
Computer Science • 22(3) 2021 https://doi.org/10.7494/csci.2021.22.3.3337

Adnane Ouazzani Chahdi
Anouar Ragragui
Akram Halli
Khalid Satori

PER-PIXEL EXTRUSION MAPPING
WITH CORRECT SILHOUETTE

Abstract Per-pixel extrusion mapping consists of creating a virtual geometry that is

stored in a texture over a polygon model without increasing its density. There

are four types of extrusion mapping; namely, basic extrusion, outward extru-

sion, beveled extrusion, and chamfered extrusion. These different techniques

produce satisfactory results in the case of plane surfaces; however, when it is

about curved surfaces, a silhouette is not visible at the edges of the extruded

forms on the 3D surface geometry, as they not take the curvatures of the 3D

meshes into account. In this paper, we present an improvement that consists

of using curved ray-tracing to correct the silhouette problem by combining

per-pixel extrusion-mapping techniques with a quadratic approximation that is

computed at each vertex of a 3D mesh.

Keywords image-based rendering, real-time rendering, texture mapping, per-pixel

extrusion mapping, ray-tracing, silhouette

Citation Computer Science 22(3) 2021: 403–428

Copyright © 2021 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

403

https://doi.org/10.7494/csci.2021.22.3.3337
https://creativecommons.org/licenses/by/4.0/


404 Adnane Ouazzani Chahdi et al.

1. Introduction

Per-pixel extrusion mapping [2, 16, 17, 37] is an image-based modeling and rendering

(IBMR) technique that is inspired by per-pixel displacement mapping. Image-based

modeling and rendering techniques are based on textures to store geometry-related

data. This geometry is subsequently rendered by using a simple ray-tracing algorithm

that runs in the programmable units of a graphics card.

Contrary to the conventional techniques of per-pixel displacement mapping that

are based on grayscale images that represent any relief, extrusion mapping uses a 2D

binary image where only the zero-values pixels constitute the basic form of the pattern

to be extruded (Figure 4a).

In order to find the intersection point between the viewing ray and the extruded

form, this technique uses a distance map that is calculated from the basic shape that

is stored in a binary image to converge more quickly.

We notate the viewing ray that is expressed in a texture space as v (as shown in

Figure 1); the P point along viewing ray v is expressed by the following:

P = vt. (1)

The problem with this technique is that it does not support a silhouette at

the edges of a 3D mesh, as it does not take the curvatures of the mesh into ac-

count. Indeed, Figure 2 shows a comparison of a cylinder that is rendered with the

extrusion-mapping technique with and without the correction of the silhouette and

by highlighting the polygonal mesh.

We notice that a silhouette is not visible at the edges of a 3D object when

rendered with basic extrusion mapping (Fig. 2a). This problem is surmounted by

using a curved ray-tracing algorithm for searching for the intersection point; Figures

2b and 2c show the same 3D model after being rendered by our approach. One can

see that it provides a correct silhouette at the edges of the 3D object.

Figure 1. First intersection point between viewing ray and pattern is P (x, y, z). Search for

first intersection consists of finding value of t parameter



Per-pixel extrusion mapping with correct silhouette 405

a) b) c)

Figure 2. Comparison of cylinder rendered with extrusion-mapping technique

without and with silhouette correction and by highlighting polygonal mesh:

a) basic extrusion mapping; b) and c) correction of silhouette

by using curved ray-tracing algorithm.

We observe that silhouette problem is corrected by our approach

Based on this observation, this paper presents a new extrusion-mapping algo-

rithm based on a quadratic approximation at each vertex of a 3D mesh [28,32].

The proposed solution consists of curving the viewing rays during the search for

the intersection point by using the parameters of the quadratic surface. This allows

the ray-tracing algorithm to take the curvatures of the 3D meshes into account and

determine which parts belong to the silhouette. The algorithm is presented for the

different types of extrusion mapping.

2. Related works

Contrary to the displacement mapping [10] (which modifies the geometry), the bump-

mapping technique [5, 31] intervenes only at the shading phase. Since the latter

is a function of the normal, the disturbance of the normals will lead to the illusion of

a microrelief. Thus, it is enough to disturb the normal to the surface and to use it in

a shading formula.

Per-pixel displacement mapping [30] allows very fine details to be added to

a polygon-based mesh without increasing its density, which is contrary to displace-

ment mapping [10]. This allows for displaying very detailed models while avoiding

the bottleneck that can be caused by a very large number of vertices and polygons.

An extension of bump mapping [5, 31], parallax mapping [6, 20, 23, 36, 41, 45]

allows us to take the parallax effect into account (a distortion of the texture). This

technique performs an approximate search for the intersection between the viewing

direction and the relief that is contained in the displacement map. This point is

defined by the intersection of the viewing ray and the horizontal line, which passes

through the height of the relief at the current point.



406 Adnane Ouazzani Chahdi et al.

Relief mapping [8, 33, 34] is an extension of another technique called relief tex-

ture mapping [26, 27]. This consists of starting a search from the current pixel and

advancing with regular steps in the viewing direction. This operation is repeated as

long as the current position is above the relief. Then, the intersection point is refined

with a binary search.

The binary search does not take the depths of the microrelief into account during

the search. To overcome this problem, a linear search coupled with a secant search

used in [6,14,41,46] makes it possible to converge even more quickly using the depths

of the microrelief during the search.

Sphere tracing is the first method that is based on precomputing the empty space

to quickly converge to the first intersection point. Introduced in [12], this technique

creates a 3D map from a 2D depth map, where each 3D texel receives a value of 1 if it

belongs to the relief and 0 if not; it then calculates its Euclidean distance transform,

which gives the minimum distance to the relief for each texel. During the search for

the intersection, a sphere’s tracing allows each iteration to be significantly closer to

the first intersection with the relief.

A dilatation map and erosion map were introduced in [22] to define the empty

space. These two maps are calculated from a depth map and allow us to have a

secure region (empty space) in each texel. The successive intersections of the viewing

ray with these regions make it possible to converge to the intersection point with the

microrelief.

concerning the sphere tracing [3], the pre-processing step consists of defining a

radius of a cylinder for each pixel of a depth map within which no viewing direction

can pierce the relief more than once. During the search phase of the intersection,

this radius makes it possible to advance without the risk of jumping over the first

intersection. The second step is to perform a binary search between the last two

positions.

The conservative [29, 34] and relaxed [3] cone techniques propose storing the

empty space in the form of top-opened cones using 2D textures. Some improvements

of cone-tracing techniques were subsequently proposed in [15]. A third version of a

cone was proposed in [7].

Introduced in [21, 25, 42], pyramidal displacement mapping makes it possible

to create a pyramidal structure of the depths by calculating a map each time that

is four-times smaller than the previous one and taking the maximum of the depth

of each group of four pixels. The intersection point is obtained by the successive

intersections, with the horizontal lines representing the maximum depth of each level

of the pyramid.

More advanced and general techniques were presented in [4], allowing us to effi-

ciently render details expressed as height fields, for instance, using safety shapes.

Per-pixel extrusion mapping [16,37] consists of extruding 3D models according to

a binary form stored in a 2D texture without perturbing the basic mesh. The empty

space is calculated by using the Euclidean distance transform (EDT) described in [11]



Per-pixel extrusion mapping with correct silhouette 407

and stored in a 2D texture called a distance map; the normals of the extruded form

are calculated from this map.

Per-pixel extrusion and revolution mapping were combined with a shape box to

create a 3D objects without a polygonal mesh [1, 2, 17,38].

With the exception of displacement mapping, the techniques presented thus far

do not manage silhouettes. The silhouette of an object is visible on the edges of its

associated 3D mesh. Four approaches have been proposed.

Introduced in [43], view-dependent displacement mapping takes a precalculation

approach. The main idea is to calculate the distance between each point of a polygon

and the surface of displacement for each viewing direction. A five-dimensional function

is defined to store the result. This technique has been generalized in [44] in order to

manage 3D depth maps and limit some distortion.

One of the best solutions for silhouette support is to extrude a base mesh to

create an area that will hold the microrelief to be mapped on the surface (shell map-

ping) [13, 18, 35, 39]. This shell is obtained by extruding each triangle of the mesh

following the normals of its three vertices. In order to avoid some discontinuity de-

fects that are related to the bilinear interpolation, the prism is subdivided into three

tetrahedrons using an algorithm that is described in [40]. The division of the prism

into tetrahedrons is not the only solution to reduce distortions. Indeed, the smooth-

ing function coupled with the patches of coons introduced in [19] makes it possible to

strongly eliminate the distortions and, thus, produce very satisfactory results.

In order to be able to represent the silhouette fragments, the quadratic approx-

imation relies on the local approximation of the curvature at each point of a sur-

face [28]. This approximation is based on quadrics [32]. The approximate surface is

used in the rendering stage to discard the silhouette fragments.

An improvement consists of replacing the quadratic approximation by the tangent

space [9, 24] to represent the object geometry locally at each vertex. This space is

computed and stored as a texture in a pre-processing stage, then it is used during

the search for the intersection to have a piece-wise linear approximation of a curved

viewing ray in the texture space.

3. Per-pixel extrusion mapping

Per-pixel extrusion mapping [16,17,37] is based on three main elements: the tangent

space, the shape map, and the ray-tracing algorithm.

The tangent space [31] is a local space for each vertex that constitutes a 3D

mesh (Fig. 3). This space is calculated as a function of the normal to the vertex and

the associated texture coordinates. The viewing ray vector and light vector must be

expressed in this space.

A shape map is an RGBA texture that contains the needed data for the extrusion-

mapping algorithms (Fig. 4). The alpha channel serves to store the basic shape that

is represented by a binary image, where only the zero-value pixels are considered to



408 Adnane Ouazzani Chahdi et al.

be part of the form to be extruded. The blue channel is used to store a distance

map that is calculated from the alpha channel. Finally, the red and green channels

contain the x and y components, respectively, of the normal that is calculated from

the distance map.

Figure 3. Tangent space. This is local space constituted by three vectors

(normal, binormal, and tangent) associated with each vertex of 3D mesh

a) b) c)

Figure 4. Illustration of shape map: a) basic form that will be extruded on

polygonal model; b) distance map calculated from basic form; c) shape map that stores

basic form in α channel, Euclidean distance transform in blue channel,

and x and y components of normal are stored in red and green channels, respectively

Ray-tracing is an algorithm that searches for the intersection of a viewing ray

with the extruded form stored in the shape map (Figure 5). To find the next Pi+1

point, we use the following formulas:

ti+1 = ti +D(Pi) (2)

Pi+1 = vti+1, (3)



Per-pixel extrusion mapping with correct silhouette 409

where ti is the sum of the distances at iteration i, and D(Pi) represents the distance

at the (xi, yi) coordinate that separates the Pi point from the extruded form, which

is calculated using the following formula:

D(Pi) = τEDT (Pi), (4)

where EDT (Pi) represents the Euclidean distance transform that is extracted from

the shape map at coordinates (xi, yi), and τ represents the scale factor [16,17]. Figure

5 shows the process of searching for the intersection.

Figure 5. Ray-tracing process associated with per-pixel extrusion mapping [16,17].

At each iteration, circle tracing is performed to converge more quickly and without risk of

jumping first intersection

The use of the EDT for space leaping during ray-tracing allows for faster conver-

gence and avoids missing intersections at grazing angles. Since the distance fields will

usually be stored in the 8-bit integer format channel, we must remap the distances to

a range of [0, 1] in order to have an optimal EDT distribution. Thus, we modulate



410 Adnane Ouazzani Chahdi et al.

the distances in term of the maximum value of the EDT and a scale value f that

is used in the pre-processing stage to control the distance distribution, so the scale

factor is calculated by the following formula:

τ = f max(EDT )/W (5)

where W is the width of the shape map.

Other versions of the per-pixel extrusion mapping are presented in [17]. Namely,

beveled extrusion mapping (Fig. 6c), which consists of creating an outward extru-

sion to outside that varies as a function of the depth scale, and chamfered extrusion

mapping (Fig. 6d), which consists of limiting the bevel effect to a certain depth scale

(between 0 and 1) in order to have edges with a chamfer.

a) b)

c) d)

Figure 6. Different types of extrusion-mapping techniques: a) basic extrusion;

b) outward extrusion; c) beveled extrusion; d) chamfered extrusion

About beveled extrusion mapping [17], we start by searching for the intersection

with the original form of the distance using Formula (3). During this search, it

is necessary to test whether the current position is within the geometry using the

following difference [17]:

Db(Pi) = D(Pi)− bzi (6)

where zi represents the depth component of the Pi(xi, yi, zi) point, and b is a param-

eter that is used to control the bevel range during the rendering stage [17].

If difference Db(Pi) > 0, we continue the search; otherwise, the found intersection

point is refined with a binary search by checking the current position if it is inside

the geometry with the same difference Db(Pi).

About chamfered extrusion mapping [17], we begin by performing a search of

the intersection with the beveled extrusion. The found intersection point will be the

retained point if its depth value is less than a value c that controls the chamfer effect;

otherwise, we perform a second search using the following formula [17]:

Pi+1 = Pi +max(0, τEDT (Pi)− bc)v = Pi +Dc(Pi)v (7)



Per-pixel extrusion mapping with correct silhouette 411

In the case of outward extrusion mapping [16,17], the term τEDT (Pi) is replaced

by (τEDT (Pi)−e), where e is a parameter that can be modified in real time, allowing

us to modulate the extension effect (Figures 6b, 6c, and 6d).

In this article, the depths and the search for the intersection are bounded on

interval [0, 1]; so, the depth of the viewing ray is normalized (v/vz).

4. Quadratic approximation

A quadratic approximation was used with the relief-mapping technique in a technical

report [28]. This consists of calculating an approximate quadratic surface for each

vertex of a 3D mesh in a pre-processing stage; in the rendering stage, this surface is

used to adapt the ray-tracing process so that it takes the form of the mesh geometry

into consideration.

The approximate quadratic surface is represented by two parameters (a and b)

so that:

z = ax2 + by2, (8)

where (x, y, z) are the coordinates of the processed vertex.

These parameters are calculated in the tangent space that is associated with

vertex (x, y, z) using the quadrics [28,32].

During the rendering stage, coefficients a and b will be interpolated for each pixel

and then used to calculate the distance d between the viewing ray and the quadratic

surface. This distance is calculated in the tangent space that is associated with each

vertex; so, we have two cases (as shown in Figure 7).

a) b)

Figure 7. Cross section of two quadratic surfaces: in left surface (a),

viewing ray is inside quadric; in right surface (b), viewing ray is outside.

In both cases, PR segment gives distances between viewing ray and quadric Q

Let R be a point that belongs to the quadric Q, U be the unit vector that is

perpendicular to V at the P point, and V be the viewing ray expressed in the tangent

space.



412 Adnane Ouazzani Chahdi et al.

In the first case (Fig. 7a), V is inside the quadric, so R is obtained by translating

the P by d units along U :

R = P + Ud. (9)

The distance between the P point and the quadric Q is simply d, which can

be obtained by substituting the coordinates of R in the equation of the quadric and

solving for d:

aR2
x + bR2

y −Rz = 0 ⇐⇒ a(Px + Uxd)
2 + b(Py + Uyd)

2 − (Pz + Uzd) = 0. (10)

The solution of this equation gives the following:

d =
−B +

√
∆

2A
=
−B +

√
B2 − 4AC

2A
, (11)

with ∆ > 0 and


A = aU2

x + bU2
y

B = 2aPxUx + 2bPyUy − Uz

C = aP 2
x + bP 2

y − Pz

.

In the second case (Fig. 7b), V is outside the quadric; in this case, the distance

d is given by the following:

d = Pz − (aP 2
x + bP 2

y ). (12)

During the linear search, the relief-mapping technique [34] chooses the t param-

eter in interval [0, 1]. This search is optimized in [28] by choosing t interval [0, tmax],

with tmax being the smallest t > 0 such that the distance from the viewing ray to the

quadric is equal to 0 or 1 (Fig. 8).

Figure 8. Ray that hits depth 1 (d = 1) in texture space has reached bottom

of depth field characterizing an intersection (blue ray). On the other hand, ray that returns

to depth 0 (d = 0) can be safely discarded as belonging to silhouette (red ray)



Per-pixel extrusion mapping with correct silhouette 413

To find the most accurate value, tmax must be calculated by substituting

(Px, Py, Pz) with (Vxt, Vyt, Vzt) and setting d = 0 and d = 1, respectively, in both

Equations (10) and (12); then, solving for t. Algorithms 1 and 2 implement this

optimization in both cases.

Algorithm 1: tMaxInside

input : V,U

output: tmax

1 begin

2 A← aV 2
x + aV 2

y ;

3 B ← 2aVxUx + 2bVyUy − Vz;

4 C ← aU2
x + bU2

y − Uz;

5 D ← B2 − 4AC;

6 if D > 0 then

7 tmax ← (B −
√
D)/− 2A;

8 end

9 D ← Vz/A;

10 if D > 0 then

11 tmax ← min(tmax, D);

12 end

13 tmax ← |tmax|;
14 end

Algorithm 2: tMaxOutside

input : V, q

output: tmax

1 begin

2 D ← V 2
z − 4q;

3 if D > 0 then

4 tmax ← (−Vz +
√
D)/− 2q;

5 end

6 D ← Vz/q;

7 if D > 0 then

8 tmax ← min(tmax, D);

9 end

10 tmax ← |tmax|;
11 end

5. Per-pixel extrusion mapping with correct silhouette

The texture space is planar; in the rendering stage, the approximate surface that is

calculated at each vertex of the 3D mesh during the pre-processing stage is used so

that this space can be adapted to the 3D object geometry. In reality, the texture

space always remains planar; during the search for the intersection, the viewing ray



414 Adnane Ouazzani Chahdi et al.

is rectified to correct the position of the Pi+1 point by using the characteristics of the

approximate surface.

In the first case (Fig. 7a), the next Pi+1 point is given by the following:

Pi+1 = (v + ud)ti+1 = (v + w)ti+1, (13)

where u is the normalized U vector that is expressed in the texture space. We denote

the quadratic vector as w.

Figure 9 shows the general appearance of the viewing ray during the ray-tracing

phase. The figure shows that the Pi+1 point approaches the quadratic surface at each

iteration; that is to say, we move forward to depth value 1. In the case of an inter-

section, we quickly converge to the intersection point. Algorithms 3 and 4 implement

this rectification in the cases of the basic and beveled extrusions, respectively.

Figure 9. Viewing ray is inside quadric. At each iteration, we approach quadratic surface

by making rectification of viewing ray according to value udti+1

Algorithm 3: InsideRayIntersect

input : P0, v, w

output: t

1 begin

2 t← 0;

3 P ← P0;

4 for i← 1 to STEPS and Pz < 1 do

5 t← t+D(P );

6 P ← P0 + (v + w)t;

7 end

8 end



Per-pixel extrusion mapping with correct silhouette 415

Algorithm 4: InsideBeveledRayIntersect

input : P0, v, w

output: t

1 begin

2 t← 0;

3 P ← P0;

4 for i← 1 to STEPS and Pz < 1 do

5 if Db(P ) > 0 then

6 t← t+D(P );

7 P ← P0 + (v + w)t;

8 end

9 end

10 end

In the second case (Fig. 7b), the next Pi+1 point is given by the following:

Pi+1 = (vxti+1, vyti+1, vzti+1 − qt2i+1), (14)

where q is the quadric (av2x+ bv2y) that is associated with parameters a and b that are

expressed in the texture space.

Figure 10 shows the general appearance of the viewing ray during the ray-tracing

phase.

Figure 10. Viewing ray is outside quadric. At each iteration, we move away from quadratic

surface by making depth rectification of viewing ray with value −qt2



416 Adnane Ouazzani Chahdi et al.

Figure 10 shows that the Pi+1 point moves away from the quadratic surface

at each iteration; that is to say, we move away from depth value 1. In the case

where there is no intersection, we quickly converge to depth value 0. Algorithms 5

and 6 implement this rectification in the cases of the basic and beveled extrusions,

respectively.

Algorithm 5: OutsideRayIntersect

input : P0, v, q

output: t

1 begin

2 t← 0;

3 P ← P0;

4 for i← 1 to STEPS and Pz < 1 do

5 t← t+D(P );

6 P ← P0 + vt;

7 Pz ← Pz − t2q;

8 end

9 end

Algorithm 6: OutsideBeveledRayIntersect

input : P0, v, q

output: t

1 begin

2 t← 0;

3 P ← P0;

4 for i← 1 to STEPS and Pz < 1 do

5 if Db(P ) > 0 then

6 t← t+D(P );

7 P ← P0 + vt;

8 Pz ← Pz − t2q;

9 end

10 end

11 end

Since the depth of v is normalized (v/vz), distance d must be divided by vz in

the first case (Fig. 7a) and quadric q must be divided by v2z in the second case. These

must occur before normalizing the depth of v.

The decision regarding the silhouette fragments is realized after the search for

the intersection. To optimize this search, we can check whether the value of the t

parameter is greater than tmax at each iteration. In such a case, the search is inter-

rupted.



Per-pixel extrusion mapping with correct silhouette 417

In the case of the beveled extrusion mapping, the found intersection point is

refined with a binary search (during the search, it is necessary to test whether the

current position is inside the geometry by using Formula (6), and in the case of

an extrusion with a chamfer, we continue the search after the binary search with

Formula (7). Algorithms 7 and 8 give the appropriate implementations.

Algorithm 7: BinarySearch

input : P, b

output: P

1 begin

2 distance← D(P );

3 for i← 1 to STEPS do

4 distance← distance/2;

5 if Db(P ) > 0 then

6 P ← P + v × distance;

7 else

8 P ← P − v × distance;

9 end

10 end

11 end

Algorithm 8: ChamferedIntersection

input : P, c

output: P

1 begin

2 if Pz > c then

3 for i← 1 to STEPS do

4 P ← P +Dc(P )v

5 end

6 end

7 end

In the rendering stage, the search for the intersection is performed in the texture

space. However, the calculations that are related to the quadratic approximation are

performed in the tangent space where t is equal to 1 so that the quadratic distance

is computed as the viewing ray progresses. Algorithm 9 implements the per-pixel

extrusion mapping with the correct silhouette in its different types.



418 Adnane Ouazzani Chahdi et al.

Algorithm 9: CurvedExtrusionMapping

input : SM,R, T, (x0, y0), (Sx, Sy, Sz), (a, b), τ, e, b, c, V, U,

isBevel(if there is a beveled extrusion), isChamfer(if there is a chamfered extrusion)

output: P

1 begin

2 P0 ← (x0Tx, y0Ty, 0);

3 v ← ∥V/(Sx, Sy, Sz)∥;
4 vz ← −vz;
5 z ← vz;

6 v ← v/vz;

7 vR ← v/
√

v2x +R2v2y;

8 A← aU2
x + bU2

y ;

9 B ← 2aVxUx + 2bVyUy − Uz;

10 C ← aV 2
x + bV 2

y − Vz;

11 D ← B2 − 4AC;

12 if D > 0 then

13 tmax ← tMaxInside(V,U);

14 u← ∥U/(Sx, Sy, Sz)∥;
15 d← ((B −

√
D)/− 2A)/z;

16 w ← du;

17 if isBevel or isChamfer then

18 t← InsideBeveledRayIntersect(P0, vR, w)

19 else

20 t← InsideRayIntersect(P0, vR, w)

21 end

22 else

23 q ← aV 2
x + bV 2

y ;

24 tmax ← tMaxOutside(V, q);

25 q ← (q/Sz)/(z
2);

26 if isBevel or isChamfer then

27 t← OutsideBeveledRayIntersect(P0, vR, q)

28 else

29 t← OutsideRayIntersect(P0, vR, q)

30 end

31 end

32 if t > tmax then

33 discard;

34 else

35 P ← P0 + vRt;

36 end

37 if isBevel or isChamfer then

38 P ← BinarySearch(P, b);

39 if isChamfer then

40 P ← ChamferedIntersection(P, c);

41 end

42 end

43 end



Per-pixel extrusion mapping with correct silhouette 419

We note the following:

P0: Starting point;

P : Intersection point;

(x0, y0): Current pixel;

T : Repetition along x and y;

(Sx, Sy, Sz): Texture space;

SM : Shape Map;

R: Width/Height of Shape Map SM ;

V : Viewing ray expressed in tangent space;

v: Viewing ray expressed in texture space;

U : Vector perpendicular to V ;

u: U vector expressed in texture space;

w: Quadratic vector expressed in texture space;

(a, b): Quadratic parameters;

d: Quadratic distance;

q: Quadric;

τ : Scale factor;

e: Extension parameter;

b: Bevel parameter;

c: Chamfer parameter.

6. Results and discussions

We have implemented the pre-processing part of the techniques discussed in this

paper in C++. For rendering, we have exploited the programmable units of the GPU

(namely, Vertex Shader and Fragment Shader) using OpenGL/GLSL. The figures

were obtained using a Core-i7-4510U-2GH-4CPUs architecture with 8 GB of RAM

and GeForce-GT-840M with 4 GB of memory.

The curved ray-tracing algorithm does not concern the geometry of the 3D object

at the silhouette parts. Its main purpose is to eliminate the non-visible parts of the

silhouette. Indeed, Figures 11 and 12 show the difference between those objects that

are rendered with the extrusion-mapping technique without and with the correct

silhouette using different depth scales. We notice that the rendering differences are

visible at the edges of the 3D objects. In the images that are rendered by the curved

ray-tracing algorithm, the silhouette is visible on the parts where the viewing ray

shaves the 3D surface.



420 Adnane Ouazzani Chahdi et al.

Figure 11. Comparison of renderings of 3D objects without and with silhouette correction:

top – basic extrusion mapping; bottom – same objects rendered with correct silhouette

by using curved ray-tracing algorithm

Figure 12. Comparison of renderings of extrusion-mapping technique without and with

correct silhouette and by highlighting polygonal mesh. We note that silhouette is clearly

visible on edges of 3D objects

The proposed rectification works equally well in the cases of beveled and cham-

fered extrusions. Figure 13 shows that the bevel and chamfer effects are not affected

by this correction; only the fragments belonging to the silhouette are concerned.



Per-pixel extrusion mapping with correct silhouette 421

a) b)

Figure 13. Beveled (a) and chamfered (b) extrusion mapping without correction and with

correction of silhouette. Effects of bevel and chamfer are not affected by rectification process;

only fragments belonging to silhouette are concerned

The same also applies in the case of outward extrusion. Figure 14 shows the

extension effect on the 3D objects by gradually increasing the value of the extension.

Outward extrusion can be combined with any type of extrusion while preserving the

same silhouette-rendering quality of the curved ray-tracing algorithm.

Figure 14. Tor and sphere rendered using outward extrusion mapping

with silhouette correction. Extension parameter increases from top to bottom

(0, 0.4, and 0.8). When value extension parameter is zero, we find basic extrusion mapping.

Extension effect is not affected by rectification process; only fragments belonging

to silhouette are concerned



422 Adnane Ouazzani Chahdi et al.

The proposed rectification does not depend on the shape map; it depends only

on the quadratic parameters that are associated with the 3D surface. In addition,

the shape map is not attached to the base geometry onto which it is mapped, as the

rectification process is realized in real time. This makes it possible to use the same

rectification process and the same texture in real time on different 3D objects (Fig-

ures 11 and 14). This means that the rectification process and the shape map are

independent of the surface on which they will be used.

In addition, a change in the camera position does not influence the rectification

process nor the rendering quality, as the rectification is realized in real time and

we will have a new image rendered with a new rectification with each movement

of the camera.

To compare the rendering quality between the curved relief mapping [28] and

the curved extrusion mapping, we used two 3D objects (a sphere and a torus) with

two different shape maps and with the same number of repetitions along x and y

(Figure 15). Figure 15 shows that the curved relief mapping is not well-adapted for

the case of extrusion. On the other hand, the curved extrusion mapping allows us to

produce 3D objects with a satisfactory quality and with the correct support of the

silhouette.

Figure 15. Comparison between curved relief mapping and curved extrusion mapping.

Images rendered with good quality are those rendered by curved extrusion mapping

To compare the rendering speeds between the different techniques discussed in

this paper, we used a scene of 800 × 600, a torus with 2,028 triangles, and three



Per-pixel extrusion mapping with correct silhouette 423

different shape maps that have a resolution of 1024× 1024. Concerning the iteration

numbers of the ray-tracing algorithm, we used 25 linear steps and 5 binary steps. We

used 0.08 for the bevel parameter and 0.6 for the chamfer parameter.

Table 1 shows the difference in the rendering speeds; it also shows the shape map

used in each case (with its respective repetitions along x and y) and the views on

which the calculations were made where the 3D objects occupy each entire scene.

From Table 1, we can observe that the different extrusion-mapping techniques are

faster when compared to the curved relief mapping. In the case of the curved extrusion

mapping (the case that interests us), we have considerable means differences of 42,

26, and 18 FPS for the basic, beveled, and chamfered extrusions, respectively.

Table 1
Comparison of rendering speed FPS (frames per second) among different techniques

discussed in this paper. We found that curved relief mapping is slowest. We also found that

silhouette treatment degraded rendering speeds of curved extrusion-mapping techniques

when compared to extrusion-mapping techniques. This degradation is in order of 8 FPS

Screen

800× 600

Extrusion

Mapping

Curved Extrusion

Mapping
Curved

Relief

MappingShape Map

with

(Tx, Ty)

Basic Beveled Chamfered Basic Beveled Chamfered

(6 6)

200 184 176 192 176 168 136

(10,10)

160 144 136 152 136 128 128

(12,10)

152 136 128 144 128 120 96

We also note that the rendering speeds of the curved extrusion-mapping tech-

niques have been decreased when compared to the extrusion-mapping techniques by

a means of 8 FPS. The degradation is minimal; this is due to the calculations that

are related to the treatment of the silhouette that is based on the quadratic approxi-

mation.

Outward extrusion can be combined with any other extrusion-mapping technique

without affecting the ray-tracing process. Figure 6 shows that we added the extension

effect in the other three types of extrusion (basic, beveled, and chamfered). This is

the same for the silhouette correction.



424 Adnane Ouazzani Chahdi et al.

The combination of the per-pixel extrusion-mapping techniques and the quadratic

approximation produce very satisfactory results at a low cost. In some cases, this

combination produces distortions and holes (as shown in Figure 16). This problem

is due to the use of the quadratic approximation for the local representation of the

surface at each vertex, as the viewing ray occasionally pierces the relief in the object

space and leaves it in the texture space. This problem was also mentioned in [9,19,24].

Figure 16. Distortions and holes due to use of quadratic approximation

The proposed combination does not affect the complexity of the ray-tracing algo-

rithm. Indeed, the instructions that are related to the quadratic approximation have

a linear complexity of O(n); so, the complexity of the resulting algorithm remains

always linear.

7. Conclusion and perspectives

In this paper, we have presented a curved ray-tracing algorithm for the basic, outward,

beveled, and chamfered extrusion-mapping techniques by combining a ray-tracing al-

gorithm with a quadratic approximation. This approximation consists of representing

a 3D surface by approximate parameters at each vertex that constitutes a correspond-

ing mesh.

The proposed rectification consists of adapting the displacements along the view-

ing ray so that it takes the forms of the quadratic surfaces into account. During the

curved ray-tracing phase, the algorithm uses the parameters of the quadratic sur-

face in order to rectify the viewing ray. This rectification makes it possible to know

whether the viewing ray pierces or leaves the extruded form and if it is realized after

each new displacement along the viewing ray.

The proposed rectification allows us to produce images at a very high speed and

with a satisfactory quality. However, due to the use of the quadratic approximation,

the viewing ray sometimes pierces the relief in the object space and leaves it in the

texture space. This leads to the appearance of holes and distortions.



Per-pixel extrusion mapping with correct silhouette 425

Possible improvements can be made regarding the complexity of the algorithm

by providing an optimization and the way the surface curvature is represented at each

vertex in order to increase the rendering quality.

References

[1] Anouar R., Adnane O., Akram H., Khalid S.: Revolution mapping with bump

mapping support, Graphical Models, vol. 100, pp. 1–11, 2018. doi: 10.1016/j.

gmod.2018.09.001.

[2] Anouar R., Adnane O., Akram H., Khalid S.: Image-based extrusion with realistic

surface wrinkles, Journal of Computational Design and Engineering, vol. 7(1),

pp. 30–43, 2020.

[3] Baboud L., Décoret X.: Rendering Geometry with Relief Textures. In: Pro-

ceedings of Graphics Interface 2006, p. 195–201, GI ’06, Canadian Information

Processing Society, CAN, 2006.

[4] Baboud L., Eisemann E., Seidel H.: Precomputed Safety Shapes for Efficient and

Accurate Height-Field Rendering, IEEE Transactions on Visualization and Com-

puter Graphics, vol. 18(11), pp. 1811–1823, 2012. doi: 10.1109/TVCG.2011.281.

[5] Blinn J.F.: Simulation of Wrinkled Surfaces, ACM SIGGRAPH Computer Graph-

ics, vol. 12(3), pp. 286–292, 1978. doi: 10.1145/965139.507101.

[6] Brawley Z., Tatarchuk N.: Self-Shadowing, Perspective-Correct Bump Mapping

Using Reverse Height Map Tracing, ShaderX3: Advanced Rendering with DirectX

and OpenGL (Shaderx Series), pp. 135–154, 2004.

[7] Chahdi A.O., Halli A., Ragragui A., Satori K.: Per-pixel displacement mapping

using hybrid cone approach. In: 2017 International Conference on Advanced

Technologies for Signal and Image Processing (ATSIP), pp. 1–4, 2017. doi:

10.1109/ATSIP.2017.8075577.

[8] Chahdi A.O., Ragragui A., Halli A., Satori K.: Dynamic relief mapping1. In: 2018

International Conference on Intelligent Systems and Computer Vision (ISCV),

pp. 1–6, 2018. doi: 10.1109/ISACV.2018.8354053.

[9] Chen Y.C., Chang C.F.: A Prism-Free Method for Silhouette Rendering in In-

verse Displacement Mapping, Computer Graphics Forum, 2008. doi: 10.1111/j.

1467-8659.2008.01341.x.

[10] Cook R.L.: Shade Trees. In: Proceedings of the 11th Annual Conference on

Computer Graphics and Interactive Techniques, p. 223–231, SIGGRAPH ’84,

Association for Computing Machinery, New York, NY, USA, 1984. doi:

10.1145/800031.808602.

[11] Danielsson P.E.: Euclidean distance mapping, Computer Graphics and Image

Processing, vol. 14(3), pp. 227–248, 1980. doi: 10.1016/0146-664X(80)90054-4.

[12] Donnelly W.: Per-Pixel Displacement Mapping with Distance Functions. In:

GPU Gems 2, pp. 123–136, Addison-Wesley, 2005.

https://doi.org/10.1016/j.gmod.2018.09.001
https://doi.org/10.1016/j.gmod.2018.09.001
https://doi.org/10.1109/TVCG.2011.281
https://doi.org/10.1145/965139.507101
https://doi.org/10.1109/ATSIP.2017.8075577
https://doi.org/10.1109/ATSIP.2017.8075577
https://doi.org/10.1109/ISACV.2018.8354053
https://doi.org/10.1111/j.1467-8659.2008.01341.x
https://doi.org/10.1111/j.1467-8659.2008.01341.x
https://doi.org/10.1145/800031.808602
https://doi.org/10.1145/800031.808602
https://doi.org/10.1016/0146-664X(80)90054-4


426 Adnane Ouazzani Chahdi et al.

[13] Dufort J.F., Leblanc L., Poulin P.: Interactive Rendering of Meso-structure Sur-

face Details using Semi-transparent 3D Textures. In: Proceedings of Vision, Mod-

eling, and Visualization 2005, pp. 399–406, 2005.

[14] Eric R., Musawir S., Sumanta P.: Interval Mapping. In: Proceedings of the 2006

Symposium on Interactive 3D Graphics and Games, I3D ’06, Association for

Computing Machinery, 2006.

[15] Halli A., Saaidi A., Satori K., Tairi H.: Per-Pixel Displacement Mapping Us-

ing Cone Tracing, International Review on Computers and Software (IRECOS),

vol. 3(5), 2008.

[16] Halli A., Saaidi A., Satori K., Tairi H.: Per-Pixel Extrusion Mapping, IJCSNS

International Journal of Computer Science and Network Security, vol. 9(3),

pp. 118–124, 2009.

[17] Halli A., Saaidi A., Satori K., Tairi H.: Extrusion and revolution mapping, ACM

Transactions on Graphics, vol. 29(5), 2010. doi: 10.1145/1857907.1857908.

[18] Hirche J., Ehlert A., Guthe S., Doggett M.: Hardware Accelerated Per-

Pixel Displacement Mapping. In: GI’04: Proceedings of Graphics Interface

2004, pp. 153–158, Canadian Human-Computer Communications Society, Wa-

terloo, 2004.

[19] Jeschke S., Mantler S., Wimmer M.: Interactive Smooth and Curved Shell Map-

ping. In: Proceedings of the 18th Eurographics Conference on Rendering Tech-

niques, p. 351–360, EGSR’07, Eurographics Association, Goslar, DEU, 2007.

[20] Kaneko T., Takahei T., Inami M., Kawakami N., Yanagida Y., Maeda T.,

Tachi S.: Detailed shape representation with parallax mapping. In: Proceedings

of the ICAT 2001, pp. 205–208, 2001.

[21] Ki H., Oh K.: Accurate Per-Pixel Displacement Mapping using a Pyramidal

Structure, Tech. rep., 2007. http://ki-h.com/archive/KiH-TA07-IPDM.pdf.

[22] Kolb A., Rezk Salama C.: Efficient Empty Space Skipping for Per-Pixel Displace-

ment Mapping. In: Proceedings of Vision, Modeling and Visualization (VMV 05),

pp. 407–414, 2005.

[23] McGuire M., McGuire M.: Steep Parallax Mapping, I3D 2005 Poster; Brown

Web Report, 2005. https://casual-effects.com/research/McGuire2005Parallax/

index.html. I3D 2005 Poster.

[24] Na K.G., Jung M.R.: Curved Ray-Casting for Displacement Mapping in the GPU.

In: Proceedings of the 14th International Conference on Advances in Multimedia

Modeling, p. 348–357, MMM’08, Springer-Verlag, Berlin, Heidelberg, 2008.

[25] Oh K., Ki H., Lee C.H.: Pyramidal Displacement Mapping: A GPU based

Artifacts-Free Ray Tracing through an Image Pyramid. In: Proceedings of

the ACM Symposium on Virtual Reality Software and Technology, p. 75–82,

VRST ’06, Association for Computing Machinery, New York, NY, USA, 2006.

doi: 10.1145/1180495.1180511.

[26] Oliveira M.M.: Relief Texture Mapping, Ph.D. thesis, University of North Car-

olina, 2000.

https://doi.org/10.1145/1857907.1857908
http://ki-h.com/archive/KiH-TA07-IPDM.pdf
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://doi.org/10.1145/1180495.1180511


Per-pixel extrusion mapping with correct silhouette 427

[27] Oliveira M.M., Bishop G., McAllister D.: Relief Texture Mapping. In: Proceed-

ings of the 27th Annual Conference on Computer Graphics and Interactive Tech-

niques, p. 359–368, SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co.,

USA, 2000. doi: 10.1145/344779.344947.

[28] Oliveira M.M., Policarpo F.: An Efficient Representation for Surface Details.

Technical report, Instituto de Informática UFRGS, 2005.

[29] Paglieroni D.W., Petersen S.M.: Height distributional distance transform meth-

ods for height field ray tracing, ACM Transactions on Graphics, vol. 13(4),

pp. 376–399, 1994. doi: 10.1145/195826.197312.

[30] Patterson J., Hoggar S., Logie J.: Inverse Displacement Mapping, Computer

Graphics Forum, vol. 10(2), pp. 129–139, 1991. doi: 10.1111/1467-8659.1020129.

[31] Peercy M., Airey J., Cabral B.: Efficient Bump Mapping Hardware. In: Pro-

ceedings of the 24th Annual Conference on Computer Graphics and Interactive

Techniques, pp. 303–306, SIGGRAPH ’97, ACM Press/Addison-Wesley Publish-

ing Co., USA, 1997. doi: 10.1145/258734.258873.

[32] Petitjean S.: A Survey of Methods for Recovering Quadrics in Triangle Meshes,

ACM Computing Surveys, vol. 34(2), pp. 211–262, 2002. doi: 10.1145/508352.

508354.

[33] Policarpo F., Oliveira M.M.: Relief Mapping of Non-Height-Field Surface Details.

In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games,

p. 55–62, I3D ’06, Association for Computing Machinery, New York, NY, USA,

2006. doi: 10.1145/1111411.1111422.

[34] Policarpo F., Oliveira M.M., Comba J.L.D.: Real-time relief mapping on arbi-

trary polygonal surfaces. In: Proceedings of the 2005 Symposium on Interactive

3D Graphics and Games, p. 155–162, I3D ’05, Association for Computing Ma-

chinery, New York, NY, USA, 2005. doi: 10.1145/1053427.1053453.

[35] Porumbescu S.D., Budge B., Feng L., Joy K.I.: Shell Maps, ACM Transactions

on Graphics, vol. 24(3), pp. 626–633, 2005.

[36] Premecz M.: Iterative Parallax Mapping with Slope Information, Central Eu-

ropean Seminar on Computer Graphics (CESCG 06), 2006. www.cescg.org/

CESCG-2006/papers/TUBudapest-Premecz-Matyas.pdf.

[37] Ragragui A., Chahdi A.O., Halli A., Satori K.: Per-Pixel Extrusion Mapping:

The Correction of the Intersection Point Between the Extrusion Geometry and

the Viewing Ray. In: 2017 Intelligent Systems and Computer Vision (ISCV),

pp. 1–6, 2017. doi: 10.1109/ISACV.2017.8054957.

[38] Ragragui A., Chahdi A.O., Halli A., Satori K.: Per-pixel revolution mapping

with rectification of the texture projection. In: 2018 International Conference on

Intelligent Systems and Computer Vision (ISCV), pp. 1–6, 2018. doi: 10.1109/

ISACV.2018.8354056.

https://doi.org/10.1145/344779.344947
https://doi.org/10.1145/195826.197312
https://doi.org/10.1111/1467-8659.1020129
https://doi.org/10.1145/258734.258873
https://doi.org/10.1145/508352.508354
https://doi.org/10.1145/508352.508354
https://doi.org/10.1145/1111411.1111422
https://doi.org/10.1145/1053427.1053453
www.cescg.org/CESCG-2006/papers/TUBudapest-Premecz-Matyas.pdf
www.cescg.org/CESCG-2006/papers/TUBudapest-Premecz-Matyas.pdf
https://doi.org/10.1109/ISACV.2017.8054957
https://doi.org/10.1109/ISACV.2018.8354056
https://doi.org/10.1109/ISACV.2018.8354056


428 Adnane Ouazzani Chahdi et al.

[39] Ritsche N.: Real-Time Shell Space Rendering of Volumetric Geometry. In:

GRAPHITE’06: Proceedings of the 4th international conference on Com-

puter graphics and interactive techniques in Australasia and Southeast Asia,

pp. 265–274, Association for Computing Machinery, New York, NY, USA, 2006.

doi: 10.1145/1174429.1174477.

[40] Shirley P., Tuchman A.: A polygonal approximation to direct scalar volume

rendering, ACM SIGGRAPH Computer Graphics, vol. 24(5), pp. 63–70, 1990.

doi: 10.1145/99308.99322.

[41] Tatarchuk N.: Dynamic parallax occlusion mapping with approximate soft shad-

ows. In: Proceedings of 2006 symposium on Interactive 3D graphics and games,

pp. 63–69, I3D ’06, Association for Computing Machinery, New York, NY, USA,

2006. doi: 10.1145/1111411.1111423.

[42] Tevs A., Ihrke I., Seidel H.P.: Maximum Mipmaps for Fast, Accurate, and Scal-

able Dynamic Height Field Rendering, Proceedings of Interactive 3D Graphics

and Games, I3D08, pp. 183–190, 2008.

[43] Wang L., Wang X., Tong X., Lin S., Hu S., Guo B., Shum H.Y.: View-Dependent

Displacement Mapping, ACM Trans Graph, vol. 22(3), p. 334–339, 2003. doi:

10.1145/882262.882272.

[44] Wang X., Tong X., Lin S., Hu S., Guo B., Shum H.Y.: Generalized Displacement

Maps. In: Proceedings of the Fifteenth Eurographics Conference on Rendering

Techniques, p. 227–233, EGSR’04, Eurographics Association, Goslar, DEU, 2004.

[45] Welsh T.: Parallax Mapping with Offset Limiting: A Per-Pixel Approximation

of Uneven Surfaces. Technical report, Infiscape Corporation, 2004.

[46] Yerex K., Jagersand M.: Displacement Mapping with Ray-casting in Hard-

ware. In: ACM SIGGRAPH 2004 Sketches, p. 149, SIGGRAPH ’04, Association

for Computing Machinery, New York, NY, USA, 2004. doi: 10.1145/1186223.

1186410.

Affiliations

Adnane Ouazzani Chahdi
Sidi Mohamed Ben Abdellah University, Faculty of Science Dhar EL Mahraz, LISAC
Laboratory, Fez, Morocco, adnaneouazzanichahdi@gmail.com

Anouar Ragragui
Sidi Mohamed Ben Abdellah University, Faculty of Science Dhar EL Mahraz, LISAC
Laboratory, Fez, Morocco, anouar.ragragui@usmba.ac.ma

Akram Halli
Moulay-Ismail University IA Laboratory Meknes, Morocco, akramhalli@yahoo.fr

Khalid Satori
Sidi Mohamed Ben Abdellah University, Faculty of Science Dhar EL Mahraz, LISAC
Laboratory, Fez, Morocco, khalidsatori@gmail.com

Received: 20.06.2019

Revised: 07.02.2021

Accepted: 07.02.2021

https://doi.org/10.1145/1174429.1174477
https://doi.org/10.1145/99308.99322
https://doi.org/10.1145/1111411.1111423
https://doi.org/10.1145/882262.882272
https://doi.org/10.1145/882262.882272
https://doi.org/10.1145/1186223.1186410
https://doi.org/10.1145/1186223.1186410

	Introduction
	Related works
	Per-pixel extrusion mapping
	Quadratic approximation
	Per-pixel extrusion mapping with correct silhouette
	Results and discussions
	Conclusion and perspectives

