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Abstract To face the increasing demand of quality healthcare, cutting-edge automation

technology is being applied in demanding areas such as medical imaging. This

paper proposes a novel approach to classification problems on datasets with

sparse highly localized features. It is based on the use of a saliency map in the

amplification of features. Unlike previous efforts, this approach does not use

any prior information about feature localization. We present an experimental

study based on the Diabetic Retinopathy classification problem, in which our

method has shown to achieve an over 20%-higher accuracy in solving a two-

class Diabetic Retinopathy classification problem than a naive approach based

solely on residual neural networks. The dataset consists of 35,120 images of

various qualities, inconsistent resolutions, and aspect ratios.
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1. Introduction

Medical image analysis is a complex field of applied computer vision. Due to the

ramifications of an incorrect judgement, the correctness requirements are very high.

Given the nature of some medical conditions, the features of interest tend to be subtle,

especially in the early stages of a disease (when treatment is easier).

It is often the case that the features will be sparsely distributed over the input

image and strongly localized in a few places; this makes the problem difficult to solve,

usually requiring a trained human expert such as an experienced physician to make

the assessments. Typical problems that fall into this category include (but are not

limited to) tumor detection in X-ray and computer tomography scans [13, 16] or

(micro-)stroke detection in magnetic resonance imaging scans [10]. In this paper, we

focus on diabetic retinopathy, which is often abbreviated “DR” [21] (cf. Fig. 1).

Figure 1. Example fundi images from each class ordered by increasing amounts of retinal

deterioration. Image in top-left corner shows healthy retina (Class 0). Bottom image is

example of proliferative retinopathy (Class 4)
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The retina is a tissue that is responsible for converting visual stimuli into chemical

signals that are subsequently transmitted to and interpreted by the visual cortex,

which is located in the occipital lobe of the brain [17]. In patients with Type I

diabetes, abnormally high concentrations of glucose are found in the blood, resulting

in persistent damage to their internal organs. As the diabetes progresses, high blood

sugar levels cause the blood vessels to become damaged and perforated, resulting in

small hemorrhages that can damage the retina.

This can be detected by a non-invasive medical procedure called ophthalmoscopy;

during this procedure, the retina is examined (or photographed) through the pupil

with an optical device. Unfortunately, the examination part is a significant bottleneck

of the process. Detecting tiny fractures in vessels, micro-aneurysms, and blood clots

is a task that is challenging even for a licensed physician. In the case of a scarcity

of specialists, this can limit access to medical care. Annotated image analysis for

ophthalmology would alleviate this concern.

Most state-of-the-art approaches to medical image analysis rely on the appli-

cation of neural networks. In general, neural networks are a family of models that

approximate some decision function using a combination of linear transformations,

which are referred to as layers. A layer is usually represented by a weight matrix

whose dimensions define the number of input and output features. After each layer,

a non-linear activation function is usually applied. During the training phase, the in-

put data is first propagated through the network to find out the network’s response.

Next, a loss function is used to measure the difference between the ground truth

and the predictions. After that, a gradient is calculated and the weights of each

layer updated, as the gradient is propagated backwards through the network to find

a minimum of the loss function. This is usually achieved by a stochastic optimization

algorithm such as SGD with momentum [1].

Related work

Various approaches have been used to address the image classification problem. Aside

from the more classical approaches using feed-forward neural networks of limited

depths, a vast part of the most successful results was achieved using deep convolutional

neural networks (CNNs). Numerous architectures have been tested on benchmarks

such as CIFAR-10 [11] or ImageNet [12]. Recent advancements have also made the

process of training faster, allowing us to achieve better accuracy [4]. The DR image

classification problem has been well-known to the community and approached several

times.

Yun introduced a well-performing method that relies on heavily pre-processed

input used to train a feed-forward neural network [22]. In 2015, Haloi proposed

a compact convolutional neural network model [7], achieving state-of-the-art accuracy

in detecting micro-aneurysms using a dataset with pixel-level ground truths. During

the same year, a solution to the coexistent problem of blood vessel detection was

proposed by [15] using neural networks for digital fundus image segmentation.
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Recent efforts by Gulshan et al. [6] have resulted in significant progress compared

to the previous works. Their solution is based on significant data augmentation and

the preprocessing of a large dataset consisting of more than 120,000 fundus images.

The ground truth labels in this model contained detailed information about image

quality and were reviewed by multiple board-certified ophthalmologists. An interest-

ing approach with comparable results was proposed by Lim et al., who used image

segmentation to assess the presence of DR in images [14]. All of these contributions

assumed prior knowledge about exact feature localization and often an augmented

set of ground truths. This is in contrast to our work, which attempts to learn the

features and their localizations merely from the class membership information.

The structure of this work is organized as follows. In Section 2, we describe the

architecture of the network models used and the processing pipeline. In Section 3, we

present the experiment design and experimental results. Section 4 summarizes the

results and presents the direction of future work.

2. Classification model

In the approach described in this paper, we use convolutional neural networks. A neu-

ral network is a machine-learning model that applies a series of linear and non-linear

transformations on input data in order to make predictions. Unlike other types of

classifiers (e.g., Kernel SVM), it does not depend on a fixed set of basis functions; it

allows the basis functions to be altered during the training to fit the modeled data

more accurately. In addition, hidden layers of convolutional neural networks apply

the convolution operation using filters learned during the training.

The use of convolution makes the model shift invariant; this trait is valuable

in general image processing, as it decouples the feature presence from its location

and provides significantly better generalization capabilities. However, sometimes it is

important to know the location of the feature; for example, when there are multiple

objects of interest in one image, or its location has valuable information. Image seg-

mentation is a well-known problem that has been successfully approached by a number

of studies using pixel-wise classification [12, 20] or other techniques [18], most of which

require label data that contains at least some segmentation information. In this work,

no prior localization information is required, yet the model is capable of predicting

the approximate location of the features of interest.

2.1. Network architecture

The architecture of our model is based on residual networks [9], which enables the

construction of networks with a larger number of hidden layers while avoiding the

vanishing gradient problem. The entire model employs a set of networks that are all

constructed in a similar way (as shown in Figure 2).
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Figure 2. Diagram of base neural network architecture. There are two types of blocks differ-

ing by optional dimensionality reduction. If dimensionality is reduced, then skip connection

applies max-pooling to match dimensionality. Otherwise, skip-connection is simply iden-

tity, as described in [9]. Dimensionality-reducing layers are marked with red background.

All layers include zero-padding in order to keep dimensions equal to powers of two. Each

convolutional layer is annotated with its window size and input and output dimensionalities
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The network consists of an input segment, five residual segments composed se-

quentially, and a fully connected layer for classification. Each residual segment ac-

cepts the output of the preceding one. The output of such segment is the sum of

two transformations: one is either identity or max pooling, depending on the desired

dimensionality of the output; the other is built from three subsequent convolutional

layers, each followed by a batch normalization layer. Various modifications are ap-

plied to the base network architecture. During the computation of the saliency map,

a modified back-propagation algorithm is used [19]. In the final prediction network,

adaptive spatial pooling layer [8] is used to ensure the consistency of the output ten-

sor dimensionality with minimal computational cost.The layer automatically adjusts

the stride and kernel size parameters in order to obtain the desired output tensor

dimensionality.

2.2. Feature extraction

First, we train our model by using images downsampled to 3 × 1024 × 1024 pixels

in order to distinguish among classes {0, 1} (referred to as “healthy”) and {2, 3, 4}
(referred to as “unhealthy”). The images are preprocessed by subtracting the average

image calculated over the entire training set. In addition, each image is normalized

on the fly by stretching its histogram so that the brightest pixel has a value of 1 and

the darkest pixel has a value of 0.

We apply the method above in a new approach to classification that is based on

applying saliency maps to reinforce the information about the locations of important

features. This allows us to create a classification model that makes predictions based

on the parts of the input image that contains the most important information. This

first training step enabled the network to learn strong and prevalent features that

could be easily distinguished from the surroundings. In particular, the key idea is to

use the information stored in the network’s weights to trace the parts of the input

image that caused the increase in the probabilities of the positive class. To achieve

this, the trained model is modified by changing all of the layers in such a manner

that they back-propagate the gradient only for the positive class while the gradient

corresponding to the negative is set to 0. The gradient is then propagated from the

output layer down to the input layer. After calculating the gradient with respect to the

input, an average over all three channels is calculated, resulting in a grayscale image.

The intensity of each pixel describes how much it increases the probability of image

being classified as “unhealthy”. The result is called a saliency map [19]. See Figure 3

for an example visualization. After obtaining the saliency map, we perform the max

operation on it in order to select the most important area of the input image. The

straightforward approach here is to select the point with the highest value. However,

one can also consider applying a clustering method that will preserve information

about the detections of density in order to lower the significance of random noise.

The coordinates of the points with the greatest influence on the positive class are

subsequently used to generate 1581 3 × 512 × 512 pixel-sized crops centered around



Approach to classifying data with highly localized unmarked features. . . 335

the corresponding pixels in the full-resolution images from members of the “4” and

“5” classes (see Figure 4 for an example).

Figure 3. Example of a saliency map for a member of Class 4. The red rectangle denotes

the area selected as the center of the most suspicious area of the fundus image

Figure 4. Example of most suspicious area for member of Class 4. Arrows denote features

of interest including micro-aneurysm and signs of sub-retinal hemorrhage
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If the location of the center causes the crop boundaries to overflow the image,

the center is shifted accordingly. This allows us to gather more information about

the suspicious area (as opposed to simply padding the overflow). Crops of the images

representing the “0” class are acquired by randomly selecting the 3× 512× 512 crop

windows.

The crops acquired as a result of this process are then labeled as follows: those

selected from the images representing the “0” or “1” classes are given a “healthy”

label, while the others are labeled “unhealthy.” Next, the same network architecture

shown in Figure 2 is used to train the prediction model that distinguishes between

these two classes. Finally, we create a corresponding network by copying all of the

weights from the previous one but replacing the fully-connected layer with a 1 × 1

convolution. This technical trick enables the network to avoid size-mismatch errors

when dealing with input images of variable sizes. Each training image is assessed

by the network. We also introduce a new parameter (κ), which determines the per-

centage of pixels from each image that are not taken into account. Its purpose is

to minimize the “border effect”, which causes the network to generate unrealistically

high probabilities in locations with very high variances. Most of these regions occur

around the circular borders of the fundus. After the network processing, a new crop

center is selected for each image by the rule shown in Formula 1.

(cx, cy) = arg max
κw<x<w−κw
κh<y<h−κh

In(x, y) (1)

where In(x, y) returns the intensity of the saliency map for the (x, y) pixel in the

original input image.

Next, each center is used to generate crops in the same manner as in the previ-

ous step; these are then used to create one of the two final prediction models. We

experiment with two approaches to make our predictions. The first one is to train

the final CNN with the crops acquired in the second iteration and apply it to the

entire full-size image, resulting in a tensor representing the probabilities of each class

for overlapping areas of the image (as if a sliding convolutional window was applied).

However, this proved to be ineffective. The majority of the image fragments were

assigned such probabilities of being members of the “unhealthy” class that the two

classes would not be separable. The process is presented in detail in Listing 1.

Listing 1. Pseudocode for first approach to final image classification

1 c r o p s s t e p 1 = [ ] , c r o p s s t e p 2 = [ ]

2 net := tra in network ( t r a i n i n g s e t )

3 f o r image in downsampled tra in ing set :

4 re sponse := net . f o rward pass ( image )

5 map:= sa l i ency map ( response )

6 map:= app ly kappa ru l e (map)

7 ( cx , cy ):=argmax (map)

8 crop := c r e a t e c r o p ( f u l l i m ag e , cx , cy )
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9 c r o p s s t e p 1 . addNew( crop )

10 n e t c r o p s 1 := tra in network ( c r o p s s t e p 1 )

11 f o r image in f u l l s i z e t r a i n i n g s e t :

12 re sponse := n e t c r o p s 1 . fo rward pass ( image )

13 map:= sa l i ency map ( response )

14 map:= app ly kappa ru l e (map)

15 ( cx , cy ):=argmax (map)

16 f u l l i m a g e := g e t m a t c h i n g f u l l i m a g e ( image )

17 crop := c r e a t e c r o p ( f u l l i m ag e , cx , cy )

18 c r o p s s t e p 2 . addNew( crop )

19 n e t c r o p s 2 := tra in network ( c r o p s s t e p 2 )

20 f o r image in f u l l s i z e v a l i d a t i o n s e t :

21 re sponse := n e t c r o p s 2 . fo rward pass ( image )

22 p r o b a b i l i t i e s := histogram ( response )

23 re turn p r e d i c t i o n ( histogram )

To tackle the issues mentioned above, we decided to apply the following steps:

1. Train the CNN constructed as shown in Figure 2 with downsampled images.

2. Process the full-size image with the network previously trained on downsampled

images modified by applying an adaptive spatial pooling layer before the fully

connected layer. This allows the network to output a single vector of probabilities

for the entire image rather than a set of overlapping segments.

3. Obtain a saliency map of the full-size image.

4. Apply the kappa border rule to the saliency map.

5. Generate the most suspicious crop (as described earlier in this section).

6. Classify the crop using the network trained with the training crops (Line 10 of

Listing 2).

The final decision thresholds were set with the aid of a two-class support vector

machine [3]. The entire process is presented in detail in Listing 2. Processing the

entire pipeline lasts for approximately 70 hours.

Listing 2. Pseudocode for second approach relying on saliency map

1 crops = [ ]

2 net := tra in network ( t r a i n i n g s e t )

3 f o r image in downsampled tra in ing set :

4 re sponse := net . f o rward pass ( image )

5 map:= sa l i ency map ( response )

6 map:= app ly kappa ru l e (map)

7 ( cx , cy ):=argmax (map)

8 crop := c r e a t e c r o p ( f u l l i m ag e , cx , cy )

9 crops . addNew( crop )

10 ne t c rop s := tra in network ( crops )

11 f o r image in f u l l s i z e v a l i d a t i o n s e t :



338 Rafa l Grzeszczuk

12 response := ne t c rop s . fo rward pass ( image )

13 map:= sa l i ency map ( response )

14 map:= app ly kappa ru l e (map)

15 ( cx , cy ):=argmax (map)

16 crop := c r e a t e c r o p ( f u l l i m ag e , cx , cy )

17 response := ne t c rop s . fo rward pass ( crop )

18 % p r o b a b i l i t i e s := histogram ( response )

19 re turn p r e d i c t i o n ( histogram )

3. Experiment design

We evaluated our model on a test set of 1349 images randomly sampled from the

provided data set. These images were chosen prior to the training procedure and

were not included in the training set. All experiments were run on a single Nvidia

Tesla K40 graphics processing unit with 12GB of memory. The data was stored on

a solid-state disk drive in a compressed image format. A number of metrics were

analyzed in order to assess each model’s fitness. We also computed a confusion ma-

trix for each evaluated model. The evaluation criteria are based on calculating the

percentage of correctly predicted classes. However, this is not enough to determine

which of two given models was giving more accurate responses in multi-class cases,

as it does not distinguish between two cases with a similar number of false-positive

and false-negative errors, respectively (of which the latter is much more unwanted).

Additional interpretation of the confusion matrix is necessary here. Since the strong

similarities between adjacent classes diminish the significance of the confusion be-

tween them, we also used supplementary metrics. This counts the percentage of test

images assigned to the correct classes or to a class different by one grade. The third

measure (used mostly for training purpose yet still yielding valuable information) was

Cohen’s quadratic weighed kappa [2].

Due to the need for the clinical assessment and treatment of each patient with

a detected DR, it is a legitimate choice to limit the prediction to just two classes: one

representing Stages 0 and 1 (labeled “healthy”) and another representing Stages 2, 3,

and 4 (labeled “unhealthy”). This also simplified the analysis of the results and

comparison of the different models. Each image was assigned to one of these two

classes by the network; in the end, a final accuracy percentage score was calculated

for each class.

Dataset

We used a dataset consisting of 35,127 fundus images randomly selected from a pub-

licly available dataset supplied by EyePACS for a machine-learning contest [5]. The

samples were acquired during independent series of clinical examinations using Cen-

tervue DRS, Topcon NW, Optovue iCam, and Canon CR/DGi retina-imaging cam-

eras (all of which provide a 45◦ field of view). The examinations were carried out

between May 2015 and October 2015 on outpatients of various ages and sexes present
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for DR screening (some of which being examined more than once within the collec-

tion period). Some of the fundus images were taken after applying a pupil-dilation

substance. Despite the fact that it could interfere with the image brightness, this fact

was not reflected in the data labels. The images were labeled as one of the five classes

(indexed from 0 to 4). Membership in the “0” class means that the image is free of

any features characteristic to DR, “1” means subtle changes that can indicate the

earliest stage of the disease or other conditions and impose the need for further diag-

nostics, “2” means a moderate presence of features, “3” means an abundant presence

of features, and “4” means severe proliferative DR. The dataset distribution over the

classes is presented in Table 1.
Table 1

Distribution of dataset elements

Class index Share in dataset [%]

0 73

1 7

2 15

3 3

4 2

4. Results and discussion

In this section, we present the three models that we thoroughly evaluated. Along

with the predictions of a simple ResNet-based model, we tested the sliding window

model and the saliency map-based model. The last one proved to be much more

accurate in detecting the “unhealthy” class than the naive residual network approach

(as demonstrated by the results in Table 2).

Table 2
Comparison of per-class prediction accuracy of three models

ResNet [%] Sliding Window [%] Saliency Map [%]

“healthy” class 91.1 58.5 69.5

“unhealthy” class 41.2 56.6 82.8

The saliency map approach allowed us to reach a greater than 82% accuracy and

a nearly 70% specificity. It is worth noting that, due to hardware restrictions, the

images had to be scaled down significantly in the first step of the training process,

which arguably had a non-negligible impact on the final results. Despite this, a clear

improvement is visible over the naive approach, which is reflected in both an increase

in the AUC value shown in Table 3 and a huge reduction of the false-negative rate at

the cost of a small increase in the false-positive rate.
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Table 3
Comparison of AUC scores of three models

ResNet Sliding Window Saliency Map

Area under ROC curve 0.71 0.56 0.77

What is more important, after a manual examination of randomly selected crops

created during the training process, a vast majority of them turned out to be centered

around some sort of anomaly of the retina. However, due to the lack of proper labeling

of the dataset, it was impossible to measure this objectively. The exact per-class

prediction results are presented below in Table 4.

Table 4
Confusion matrix of saliency map model

“healthy” “unhealthy”

Class 0 Class 1 Class 2 Class 3 Class 4

“healthy” 542 201 319 7 0

“unhealthy” 17 31 64 91 77

The most important observation is that no image belonging to Class 4 was clas-

sified as “healthy”; the most errors were made by misclassifying members of Class 2

as “healthy.” This along with the AUC value shows that the model is capable of

detecting strongly localized features and proposing a classification border. However,

predictions for some classes would need to be marked as needing human assessment in

real-world applications. Finally, it should be noted that there is no direct comparison

made to other works on the same dataset in this chapter. It would be difficult to do so

because of the huge differences in the approach and desired outcomes of our research.

The main aim of our work was to find a way to locate the region with a high feature

density rather than to improve the general classification score.

5. Conclusions

We have shown that it is possible to use neural networks with saliency maps to

improve the classification of data with highly localized features without any prior

knowledge about their localization. The results showed a significant improvement

as compared to a standard approach. It should be pointed out that state-of-the-

art classification results were achieved using well-annotated datasets with feature-

localization information (unlike the approach proposed in this paper). Because of this

difference, these results cannot be directly compared. There is space for improvement

in this method; further research is necessary to explore additional possibilities. It is

especially interesting to explore how the models behave when trained on full-resolution

input images. However, this will require significantly more computational power.
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