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Abstract This work presents some additional mechanisms for evolutionary multi-agent

systems for multi-objective optimization that attempt to solve problems with

population stagnation and loss of diversity. These mechanisms reward solutions

located in a less-crowded neighborhood and on the edges of a frontier. Both

techniques have been described, and some preliminary results have been shown.
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1. Introduction

Nearly every field (science, technology, economics, and everyday life) requires us to

take various (often contradictory) criteria into account when making decisions. These

reasons have motivated researchers to conduct studies on efficient algorithms for solv-

ing multi-objective optimization problems (MOOPs). At this point, some of the

most efficient and universal MOOP solvers are considered evolutionary algorithms,

which are based on Darwin’s selection theory. This approach is also characterized

by evolutionary multi-agent systems and as has been shown to give promising re-

sults [2–4, 17, 21, 22]. Two problems with these algorithms are population stagnation

and a lack of diversity. There have been many ideas to improve these aspects based

on such mechanisms as genders [9], species [7,10], elitism [18,19], and others [8]. This

work presents a different approach to this problem: mechanisms based on domina-

tions and crowding factors as well as a mass center. The presented results show that

these methods significantly improve the algorithms’ performance.

The paper is organized as follows. In Section 2, basic concepts of multi-objective

optimization and the evolutionary approach are presented. In Section 3, evolutionary

multi-agent systems are described for both general use and multi-objective optimiza-

tion. In Sections 4 and 5, the proposed mechanisms are presented and explained. In

Section 6, the testing criteria and testing problems are described. In Section 7, the

preliminary results are presented and explained. And finally, the conclusions as well

as any future possibilities and plans are presented in Section 8.

2. Evolutionary approach for MOOP

The multi-objective optimization problem can be defined as follows [1, 5, 15]:

MOOP ≡


Min/Max fm(x̄), m = 1, 2, ...,M

With consideration gj(x̄) ≥ 0, j = 1, 2, ..., J

hk(x̄) = 0, k = 1, 2, ...,K

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, ..., N

(1)

The constraint set – both equalities hk(x̄) and inequalities gj(x̄) as well as

lower bounds x
(L)
i and upper bounds x

(U)
i – defines the searchable space (feasible

alternatives) and, therefore, a set of all possible solutions – D.

The basic concept of optimality in the Pareto sense is the domination relation.

Alternative ~xb dominates ~xa if and only if [6]:

∀m fm(~xa) ≤ fm(~xb) and ∃m fm(~xa) < fm(~xb) (2)

The solution of the multi-objective optimization problem is the set of non-

dominated solutions (the so-called Pareto set [12,25]) constituting the Pareto frontier

in the objective space.
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A natural approach to solve the task of multi-objective optimization (especially

during the initial period of the research) was an attempt to apply a known apparatus

(both analytical and numerical) developed and used in the context of solving tasks in

single-criterion optimization. These methods turned out to be ineffective due to the

following [6]:

• models were too complex,

• formulas applied were too complicated,

• numerical instability of available solvers.

Among different contemporary methods for solving poly-optimization problems,

evolutionary methods are fairly effective and commonly used. The main reason is

that they process whole populations; as a result, they produce a set of solutions that

is believed to be an approximation of the Pareto frontier. At the same time, heuristic

methods can be used to solve search and optimization problems for which there are

no exact methods or whose problems are of unknown characteristics [11,13].

This approach turned out to be effective and has had many applications, so a new

branch of research and development arose; this is known nowadays as evolutionary

multi-objective optimization [5, 6].

3. Evolutionary multi-agent system – EMAS

Despite the huge potential of these methods as well as their multiple effective appli-

cations for solving difficult optimization and search problems, these methods did not

give the expected results in many cases. The reasons for this include the excessive

simplification of the evolution process, the inability of agents to acquire and store any

knowledge (and thus the lack of an agent’s influence on decisions), and the absence

of basic natural mechanisms such as interactions with other individuals, competition,

cooperation, and building social structures. The agent-based approach is another

step in the development of evolutionary MOOP algorithms that are trying to im-

prove these aspects. The individuals represented by agents have gained possibilities

that are naturally occurring in the process of evolution: autonomy and the ability to

make independent decisions, exchange knowledge, and build social structures. Agents

can observe the environment and make specific decisions and take actions according

to the problem and actual environment state. As the evolution process is decentral-

ized, the selection mechanism was built on the basis of exhaustible resources. In most

cases, only one is used — energy, which is acquired by the agent during meetings with

other agents: the better agent takes resources from the worse agent. The assessment

of the agent depends in this case on the problem that is being solved. Agents that

acquire the appropriate level of energy can use it in the process of migration or repro-

duction (which itself is the goal of evolution), while those whose energy amounts fall

below a certain level die and are removed from the population (see Fig. 1). Some of the

energy lost by individuals during migration and dying is also possessed by the envi-

ronment and can be used to create new random individuals. As the amount of energy

in the whole ecosystem is constant, it can be used to regulate the population size.
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Figure 1. EMAS agent basic interactions

The environment can be divided into islands (see Fig. 2) representing physically

separate places, symbolizing niches, or grouping agents into local groups to which

access may also be limited in some way [18,19]. The agent can travel between islands

during the migration process if it has the appropriate level of energy. A portion of

this energy is given to the environment during the process.
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Figure 2. EMAS environment organization
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4. Evolutionary multi-agent system for multi-objective optimization

In the case of solving a multi-criteria optimization problem, the agent’s evaluation and

energetic selection mechanism may be based on the domination relation [20]. If a given

individual dominates another during a meeting process, it takes some of the other’s

energy. In this way, agents that often dominate other individuals and are dominated

relatively rarely can acquire the energy needed to survive and create offspring. On

the other hand, agents that are dominated often enough and are statistically worse

will be gradually removed from the environment. As presented in Listing 1, the life

process of the individual consists of a series of strategies and actions that the agent

performs iteratively in its life step.

Listing 1. Life step of individual

1 l i f e S t e p ( ) {
2 i f ( energy l e v e l below death th re sho ld ) {
3 dieAct ion ( ) ;

4 } e l s e {
5 migrStrategy ( ) ;

6 meetStrategy ( ) ;

7 r eproSt ra tegy ( ) ;

8 }
9 }

During each iteration, the energy level is checked first. If it is too low, the death

action is performed; if the individual has more energy, it can perform the remaining

strategies: migration (if it considers it appropriate in a given situation), meetings,

and (most importantly) reproduction (if it has enough energy and can find another

individual also wanting to reproduce).

5. EMAS with dominations and crowding factors – fEMAS

In basic EMAS, the agents gain energy by taking it from other agents. As a conse-

quence, the amount of energy collected by an agent results from its relative quality

as compared to other agents; however, this aspect sometimes causes problems with

gaining energy by relatively good agents. In Figure 3, a sample of population distri-

bution is shown, and two agents (A and B) were selected for the meeting. We assume

that we minimize F1 and F2. It can be seen that there is no domination relation

between these individuals, so no energy exchange will occur in basic EMAS. It can

be seen, however, that Agent B is potentially better than Agent A because there are

many solutions that dominate Agent A. Agent B is not dominated by anyone and also

is located on the edge of the frontier, so it should definitely reproduce; however, it

will have a problem with this because there is only one agent from whom it can take

energy – Individual C. Though potentially inferior, Agent A has several individuals

that it can dominate; there is a considerable likelihood that it will obtain the energy
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needed for reproduction. The described mechanism causes that, when the population

drifts towards the frontier, it does not expand to cover the entire frontier; sometimes

the opposite occurs: it focuses on the center of the population. The proposed so-

lution to this problem is the dominations factor, which will reward Agent B in the

case described above. The dominations factor is defined as the ratio of the number

of dominations (how many times an agent has been dominated by other agents) to

the total number of meetings. When the number of meetings is equal to zero, then the

factor value is also zero.

 

A

D

E

B

C

F2

F1

Figure 3. Sample of Population Distribution

In the case presented in Figure 3, there are two other solutions (D and E) that

dominate Individual A. If there will be a meeting between Solution A and one of these

two individuals, Agent A will have a dominations factor that is greater than 0; because

of this, it will be ranked worse when it comes to a meeting with Agent B. If this does

not happen and both Agents A and B have a dominations factor equal to zero, there

is also the crowding factor [8,16]. This rewards solutions are arranged in less-crowded

regions in the absence of a domination relation and equal the dominations factor. The

crowding factor is defined as the ratio of the number of meetings in a defined radius

to the total number of meetings. When the number of meetings is equal to zero, then

the factor value is also zero. In this case, Agent B (which has only one neighbor)

should also be ranked better and receive energy from Agent A (who has three agents

in its radius).

Including the dominations and crowding factors into EMAS consists of a modifi-

cation of the agent’s meeting strategy. The original procedure in EMAS is presented

in Listing 2. The modified strategy in fEMAS is presented in Listing 3.
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Listing 2. Meeting Strategy in basic EMAS

1 meetStrategy ( ) {
2 i f ( Agent A wants to meet ) {
3 B = seekAgentToMeet (A) ;

4 }
5 i f ( Agent B accept s meeting ) {
6 i f ( Agent A dominates Agent B) {
7 t rans f e rEnergy (B, A) ;

8 }
9 i f ( Agent B dominates Agent A) {

10 t rans f e rEnergy (A, B)

11 }
12 }
13 }

Listing 3. Modified Meeting Strategy in fEMAS

1 meetStrategy ( ) {
2 i f ( Agent A wants to meet ) {
3 B = seekAgentToMeet (A) ;

4 }
5 i f ( Agent B accept s meeting ) {
6 i f ( Agent A dominates Agent B) {
7 t rans f e rEnergy (B, A) ;

8 }
9 i f ( Agent B dominates Agent A) {

10 t rans f e rEnergy (A, B)

11 }
12 i f ( no dominations between Agents A and B) {
13 i f (A. dominat ionsFactor < B. dominat ionsFactor ) {
14 t rans f e rEnergy (B, A) ;

15 }
16 i f (A. dominat ionsFactor > B. dominat ionsFactor ) {
17 t rans f e rEnergy (A, B) ;

18 }
19 i f (A. dominat ionsFactor == B. dominat ionsFactor ) {
20 i f (A. crowdingFactor < B. crowdingFactor ) {
21 t rans f e rEnergy (B, A) ;

22 }
23 i f (A. crowdingFactor > B. crowdingFactor ) {
24 t rans f e rEnergy (A, B) ;

25 }
26 }
27 }
28 }
29 }
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It can be seen that the basic comparative criterion is dominance. If such a relation

does not take place, the dominations factor is taken into account, followed by the

crowding factor.

6. EMAS with mass center mechanism – mcEMAS

Another proposed solution counteracting the fact that the solutions are concentrated

in the center of the frontier and also improving the frontier coverage is the mechanism

of the mass center. In this mechanism, there are two islands between which agents

can migrate. As mentioned before, agents give part of their energy to the environment

during the migration process; from this energy, new agents can be generated. In basic

EMAS, agents are generated randomly. In the proposed mechanism, this aspect has

been modified, with agents being generated on the edges of the frontier. In order to

achieve such an effect, the individuals gather information about the position of other

individuals during meetings and, on the basis of this, calculate the geometric center

of the population. In addition, they also store information about an agent located

at the farthest position from this center point. When this agent dies, it sends this

information to the environment, and the environment creates a new individual using

this information and combining with the mutation operator.

The mass center is based on a weighted average and calculated as follows: The

initial value of the mass center point is the position of the given agent. During the

meetings, agents exchange information about the calculated mass center and update

their values by calculating the average between two points, taking into account the

number of meetings (see Listing 4).

Listing 4. Mass center calculation method

1 massCenter = (A. massCenter ∗ A. meetingsCounter

2 + B. massCenter ∗ B. meetingsCounter

3 / (A. meetingsCounter + B. meetingsCounter ) ;

7. Testing criteria

To check the quality of the proposed solutions, test problems from the ZDT family [23]

were used.

All ZDT problems have the same basic schema:

ZDT =

{
Min F (x) = (f1(x1), f2(x))

With consideration f2(x) = g(x2, ..., xn) · h(f1(x1), g(x2, ..., xn))
(3)

where x = (x1, ..., xn).

ZDT1, the first and simplest of the set of ZDT problems, is characterized by

a convex and continuous Pareto front.
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It is defined as follows:

ZDT1 =


f1(x) = x1

g(x2, ..., xn) = 1 + 9
n−1

∑n
i=2 xi

h(f1, g) = 1−
√
f1/g(x)

where n = 30, xi ∈ [0, 1]

(4)

A visualization of the Pareto frontier of the ZDT1 problem is presented in Figure 4.

The ZDT2 problem is a problem introducing the first potential difficulty for the

optimization algorithm: the concavity of the Pareto frontier. This problem is defined

as follows:

ZDT2 =


f1(x) = x1

g(x2, ..., xn) = 1 + 9
n−1

∑n
i=2 xi

h(f1, g) = 1− (f1/g(x))2

where n = 30, xi ∈ [0, 1]

(5)

A visualization of the Pareto frontier of the ZDT2 problem is presented in Figure 5.

The ZDT3 problem is a test problem introducing another difficulty for the opti-

mization algorithm: discontinuity of the Pareto frontier. The problem is defined as

follows:

ZDT3 =


f1(x) = x1

g(x2, ..., xn) = 1 + 9
n−1

∑n
i=2 xi

h(f1, g) = 1−
√
f1/g(x)− f1

g(x) sin(10πf1)

where n = 30, xi ∈ [0, 1]

(6)

A visualization of the Pareto frontier of the ZDT3 problem is presented in Figure 6.

The ZDT4 problem is a problem allowing us to evaluate the behavior of a tested

algorithm in a situation of solving the multi-modal MOOP problem. The ZDT4

implements 219 local Pareto frontiers and is defined as follows:

ZDT4 =


f1(x) = x1

g(x2, ..., xn) = 1 + 10(n− 1) +
∑n

i=2(x2i − 10 cos(4πxi))

h(f1, g) = 1−
√
f1/g(x)

where n = 10, xi ∈ [0, 1], xi ∈ [−5, 5]

(7)

A visualization of the Pareto frontier of the ZDT4 problem is presented in Figure 7.
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Figure 4. True Pareto frontier for ZDT1
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Figure 6. True Pareto frontier for ZDT3
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Figure 7. True Pareto frontier for ZDT4

To evaluate the quality of the proposed solutions, a hypervolume indicator (HV)

and hypervolume ratio (HVR) [24,25] were used. The hypervolume measures the area

covered by a resulting set of solutions with a reference point. In the HVR, this result

is divided by the HV value for the model Pareto frontier for a particular problem:

HV = v(

N∑
i=1

vi) (8)

HV R =
HV (PF∗)
HV (PF )

(9)

where vi is hypercube for the i-th solution, PF∗ represents the result set, and PF is

the Pareto frontier.

All algorithms have been implemented in Java using the jMetal framework [14]

(evolutionary operators, test problems, and indicators). The energy level was adjusted

so that the population oscillated at around 500 individuals. Other parameters are as

follows:

• initial energy – 30,

• transfer energy between agents – 10,

• minimal reproduction energy level – 60,

• die energy level – 0.
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8. Experimental studies

The measurements were carried out regarding not only the number of iterations but

also the number of evaluations; they are presented in the form of tables and var-

ious types of diagrams. Since both mechanisms affect different aspects of EMAS,

a combination of both methods was also tested: the mechanism for generating new

agents from the energy given to the environment in the migration process was taken

from mcEMAS, and the way agents were evaluated in the domination relation ab-

sence from fEMAS.

8.1. ZDT 1

Some of the most important features of a good multi-objective optimization algorithm

are fast convergence and good coverage of the model frontier. To show these aspects,

the results for 100, 200, 500, 1000, and 2000 iterations were presented. Table 1

shows the exact results for the HVr metric presented as average values with standard

deviation. On the other hand, the diagrams present examples of how the solutions

are arranged.

Table 1
HVr values obtained during solving ZDT1 Problem

EMAS fEMAS mcEMAS Combined

Iter. Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

100 0.00 0.00 0.04 0.04 0.02 0.02 0.03 0.02

200 0.11 0.08 0.40 0.03 0.29 0.11 0.35 0.07

500 0.62 0.05 0.76 0.03 0.71 0.07 0.71 0.05

1000 0.67 0.03 0.91 0.01 0.90 0.03 0.88 0.02

2000 0.66 0.03 0.97 0.01 0.95 0.02 0.96 0.01

In Table 1 as well as in the diagrams, it can be seen that the results for 100

and 200 iterations are non-satisfying regardless of the used algorithm, and the result

set is far away from the model Pareto frontier. After 500 iterations, the population

is much closer to the model frontier, but the result still cannot be considered good

enough. However, it can be noticed that the applied mechanisms start working and

significantly improve the effectiveness of the algorithm: the coverage of the frontier

is more accurate, and the results are better by 0.09 on average (a 15% improvement)

for mcEMAS and the combined solutions to even 0.14 (23%) for fEMAS. After 1000

iterations, the resulting frontier is much closer to the model frontier; also, the coverage

of the frontier for fEMAS and mcEMAS is much better than in basic EMAS. The

results are better by 0.24 on average (36%) for fEMAS, 0.23 (34%) for mcEMAS,

and 0.21 (31%) for the combined methods. Between 1000 and 2000 iterations, the

improvement of the results is much smaller; in the case of basic EMAS, there is even
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a slight deterioration (this is because the algorithms were launched independently;

however, the result is contained within the standard deviation range). From the above

results, it can be deduced that a further increase in the iterations for basic EMAS

is pointless (cf. Fig. 8). The best result – 0.97 (47% improvement) – comes from

fEMAS (cf. Fig. 9); this is very close to the model frontier. McEMAS (cf. Fig. 10)

and the combination of both solutions give slightly worse outcomes (0.95 [44%] and

0.96 [45%], respectively), but these can also be considered satisfactory. The combined

results are presented in Figure 11.
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To have a better view of the results, a chart showing the value of the HVr metric

has also been presented for each iteration (see Fig. 12). Also in this diagram, it can be

seen that the implemented mechanisms have a very similar impact and significantly

improve the results. It can be noticed that, in contrast to basic EMAS, they smoothly

improve the quality of the result in the proposed algorithms – this happens because

new solutions with good fitness are generated and born regularly.

In fEMAS, this occurs because good solutions have a better chance of gaining

energy and, as an effect, reproducing. In mcEMAS, the energy returned to the envi-

ronment by the dominated solutions is given to the newly generated solutions on the

edges of the frontier; in most cases, this also improves the HVr value.
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Figure 12. HVr values for each iteration

For complicated problems, calculating the fitness function can be difficult and

time-consuming. In such cases, an important factor to take into account is the num-

ber of evaluations needed for calculation in the process of obtaining the final result.

Table 2 and Figure 13 present a comparison of the number of evaluations for all meth-

ods for 1000 and 2000 iterations. It can be clearly seen that mcEMAS has the best

results in both cases: for 2000 iterations, this makes about 25% fewer evaluations

than in fEMAS. This phenomenon can be explained as follows: in the case of basic

EMAS and fEMAS, many average individuals with energies around the reproduction

threshold are able to collect enough energy to deliver descendants (which of course

need to be evaluated). Many of these new solutions are also average and are to be

eliminated in subsequent generations.

Table 2
Number of evaluations for ZDT1 Problem

EMAS fEMAS mcEMAS Combined

Iter. Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

1000 23,727 1224 18,127 264 17,394 705 19,636 200

2000 25,974 2437 28,792 416 21,680 1043 32,014 406

In mcEMAS, the agents also lose energy in the migration process; because of

this, there are fewer of these average new solutions. Also, mcEMAS generates new

agents from the free energy, and these new agents appear on the edges of the frontier.
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This mechanism, however, is quite aggressive and can also exclude relatively good

solutions from reproduction. As an effect, the frontier is not as accurately covered as

in the case of fEMAS. Confirmation of this can be seen in the obtained results and

charts.
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Figure 13. Number of evaluations after 1000 and 2000 iterations

8.2. ZDT 2

Table 3 presents the HVr values for the ZDT2 problem. It can be seen that the results

for basic EMAS are completely unsatisfactory for all cases – even for 2000 iterations,

the ratio is around 0.19.

Table 3
HVr values obtained during solving ZDT2 Problem

EMAS Factors MassCenter Combined

Iter. Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

200 0.0 0.0 0.02 0.06 0.0 0.0 0.07 0.08

500 0.11 0.04 0.68 0.04 0.51 0.15 0.75 0.09

1000 0.18 0.03 0.91 0.03 0.78 0.08 0.90 0.04

2000 0.19 0.01 0.95 0.01 0.91 0.04 0.94 0.01
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For the other methods, the results for ZDT2 are similar to the previous problem:

for 100 and 200 iterations, the result is far away from the model frontier – the HVr

is equal to zero in almost all cases. For 500 iterations, it oscillates between 0.51

for mcEMAS (363% better than basic EMAS, see Fig. 14) and 0.75 (519%) for the

combined methods. For 1000 and 2000 iterations, the result is very good: 0.95 (400%)

for fEMAS (cf Fig. 15) and 0.94 (395%) for the combined methods. For mcEMAS, it is

slightly worse (0.91) (a 379% improvement); still, it can be considered satisfactory. It

can be noticed that the algorithms with the mass center mechanism have a relatively

large standard deviation for the HVr value – this happens because this mechanism

can be too aggressive in some cases.

When a new solution is generated on the edge of the frontier, the mutation

operator sometimes “works” too well; this new agent is too far away from the end of

the frontier. In basic EMAS, this would be very good for the result; but in mcEMAS,

there are no mechanisms to fill this gap between the new solution and the rest of

the population. This situation can be seen in Figure 16. The combined results are

presented in Figure 17.
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Likewise to the previous problem, Figure 18 presents a sample distribution of the

HVr values for each iteration. It can be seen that, in the first stage of the algorithm’s

operation, mcEMAS has the best results – this can be explained by this aggressive
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impact of the mass center mechanism described in the previous paragraph. After 1000

and 2000 iterations, it can be seen that the factor mechanism takes over, and fEMAS

and combined solutions gain the best results.
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Figure 18. HVr values for each iteration

Table 4 and Figure 19 present the number of evaluations for the considered al-

gorithms. It can be seen that, for 1000 iterations, the results for fEMAS, mcEMAS,

and combined methods are similar (oscillating at around 30k). For 2000 itera-

tions, mcEMAS has the best result – it is 10k less than fEMAS and 15k less than

the combined methods. Also, it is only around 2000 evaluations more than in the

1000-iteration case. This happens because most agents are non-dominated at this

stage, so they do not lose or gain energy. Because of this, not many new agents are

generated or borne (or evaluated). Basic EMAS also has the worst results in this

measure – the number of evaluations is almost twice as many as in mcEMAS.

Table 4
Number of evaluations for ZDT2 Problem

EMAS fEMAS mcEMAS Combined

Iter. Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

1000 48,360 1450 32,481 4814 31,779 2422 33,787 4250

2000 59,224 1587 42,812 4863 33,038 2375 47,655 3600
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Figure 19. Number of evaluations after 1000 and 2000 iterations

8.3. ZDT 3

Table 5 presents the HVr values for the ZDT3 problem. Basic EMAS finished with

an HVr value equal to 0.63-0.64 (which again cannot be considered satisfactory).

Similar to the other problems, the best results are obtained by fEMAS – they are

0.87 (a 35% improvement) for 1000 iterations and 0.96 (52%) for 2000 iterations.

Only a little worse is EMAS with combined mechanisms: consecutively 0.85 (33%)

and 0.94 (49%), which is comparable to mcEMAS (0.84 (31%) for 1000 iterations and

0.91 (44%) for 2000 iterations). This can also be seen in Figure 20 – the frontier

is only partially covered. Also, in Figures 21 and 29, it can be seen that the results

for the proposed solutions are indeed very similar. At the same time better frontier

coverage is shown in Figures 22 and 23.

Table 5
HVr values obtained during solving ZDT3 Problem

EMAS fEMAS mcEMAS Combined

Iter. Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

100 0.03 0.02 0.12 0.04 0.10 0.09 0.12 0.04

200 0.15 0.10 0.42 0.05 0.34 0.04 0.35 0.04

500 0.55 0.10 0.74 0.03 0.64 0.04 0.70 0.04

1000 0.64 0.10 0.87 0.03 0.84 0.04 0.85 0.02

2000 0.63 0.09 0.96 0.01 0.91 0.03 0.94 0.01
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Figure 20. EMAS
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Figure 21. fEMAS
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Figure 22. mcEMAS
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Figure 23. Combined

In Figure 24, we can see a confirmation of the results from Table 5. It can

be seen that fEMAS very quickly reaches the top level of HVr values and has the

best results at every stage. Also, in this case, it can be noticed that the proposed

algorithms improve the results regularly and do not have problems with population

stagnation (which can be seen in basic EMAS).
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Figure 24. HVr values for each iteration
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Table 6 and Figure 25 present the number of evaluations for the considered

algorithms. It can be seen that, for 1000 iterations, the fewest evaluations are obtained

with mcEMAS: about 15,500. The results for the other methods are worse, but

the differences between the algorithms are relatively small. The real advantage of

mcEMAS can be seen in the case of 2000 iterations: mcEMAS has only about 20k

evaluations, where fEMAS has 28k and the combined mechanisms – 30k. Basic

EMAS also has a very good result, which can be a little surprising. This can be

explained as follows: the solutions are scattered in the niches of the frontier, so there

is little energy exchange; in the end, not many agents can deliver a descendant. In

Figure 24, we can see a confirmation of this – the HVr for basic EMAS increases

irregularly and stops at the same level for many iterations. So, the relatively small

number of evaluations in this case is caused by population stagnation.

Table 6
Number of evaluations for ZDT3 Problem

EMAS fEMAS mcEMAS Combined

Iter. Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

1000 19,148 3664 17,113 268 15,517 979 18,497 453

2000 21,438 4168 28,093 737 20,584 1547 30,170 566
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Figure 25. Number of evaluations after 1000 and 2000 iterations
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8.4. ZDT 4

Table 7 presents the HVr values for the ZDT4 problem. Also in this test case, the

best result was gained by fEMAS – 0.96 for 1000 iterations (39% better than basic

EMAS) and 0.98 for 2000 iterations (36%).

Table 7
HVr values obtained during solving ZDT4 Problem

EMAS Factors MassCenter Combined

Iter. Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.00

500 0.46 0.18 0.69 0.16 0.42 0.22 0.72 0.24

1000 0.69 0.04 0.96 0.02 0.62 0.14 0.97 0.01

2000 0.72 0.04 0.98 0.01 0.73 0.09 0.98 0.01

The algorithm with both combined mechanisms achieved similar results – ac-

cordingly, 0.97 (a 36% improvement) and 0.98 (36%). McEMAS unexpectedly gained

relatively bad results – in this case, the HVr value is very similar to basic EMAS.

This can be explained as follows: in the case of multimodal problems, the mechanism

of the mutation very often makes the individuals fall into the local frontiers (local

extrema), which causes the mutated solutions in the space criteria to be very much

different. This phenomenon generates two problems: even after hundreds of itera-

tions, the solutions are not located on the frontier but rather create something in

the shape of a cloud. The agents marked as the farthest are not on the edges of the

frontier; however, they very often are solutions that have very low fitness values and

should not be considered as good to replicate. But even if a “good” agent located on

an edge is marked as the farthest, the new generated and mutated solution is very

often in one of the local frontiers with a low fitness value and will probably die after

a couple of iterations. Because of these problems, the newly generated solutions are

rarely located at the edges of the main frontier (as the idea of the mass center mecha-

nism presupposes) but more randomly in the space. As a result, it can be recognized

that this particular mechanism does not work at all for multimodal problems. Con-

firmations of this can also be seen in Figure 28 – similar to basic EMAS (see Fig. 26),

the model frontier is only partially covered. A clearly better situation can be observed

in Figures 27 and 29, confirmed by the observation of HVr metrics values (Fig. 30).

Paradoxically, this randomness in generating new solutions has a small but posi-

tive impact on basic EMAS. It can be seen that ZDT Problems 1 and 4 have a similar

model frontier (the main difference is the existence of local frontiers), but basic EMAS

has results better for about 0.1 for ZDT4 than ZDT1. This happens because there

are more newborn agents that, after mutation, are located on the side of the higher

F1 value of the criteria space; because of this, the agents located on this side of

the frontier have statistically greater chances to dominate those new agents and gain
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energy to reproduce (which was the main problem at the beginning). This shows that

multimodality is not an impediment but rather a facilitation for some algorithms.
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Figure 26. EMAS
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Figure 27. fEMAS
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Figure 28. mcEMAS
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Figure 29. Combined

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000

H
Vr

Iterations

EMAS
fEMAS

mcEMAS
Combined

Figure 30. HVr values for each iteration
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Table 8 presents the evaluations for the proposed algorithms. Basic EMAS and

mcEMAS have very similar results (as could be expected from the phenomenon de-

scribed above) – it is about 40k regardless of the iteration number. After 2000 itera-

tions, fEMAS has about 70k evaluations, which is similar to EMAS with the combined

mechanisms; this is again not surprising, as the applied factors (especially crowding)

have a dominant role here and very efficiently stimulate energy exchange (which pre-

vents population stagnation). These results can also be seen in the Figure 31.

Table 8
Number of evaluations for ZDT4 Problem

EMAS fEMAS mcEMAS Combined

Iter. Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

1000 37,802 2134 46,656 1681 39,838 4386 49,447 2173

2000 42,447 1961 69,904 2106 41,992 4305 72,463 1982
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Figure 31. Number of evaluations after 1000 and 2000 iterations

Similar tests have been done for another multimodal problem – ZDT6; however,

the results did not bring anything new: fEMAS had the highest HVr value, and the

outcome for mcEMAS was similar to basic EMAS. Because of this, they have not

been presented here.

9. Conclusion

The presented results show that the proposed ideas significantly improve the quality

of EMAS performance. A greater advantage of fEMAS is its simplicity and ease of
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implementation. On the other hand, we append an additional argument (radius) to

the system, which must be manually adapted to the particular problem that is being

solved. The mass center mechanism does not have this disadvantage and additionally

reduces the number of evaluations, which can be as or even more important than

finding the perfect frontier in the case of complicated problems. However, this does

not give such good results and is useless for multimodal problems.

Future research will include more-detailed tests of the proposed mechanism for

different testing problems.
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