), · · · , (x(k), d(k))} is available, and define constraint set H(k)

at time instant k as

H(k) , {w ∈ RN+1 : |d(k)−wTx(k)| ≤ γ} (4)

Also, define exact membership set ψ(k) as the intersection of the constraint sets from
the beginning (i.e., the first iteration) to iteration k, or

ψ(k) ,
k⋂
i=0

H(i) (5)

Then, Θ can be iteratively estimated via the exact membership set since
limk→∞ ψ(k) = Θ.

Figure 1 shows the geometrical interpretation of the SMF principle. The bound-
aries of the constraint sets are hyperplanes, and H(k) corresponds to the region be-
tween the parallel hyperplanes in the parameter space. The exact membership set
represents a polytope in the parameter space. The volume of ψ(k) decreases for each
k in which pairs (x(k), d(k)) bring about some innovation. Note that Θ ⊂ ψ(k) for
all k, since Θ is the intersection of all possible constraint sets.

d(1)−w
T
x(1) = γ̄

d(1)−w
T
x(1) = −γ̄

d(0)−w
T
x(0) = γ̄

d(0)−w
T
x(0) = −γ̄

H(1)

H(0)

Θ

 (1)

Figure 1. SMF geometrical interpretation in parameter space ψ(1)
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The target of set-membership adaptive filtering is to adaptively obtain an esti-
mate that belongs to the feasibility set. The simplest method is to calculate a point
estimate using, for example, the information provided by H(k) similar to the set-
membership normalized least-mean-square algorithm or several previous H(k)s (like
in the SM-AP algorithm).

3. ST-SM-AP algorithm

Data-reusing algorithms can promote the convergence velocity of the learning pro-
cedure, especially if the input signal is correlated. For the last decades, the affine
projection (AP) algorithm has been conventionally assumed to be the benchmark
among data-reusing algorithms, whereas the AP algorithm is not able to take advan-
tage of data redundancy. By joining the SM approach with the AP algorithm, the
single-threshold set-membership affine projection (ST-SM-AP) algorithm has been
proposed [19] to decrease the computational load of the AP algorithm. However, we
want to employ the ST-SM-AP algorithm to censor data and use data abundance
in big data problems. Let us introduce some basic variables for the ST-SM-AP al-
gorithm. Assume that x(k) and d(k) are the input vector and the desired signal,
respectively, and we have access to the last L+ 1 x(k) and d(k). At a given iteration
k, assume that input matrix X(k), input vector x(k), adaptive filter w(k), desired
vector d(k), additive noise vector n(k), constraint vector (CV) γ(k), and error vector
e(k) are defined by

X(k) = [ x(k) x(k − 1) · · · x(k − L)] ] ∈ R(N+1)×(L+1)

x(k) = [ x(k) x(k − 1) · · · x(k −N) ]T ∈ RN+1

w(k) = [ w0(k) w1(k) · · · wN (k) ]T ∈ RN+1

d(k) = [ d(k) d(k − 1) · · · d(k − L) ]T ∈ RL+1

n(k) = [ n(k) n(k − 1) · · · n(k − L) ]T ∈ RL+1

γ(k) = [ γ0(k) γ1(k) · · · γL(k) ]T ∈ RL+1

e(k) = [ e0(k) e1(k) · · · eL(k) ]T ∈ RL+1

(6)

in which N and L are the adaptive filter order and data-reuse parameter, respectively.
The components of γ(k) must satisfy |γi(k)| ≤ γ1, for i = 0, 1, · · · , L, in which
γ1 ∈ R+ is the upper limit for the absolute value of the error. In addition, error
vector e(k) is described by e(k) = d(k)−XT (k)w(k).

We can now characterize the update equation of the ST-SM-AP algorithm by [19]:

w(k + 1) =

{
w(k) + X(k)

[
XT (k)X(k) + δI

]−1
(e(k)− γ(k)) if |e(k)| > γ1,

w(k) otherwise
(7)

where δ ∈ R+ and I ∈ R(L+1)×(L+1) are a regularization parameter and the identity
matrix, respectively, and δI is summed with XT (k)X(k) to prevent singular matrix
inversion. In the next section, we will propose a strategy to approximate γ1 so that
it results in the solicited update rate in big data problems.
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4. Estimating γ1 in ST-SM-AP algorithm

By reviewing [27], we approximate γ1 in the ST-SM-AP algorithm for online censoring
in flowing big data problems in this section. In streaming data (and when we have
data abundance), it is helpful to attain a satisfactory solution by adopting a prede-
termined portion of data rather than processing all of the acquired data. Thus, given
a predetermined update rate, we want to approximate threshold parameter γ1 such
that the update rate of the ST-SM-AP algorithm does not pass the decided update
percentage. This means that, for a given 0 < p < 1 and assuming the recursion
rule (7), we want to measure γ1 such that

P[|e(k)| > γ1] = p (8)

Note that, by considering p, γ1 is responsible for selecting the most informative data
in the learning procedure.

To compute the suitable value of γ1, we must have access to the probability
distribution of error signal e(k). In general, the probability distribution of the er-
ror signal is not available. However, when the adaptive filter order is large enough,
error signal e(k) has a zero-mean Gaussian distribution [11]. Hence, by employing
the probability distribution of n(k) in (8), the suitable value of γ1 can be computed.
Also, in [25], it has been shown that the ST-SM-AP algorithm is robust; there-
fore, ‖E[wo − w(k)]‖2 < ∞ for all k ∈ N and (generally) E[wo − w(k)] ≈ 0 in the
steady-state.

In many real-life problems, the probability distribution of the noise is the zero-
mean Gaussian noise with variance σ2

n. Hence, by considering this distribution, we can
evaluate threshold γ1. Defining the noiseless error signal by ẽ(k) = xT (k)[wo−w(k)]T ,
we know that ẽ(k) is uncorrelated with n(k); thus, we get [27].

E[e(k)] = E[ẽ(k)] + E[n(k)] = 0 (9)
Var[e(k)] = E[ẽ2(k)] + σ2

n (10)

The excess of mean-squared error (EMSE) for the ST-SM-AP algorithm in the steady-
state is given by [10].

E[ẽ2(k)] =
(L+ 1)[σ2

n + γ21 − 2γ1σ
2
nρ]p

[(2− p)− 2(1− p)γ1ρ]

( 1− a
1− aL+1

)
(11)

where

ρ =

√
2

π(2σ2
n + 1

L+1γ
2
1)

(12)

a = [1− p+ 2pγ1ρ](1− p) (13)

Using Equation (11) to obtain E[ẽ2(k)], we require γ1; thus, we first assume that
E[e(k)] = 0, Var[e(k)] = σ2

n, and the distribution of e(k) is the zero-mean Gaussian



Data censoring with set-membership affine projection algorithm 49

with variance σ2
n. Therefore, for a given p, the initial approximation of γ1 can be

obtained by [27]. ∫ ∞
γ1

1√
2πσ2

n

exp(− r2

2σ2
n

)dr =
p

2
(14)

Afterwards, by using the acquired approximation of γ1, we substitute it into
Equations (11), (12) and (13) to compute E[ẽ2(k)]. Thus, we can compute the variance
of e(k) by Equation (10); the distribution of the error would be a zero-mean Gaussian
with variance σ2

e = Var[e(k)] = E[ẽ2(k)] + σ2
n. Therefore, the improved estimate for

γ1 can be attained by [27].

∫ ∞
γ1

1√
2πσ2

e

exp(− r2

2σ2
e

)dr =
p

2
(15)

5. DT-SM-AP algorithm

The ST-SM-AP algorithm updates the adaptive coefficients when the absolute value of
the error is greater than γ1. In fact, the ST-SM-AP algorithm considers all incoming
data with absolute value errors that are larger than γ1 as innovation, but this can be
wrong (especially when there are outliers). In other words, a very large error can
occur because of some irrelevant information from the incoming data, like outliers,
system saturation, impulsive noise, etc. Thus, we review the double-threshold set-
-membership affine projection (DT-SM-AP) algorithm here to cut data without new
information and to evade irrelevant data.

The idea of the DT-SM-AP algorithm is to avoid a new update when the absolute
value of the error is very large. Thus, we assume an acceptable range for the error
signal by choosing lower and upper threshold γ1 and γ2, respectively. Then, if γ1 <
|e(k)| < γ2, we execute a new update; otherwise, we avoid a new update. Therefore,
the recursion rule of the DT-SM-AP algorithm can be described by [27].

w(k + 1) =

{
w(k) + X(k)

[
XT (k)X(k) + δI

]−1
(e(k)− γ(k)) if γ1 < |e(k)| < γ2,

w(k) otherwise

(16)

Note that γ1 can be estimated using the strategy presented in the previous sec-
tion. Moreover, the function of γ2 is to detect irrelevant incoming data; thus, de-
pending on the applications, we can adopt a sufficient large value for γ2.

6. Experimental results

In this section, we use the AP, ST-SM-AP, and DT-SM-AP algorithms in numerical
examples and real-life problems under system identification scenarios. We compute
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threshold parameter γ1 by using the approach proposed in Section 4 when the desired
update rate is given as p. The unknown system is denoted by wo, and it is of order 9;
i.e., it has ten coefficients. The coefficients of wo are drawn from the Gaussian
distribution with zero mean and unit variance. Three different input signals are
utilized; namely, binary phase-shift keying (BPSK), zero-mean white Gaussian noise
with unit variance (WGN), and the first-order autoregressive signal (AR(1)) generated
by x(k) = 0.8x(k−1) +m(k), where m(k) is a WGN signal. The signal-to-noise ratio
(SNR) is adopted as 14 dB; i.e., the variance of additive noise signal is σ2

n = 0.04. The
regularization factor and initialization vector are chosen as δ = 10−12 and w(0) =

[0 · · · 0]T , respectively. The simple choice constraint vector (CV) is adopted as
γ(k) [12,25]. The convergence factor of the AP algorithm is informed at each figure.
The number of iterations is 10, 000, and the learning curves and update rates are
computed by averaging the results of 1000 independent trials.

6.1. Numerical examples

In this subsection, threshold parameter γ1 is estimated for the ST-SM-AP algorithm
using the proposed approach in Section 4 (when L = 2) to obtain the desired results by
chosen update rates p = 0.15, 0.30, and 0.44. The approximated threshold parameters
for L = 2 as well as p = 0.15, 0.30, and 0.45 are listed in Table 1.

Table 1
Value of estimated γ1 for p = 0.15, 0.3, 0.44, and L = 2

p 0.15 0.3 0.44

γ 0.343 0.2474 0.1903

Moreover, the update rates of the ST-SM-AP employing the estimated threshold
parameters and 3 different input signals in 10, 000 iterations are described in Table 2.
We can observe that, by employing the computed γ1s, the resulting update rates
listed in Table 2 are close to the values of p. Hence, using the estimating γ1s, the
ST-SM-AP algorithm has censored non-informative suitably.

Table 2
Resulting update rates employing computed γ1 for p = 0.15, 0.3, 0.44, and L = 2 for

ST-SM-AP algorithm and three different input signals

Input signal
p

0.15 0.3 0.44

BPSK 0.1498 0.2994 0.4392

WGN 0.1508 0.3007 0.4410

AR(1) 0.1514 0.3015 0.4417
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Figures 2a–2i illustrate the MSE learning curves of the AP and ST-SM-AP al-
gorithms (when L = 2) for input signals BPSK, WGN, and AR(1) and the three
estimated γ1s for p = 0.15, 0.3, and 0.44.
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Figure 2. MSE learning curves of AP and ST-SM-AP algorithms for L = 2, considering:
a) γ1 = 0.343 and BPSK input signal; b) γ1 = 0.343 and WGN input signal; c) γ1 = 0.343

and AR(1) input signal; d) γ1 = 0.2474 and BPSK input signal; e) γ1 = 0.2474 and WGN
input signal; f) γ1 = 0.2474 and AR(1) input signal; g) γ1 = 0.1903 and BPSK input signal;

h) γ1 = 0.1903 and WGN input signal; i) γ1 = 0.1903 and AR(1) input signal

Two different step-sizes for the AP algorithm (0.1 and 0.9) are selected. The
update rates of the ST-SM-AP algorithm for these figures are presented in Table 2.
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We can see that, when the step-size of the AP algorithm is large, the AP algorithm
has a convergence rate as fast as the ST-SM-AP algorithm; however, the MSE of
the ST-SM-AP algorithm is superior to that of the AP algorithm. When we adopt
a small step-size for the AP algorithm to reach the MSE of the ST-SM-AP algo-
rithm, the convergence velocity of the AP algorithm decreases remarkably. Also, note
that the ST-SM-AP algorithm has an extremely lower computational cost as com-
pared to the AP algorithm. Therefore, the ST-SM-AP algorithm can easily obtain
a superior performance to the AP algorithm in big data applications.

To present an example using the DT-SM-AP algorithm, the AP, ST-SM-AP,
and DT-SM-AP algorithms have been executed to identify wo at the presence of
an outlier signal. All of the parameters of the tested algorithms are chosen in an
identical fashion to the previous example. The outlier added to the desired signal is
generated by a Bernoulli process, which takes 1 with a probability of 0.05, then it is
multiplied by uniformly distributed random numbers from interval (0, 40).

To detect outliers and prevent updating adaptive coefficients for irrelevant data
using the DT-SM-AP algorithm, the upper threshold is selected as γ2 = 1. In this
case, the update rates of DT-SM-AP for L = 2 as well as the BPSK, WGN, and AR(1)
input signals are presented in Table 3. As can be seen, the resulting update rates are
close to the values of p in the presence of an outlier signal. Therefore, by adopting
the estimated γ1s and γ2, the DT-SM-AP algorithm has censored the incoming data
as we desired.

Table 3
Resulting update rates employing computed γ1 for p = 0.15, 0.3, 0.44, L = 2, and γ2 = 1

for DT-SM-AP algorithm and three different input signals

Input signal
p

0.15 0.3 0.44

BPSK 0.1496 0.2997 0.4395

WGN 0.1507 0.3010 0.4409

AR(1) 0.1516 0.3017 0.4418

Also, Figures 3a–3i show the misalignment curves of the AP, ST-SM-AP, and
DT-SM-AP algorithms for L = 2 as well as the BPSK, WGN, and AR(1) input
signals. Similar to the previous example, two step-sizes in the AP algorithm (0.1 and
0.9) are chosen such that the small µ results in a low MSE and low convergence speed;
however, the large µ leads to a high MSE and high convergence velocity. Contrary
to the update rates of the DT-SM-AP that is provided in Table 3, the update rates
of the ST-SM-AP algorithm are greater than 80% due to the unnecessary updates in
the presence of outliers. Therefore, the DT-SM-AP algorithm performs better in the
presence of outliers when compared to the ST-SM-AP and AP algorithms.



Data censoring with set-membership affine projection algorithm 53

a)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-50

-40

-30

-20

-10

0

10

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

b)

Number of iterations, k

0 200 400 600 800 1000
‖w

(k
)
−
w

o
‖2

[d
B
]

-30

-20

-10

0

10

20

30

40

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

c)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-30

-20

-10

0

10

20

30

40

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

d)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-50

-40

-30

-20

-10

0

10

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

e)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-40

-20

0

20

40

60

80

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

f)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-20

-10

0

10

20

30

40

50

60

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

g)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-50

-40

-30

-20

-10

0

10

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

h)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-30

-20

-10

0

10

20

30

40

50

60

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

i)

Number of iterations, k

0 200 400 600 800 1000

‖w
(k
)
−
w

o
‖2

[d
B
]

-20

-10

0

10

20

30

40

AP: µ=0.9

AP: µ=0.1

ST-SM-AP: L=2

DT-SM-AP: L=2

Figure 3. Misalignment curves of AP, ST-SM-AP, and DT-SM-AP algorithms for L = 2,
considering: a) γ1 = 0.343 and BPSK input signal; b) γ1 = 0.343 and WGN input signal;
c) γ1 = 0.343 and AR(1) input signal; d) γ1 = 0.2474 and BPSK input signal; e) γ1 = 0.2474

and WGN input signal; f) γ1 = 0.2474 and AR(1) input signal; g) γ1 = 0.1903 and BPSK
input signal; h) γ1 = 0.1903 and WGN input signal; i) γ1 = 0.1903 and AR(1) input signal

6.2. Real-life example

In this subsection, we utilize the AP, ST-SM-AP, and DT-SM-AP algorithms to iden-
tify a measured unknown system corresponding to the room impulse response (RIR)
tested in [16, 21]. For the AP algorithm, the step-size is chosen as µ = 0.9. For the
ST-SM-AP algorithm, L = 1 and γ1 = 0.1692. Also, for the DT-SM-AP algorithm,
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L = 1, γ1 = 0.1692, and γ2 = 1. The SNR is adopted as 20 dB, and the input signal
is a WGN signal. The initialization vector and regularization parameter are selected
as the null vector and 10−12, respectively.

Figures 4a and 4b present the MSE learning curves and the values of
E‖w(k)−w∗‖, respectively, when the unknown system to be identified is the RIR. As
can be seen, the ST-SM-AP and DT-SM-AP algorithms have superior performances
to the AP algorithm. Moreover, the update rate of the ST-SM-AP and DT-SM-AP
algorithms are 53.34% and 47.61%, respectively, while the AP algorithm updates the
adaptive coefficients for all iterations. Therefore, besides the superior performance,
the proposed algorithms require lower computational costs.
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Figure 4. Results of proposed algorithms applied to identification of measured RIR: a) MSE
learning curves of ST-SM-AP algorithms; b) value of E‖w(k)−w∗‖ for ST-SM-AP,

DT-SM-AP, and AP algorithms

7. Conclusions

In this paper, we have proposed the single-threshold set-membership affine projection
(ST-SM-AP) and the double-threshold set-membership affine projection (DT-SM-AP)
algorithms to employ data abundance and censor non-informative and irrelevant data.
To this end, the threshold parameter is approximated to obtain the desired update
rate. Indeed, the probability distribution function of the additive noise signal and the
excess mean-squared error in steady-state have been utilized to estimate the threshold
parameter of the ST-SM-AP and DT-SM-AP algorithms. The ST-SM-AP algorithm
prevents updating for non-informative data, whereas the DT-SM-AP algorithm avoids
updating for non-informative and irrelevant data. The numerical results and real-life
examples corroborate the superiority of the ST-SM-AP and DT-SM-AP algorithms
when compared to the conventional affine projection algorithm.
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