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Abstract Based on Chebyshev polynomials, one can create an asymmetric cryptosystem

that allows for secure communication. Such a cryptosystem is based on the

fact that these polynomials form a semi-group due to the composition opera-

tion. This article presents two new cryptosystems based on modifications of

Chebyshev’s polynomials. The presented analysis shows that their security is

the same as in the case of algorithms associated with the problem of discrete

logarithms. The article also shows methods that allow for the faster calculation

of Chebyshev polynomials.
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1. Introduction

In the modern world, information resources play a key role in every aspect of our

everyday life. Data is downloaded and accessed by almost all electronic devices; how-

ever, certain data is only valuable if it is kept secret from everyone except those who

are authorized to access it. For this reason, many methods have been created primar-

ily for securing data, such as cryptography, steganography (concealing information

in objects; e.g., [16, 34]), biometrics (using human anthropometric and behavioral

features; e.g., [3, 20]), etc.

Among the above-mentioned techniques, the most common is cryptograghy; this

is currently one of the most dynamically developing fields of science related to in-

formation security. In cryptography, a key role is played by data encryption; this

can be divided into symmetric algorithms (the same encryption and decryption key;

e.g., DES [10] and AES [12]) and asymmetric algorithms (various keys for encryption

and decryption; e.g., DH [13], RSA [32], ElGamal [14]). Currently, one of the most

noticeable trends in security engineering is cryptography based on chaos theory. This

uses chaotic projections such as logistic maps [25,26] or piecewise linear maps [26,27]

to generate a sequence of values that are similar to random ones on one hand and

obtained in a deterministic way on the other. As part of chaotic cryptography, we

can distinguish symmetric algorithms [4] and asymmetric algorithms [31].

This article is about chaotic asymmetric cryptography, which uses Chebyshev’s

polynomials (among others) as a basic mathematical tool for generating keys and

carrying out the encryption process. The article is divided into main five parts: (1)

introduction, with a brief overview of the subject of the article; (2) preliminaries

and related work, with a detailed review of issues related to Chebyshev polynomials

in cryptography; (3) Chebyshev’s polynomials over Zp, where modified Chebyshev

polynomials are formulated; (4) algorithms of new cryptosystems, where new cryp-

tosystems were defined and their security and efficiency shown; and finally (5) the

summary and references.

2. Preliminaries and related work

Asymmetric cryptography based on chaos theory uses Chebyshev Tn(x) I-type poly-

nomials, which can be defined as follows [33]:

Tn(x) =


cos(n arccosx), x ∈ [−1, 1]

cosh(n cosh−1 x), x > 1

(−1)n cosh(n cosh−1(−x)), x < −1

(1)

where n ∈ N, or through the same relationship:

Tn(x) = cos(nθ) (2)
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where x = cos θ. Polynomials (1) can be determined alternatively by the following

recursive relationship [33]:

Tn+2(x) = 2xTn+1(x)− Tn(x) (3)

where T0(x) = 1 and T1(x) = x. Polynomials (1) have many interesting properties

that make them extremely useful. For instance, one can include the fact that these

polynomials (considered as a dynamic system) are a chaotic map with the Lyapunov

exponent equal to lnn [31].

In addition, for polynomials (1), among others, the following property occurs [5]:

Tn(Tm(x)) = Tnm(x) (4)

Dependency relationship (4) was used in [22] to create a cryptosystem that can be

used by Alice and Bob for secure transmission. In the literature, this cryptosystem is

known as Kocarev’s cryptosystem and consists of three procedures: the key-generation

algorithm, the encryption algorithm, and the decryption algorithm (see Algorithms 1

and 2).

Algorithm 1. Alice key creation algorithm

Data: s ∈ Z; x ∈ [−1, 1]

Result: Ts(x) ∈ [−1, 1]

1. set a large integer number s

2. choose a random value x ∈ [−1, 1] and calculate Ts(x)

3. Alice’s private key is s, while the public key (x, Ts(x))

Algorithm 2. Bob encryption algorithm

Data: r ∈ Z; x, Ts(x),M ∈ [−1, 1]

Result: C, Tr(x) ∈ [−1, 1]

1. choose Alice’s public key (x, Ts(x))

2. message M present as a numerical value, M ∈ [−1, 1]

3. set a large integer number r

4. calculate Tr(x), Tr(Ts(x)) = Trs(x), C = MTrs(x)

5. send to Alice (Tr(x), C)

After receiving the message from Bob, Alice can decrypt the message by conducting

the following steps of Algorithm 3.

Algorithm 3. Alice’s decryption algorithm

Data: s ∈ Z; Tr(x), C ∈ [−1, 1]

Result: M ∈ [−1, 1]

1. using s, calculate Ts(Tr(x)) = Tsr(x).

2. recover message M calculating M = C/Tsr(x)

This cryptosystem is a modification of the ElGamal algorithm as well as the

Diffie-Hellman key exchange protocol (DH). However, it turns out that it is not se-

cure [7]. Knowing Alice’s public key (x, Ts(x)) and Bob’s cryptogram (Tr(x), C), Eve

can perform the attack [7] (see Algorithm 4).
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Algorithm 4. Bergamo attack

Data: r, r̄ ∈ Z; Tr(x), Ts(x), C ∈ [−1, 1]

Result: M ∈ [−1, 1]

1. find such r̄, that Tr̄(x) = Tr(x)

2. calculate Tr̄(Ts(x)) = Tr̄s(x)

3. recover message M calculating M = C/Tr̄s(x)

Keeping Bergamo’s attack in mind, Kocarev has described Chebyshev’s polyno-

mials (1) above ring Zp [21]:

Tn+2(x) = 2xTn+1(x)− Tn(x) mod p (5)

where p is strong prime, T0(x) = 1, and T1(x) = x mod p. Then, he built a new

cryptosystem that uses exactly the same algorithms; however, all operations are per-

formed in Zp [21]. This also means x and M belong to set Zp. The security of such

a defined cryptosystem with polynomials (5) is the same as in the case of the discrete

logarithm problem. This is due to the computationally difficult problem, which is the

calculation of n from a = Tn(x) (where a is known). The solution is [15]:

n = logx+
√
x2−1 a+

√
a2 − 1 (6)

Dependency (6) can be called the problem of Chebyshev’s discrete logarithm.

However, it turns out that Kocarev’s cryptosystem with polynomials (5) is not

secure in special cases. In [29], one can find the attack that uses the periodicity of

polynomials (5). This is only effective in a certain case; however, it shows that the

analyzed Kocarev’s cryptosystem has some weaknesses.

In [35], one can find the information about the modified Kocarev’s cryptosystem

with (5) by introducing additional secret values Ki, which are used to scale the value

of the ciphertext; i.e., the encryption now proceeds according to procedure C =

KiMTrs(x). These values are obtained by solving Equation (7).

Ki =



K1, 0 ≤ Tsr(x) mod n ≤ p
n

K2,
p
n ≤ Tsr(x) mod n ≤ 2p

n
...

...

Ki,
(i−1)p

n ≤ Tsr(x) mod n ≤ ip
n

...
...

Kn,
(n−1)p

n ≤ Tsr(x) mod n ≤ p

(7)

Polynomials (5) were also used to create a cipher using Alice’s e-mail (for ex-

ample) as its public key (this is the so-called Identity-based encryption). Such an

algorithm can be found in the the literature [2]; however, it turned out that it is not

secure enough. Its cryptanalysis was carried out and described in [18].
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In [37], Chebyshev polynomials were used to encrypt the images. The presented

results show that the cryptosystem with polynomials (5) is an interesting alterna-

tive to the traditional ElGamal algorithm. Moreover, a key exchange protocol was

presented in [40], which was intended to significantly improve the security and effec-

tiveness of using Chebyshev polynomials. Nevertheless, its cryptoanalysis was carried

out in [39]. A similar approach can be found in [8].

What is more, polynomials (4) were used to create a digital signature [17] as well

as the authentication protocol [23,36]. In addition, Chebyshev polynomials have also

found application in creating a one-way function. Such an algorithm was described

in [9, 19].

The literature also included the problem of the quick calculation of the value

of Chebyshev polynomials. Due to the size of the key, this operation should be fast

enough. In [1, 28], several algorithms are given that address this issue.

In [30], polynomials Tn(x) were defined in a finite body GF (p). In addition,

the authors used the defined polynomials to determine the new version of Kocarev’s

cryptosystem given by use of algorithms (1)–(3).

The performed literature review indicates a considerable interest in the use of

Chebyshev polynomials of the first kind in asymmetric cryptography.

In addition to polynomials (1), one can find Chebyshev polynomials of the second

kind Un(x) in the literature, which can be determined by Equation (8).

Un(x) =
sin ((n+ 1)θ)

sin θ
(8)

Furthermore, one can find the so-called modified Chebyshev polynomials in the

literature [38]; that is, Vieta-Lucas polynomials Ωn(x) and Vieta-Fibonacci polyno-

mials Vn(x) defined by Equations (9) and (10).

Ωn(x) = 2Tn

(x
2

)
(9)

Vn(x) = Un

(x
2

)
(10)

Polynomials Un(x), Ωn(x), and Vn(x) can be described using the following re-

cursive relationships:

Un+2(x) = 2xUn+1(x)− Un(x) (11)

where U0(x) = 1 and U1(x) = 2x;

Ωn+2(x) = xΩn+1(x)− Ωn(x) (12)

where Ω0(x) = 2 and Ω1(x) = x;

Vn+2(x) = xVn+1(x)− Vn(x) (13)

where V0(x) = 1 and V1(x) = x.
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For the above polynomials the following properties (among others) occur [5, 38]

(Equations (14)–(16)):

Ωn(Ωm(x)) = Ωnm(x) (14)

Um−1(Tn(x))Un−1(x) = Unm−1(x) (15)

Vn−1(Ωm(x))Vm−1(x) = Vnm−1(x) (16)

Dependence (14) served in [24] to create Kocarev’s cryptosystem using polynomi-

als (9).

Analyzing the literature concerning the use of Chebyshev polynomials in asym-

metric cryptography, we can conclude that the presented algorithms can be extended

using the dependence of (15), which has not been used for this purpose. In addition,

the modified Chebyshev polynomials have properties that are analogous to their clas-

sic equivalents; therefore, it is reasonable to construct a cryptosystem based on (16).

To achieve this goal, it is necessary to specify Polynomials (8)–(10) over the ring, as

in the case of Polynomials (5).

3. Chebyshev polynomials over ZpZpZp

Polynomials Un(x), Ωn(x), and Vn(x) can be specified over ring Zp. Their definitions

are as follows:

Un+2(x) = 2xUn+1(x)− Un(x) mod p (17)

where U0(x) = 1 and U1(x) = 2x mod p;

Ωn+2(x) = xΩn+1(x)− Ωn(x) mod p (18)

where Ω0(x) = 2 and Ω1(x) = x mod p;

Vn+2(x) = xVn+1(x)− Vn(x) mod p (19)

where V0(x) = 1 and V1(x) = x mod p.

For the specified Chebyshev polynomials, the dependencies still remain true (14)–

(16). Based on these, the above polynomials can be used in asymmetrical cryptogra-

phy. This is presented in a later part of this paper.

4. Algorithms of new cryptosystems

The presented modified Chebyshev polynomials (17)–(19) can be used in two ways in

asymmetric cryptography:

• use (15) dependency for polynomials specified by (5) and (17);

• use dependencies (16) for polynomials specified by (18) and (19).
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4.1. Cryptosystem I: Polynomials Tn(x)Tn(x)Tn(x) and Un(x)Un(x)Un(x)

The dependence of (15) on polynomials and defined by means of (5) and (17) allows

us to create a new cryptosystem, which consists of the following three algorithms

(Algorithms 5, 6, and 7).

Algorithm 5. Alice key-generation algorithm

Data: p− strong prime; s ∈ Z; x ∈ Zp

Result: Ts(x), Us−1(x) ∈ Zp

1. set a large integer number s

2. choose a random value x ∈ Zp and calculate Ts(x) and Us−1(x)

3. Alice’s private key is s, while the public key is (x, Ts(x), Us−1(x))

The encryption algorithm used to communicate between Bob and Alice looks like this:

Algorithm 6. Bob encryption algorithm

Data: p− strong prime; r ∈ Z; x, Ts(x), Us−1(x),M ∈ Zp

Result: C ∈ Z; Tr(x), Ur−1(x) ∈ Zp

1. choose Alice’s public key (x, Ts(x), Us−1(x))

2. message M present as a numerical value, M ∈ Zp

3. set a large integer number r

4. calculate Tr(x), Ur−1(x), Ur−1(Ts(x))Us−1(x) = Urs−1(x), C = MUrs−1(x)

5. send to Alice (Tr(x), Ur−1(x), C)

After receiving the message from Bob, Alice can decrypt the message by following the

steps in Algorithm 7.

Algorithm 7. Alice’s decryption algorithm

Data: s ∈ Z; Tr(x), Ur−1(x) ∈ Zp; C ∈ Z
Result: M ∈ Zp

1. using s, calculate Us−1(Tr(x))Ur−1(x) = Usr−1(x)

2. recover message M calculating M = C/Usr−1(x)

The above cryptosystem is correct, as Alice and Bob both share the same value:

Us−1(Tr(x))Ur−1(x) = Usr−1(x) = Urs−1(x) = Ur−1(Ts(x))Us−1(x) (20)

4.1.1. Security of cryptosystem

Attempting to break the cryptosystem described with the above algorithms, Eve must

find s or r and then calculate the shared value. Without a loss of generality (assuming

that Eve wants to find s), she has the following dependencies.

a = Ts(x) (21)

b = Us−1(x) (22)
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Dependence (21) leads to the problem of the discrete logarithm of Chebyshev,

which is described in the literature featured with (6). So, s can be found from

Equation(23).

s = logx+
√
x2−1 a+

√
a2 − 1 (23)

In the case of (22), the solution for s we are looking for is:

s = logx+
√
x2−1

(
b
√
x2 − 1 +

√
b2(x2 − 1) + 1

)
(24)

Dependence (24) results from the following transformations:

b = Us−1(x) =
sinh

(
s cosh−1 x

)
sinh cosh−1 x

(25)

Then, using the following dependencies:

sinh2 x− cosh2 x = 1 (26)

expression (25) takes the following form:

b =
sinh

(
s cosh−1 x

)
√
x2 − 1

(27)

After the algebraic transformation, we obtain a solution:

s =
sinh−1(b

√
x2 − 1)

cosh−1 x
(28)

which, after using the following equation:

sinh−1 x = ln(x+
√
x2 + 1) (29)

cosh−1 x = ln(x+
√
x2 − 1) for x ≥ 1 (30)

takes its final form (24).

The performed analysis shows that both (23) and (24) lead to the problem of

discrete logarithms. The security of the cryptosystem described in Algorithms 5–7

is, therefore, the same as in the case of Kocarev’s cryptosystem as well as classical

algorithms known from the literature (such as the ElGamal cipher).
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4.1.2. Efficiency

The definitions of recursive polynomials (5) and (17) differ only in their initial states.

For this reason, the methods allowing for the quick calculation of polynomials Tn(x)

will also be appropriate for polynomials Un(x). In addition, there are dependencies

that allow us to associate Tn(x) and Un(x). An example of such a dependency is [6]:

2Tn(x) = Un(x)− Un−2(x) (31)

As compared to Kocarev’s cryptosystem, the presented cryptosystem is slightly

slower in the phase of determining the shared value after taking those methods into

account that allow for the quick calculation of polynomials Tn(x) and Un(x). This

is due to the necessity of counting the values for both polynomials as well as the

greater number of operations that are necessary in calculating the value of a given

relationship with Dependency (15). This means that the Kocarev’s cryptosystem can

be successfully replaced with Algorithms 5–7.

4.2. Cryptosystem II: Polynomials Ωn(x)Ωn(x)Ωn(x) and Vn(x)Vn(x)Vn(x)

Polynomials Ωn(x) and Vn(x) have the following Property (16), which is analogous to

Property (15) for polynomials Tn(x) and Un(x). This means that the cryptosystem

described in the previous subsection described with Algorithms 5–7 can be modi-

fied by replacing polynomials Tn(x) and Un(x) with Ωn(x) and Vn(x). The modified

cryptosystem looks like this (Algorithms 8–10):

Algorithm 8. Alice key-generation algorithm

Data: p− strong prime; s ∈ Z; x ∈ Zp

Result: Ωs(x), Vs−1(x) ∈ Zp

1. set a large integer number s

2. choose a random value x ∈ Zp and calculate Ωs(x) and Vs−1(x)

3. Alice’s private key is s, while the public key is (x,Ωs(x), Vs−1(x))

The encryption algorithm used to communicate between Bob and Alice is as follows:

Algorithm 9. Bob encryption algorithm

Data: p− strong prime; r ∈ Z; x,Ωs(x), Vs−1(x),M ∈ Zp

Result: C ∈ Z; Ωr(x), Vr−1(x) ∈ Zp

1. choose Alice’s public key (x,Ωs(x), Vs−1(x))

2. message M present as a numerical value, M ∈ Zp

3. set a large integer number r

4. calculate Ωr(x), Vr−1(x), Vr−1(Ωs(x))Vs−1(x) = Vrs−1(x), C = MVrs−1(x)

5. send to Alice (Ωr(x), Vr−1(x), C)

After receiving the message from Bob, Alice can decrypt it by following the steps of

the following algorithm:
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Algorithm 10. Alice’s decryption algorithm

Data: s ∈ Z; Ωr(x), Vr−1(x) ∈ Zp; C ∈ Z
Result: M ∈ Zp

1. using s, calculate Vs−1(Ωr(x))Vr−1(x) = Vsr−1(x)

2. recover message M calculating M = C/Vsr−1(x)

The above cryptosystem is correct, because both Alice and Bob share the same

value:

Vs−1(Ωr(x))Vr−1(x) = Vsr−1(x) = Vrs−1(x) = Vr−1(Ωs(x))Vs−1(x) (32)

4.2.1. Security of cryptosystem

In order to break the cryptosystem described by Algorithms 8–10, Eve must find

s or r and then calculate the shared value. Without a loss of generality (assuming

that Eve wants to find s), she has the following dependencies:

a = Ωs(x) (33)

b = Vs−1(x) (34)

After carrying out the appropriate transformations, the solution of the above

dependencies leads to the discrete logarithm of Chebyshev (similar to the cryptosys-

tem from the previous subsection). Thus, the cryptographic power of the crypto-

system defined by Algorithms 8–10 is the same as in the case of the Kocarev cryp-

tosystem or ElGamal cipher.

4.2.2. Efficiency

The values of polynomials Ωn(x) and Vn(x) can be calculated using recursive Re-

lationships (18) and (19). However, this is very inefficient and unprofitable from

a practical point of view. In addition, no special methods have been defined thus

far that allow for the rapid calculation of the values of these polynomials (as in the

case of the Chebyshev polynomials). Below are the basic methods for their faster

calculation; to this end, the following relationships can be used:

[
Ωn+2(x)

Ωn+1(x)

]
=

[
x −1

1 0

]n
·

[
Ω2(x)

Ω1(x)

]
(35)

[
Vn+2(x)

Vn+1(x)

]
=

[
x −1

1 0

]n
·

[
V2(x)

V1(x)

]
(36)
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Dependence (35) is correct, as:[
Ωn+2(x)

Ωn+1(x)

]
=

[
x −1

1 0

]
·
[

Ωn+1(x)

Ωn(x)

]
=[

x −1

1 0

]2

·
[

Ωn(x)

Ωn−1(x)

]
= · · · =

[
x −1

1 0

]n
·
[

Ω2(x)

Ω1(x)

]
(37)

By analogy, one can prove the correctness of Dependence (36). It is worth noting

here that the same matrix can be found in both (35) and (36):[
x −1

1 0

]n
(38)

It can be concluded that the calculation of Ωn(x) and Vn(x) can be combined,

which requires multiplying matrix (38) by the appropriate vectors of the initial values

of the polynomials. As a result, calculating the values of the modified Chebyshev

polynomials can be significantly accelerated. In addition to calculating Matrix (38),

one can use the known methods of raising the matrix to the power like it was presented

in [11].Using the above methods of calculating the values of the modified Chebyshev

polynomials, the performance of the presented cryptosystem can be significantly ac-

celerated. In practice, it is slightly slower in the phase of determining the shared value

(similar to the cryptosystem from the previous subsection). This is due to the neces-

sity of counting the values for both polynomials as well as the more operations that

are necessary when calculating the value of any shared data with Dependency (16).

4.2.3. Example

Let Alice’s private key be the value of s = 53419. Moreover, let x = 12681 and

p = 59063. Then, Alice’s public key are the following values: Ωs(x) = 6521

and Vs−1(x) = 54661. Willing to send the message to Alice, Bob then takes over

her public key. Then, he selects the value of r = 31269 and converts the plain text to

a numerical value; let this value be M = 1234. Furthermore, Bob calculates shared

value Vsr−1(x) = 24495 and ciphertext C = 30226830. In the next step, Bob passes

the value of encrypted message C as well as the value of his public key (Ωr(x) = 16598

and Vr−1(x) = 6874) to Alice.

Alice receives encrypted value C and Bob’s public key: Ωr(x) and Vr−1(x). She

calculates shared value Vsr−1(x) = 24495 and then recovers the encrypted message

(M = 1234).

5. Conclusions

The obtained results regarding the security of the presented cryptosystems show that

they are related to the problem of discrete logarithms. From this point of view, the

use of any of the cryptosystems is just as good and can replace the original Kocarev’s
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cryptosystem. In turn, an analysis of the efficiency of the presented algorithms leads

to the conclusions that Cryptosystems I and II are slower than the Kocarev cryp-

tosystem in the keying phase. This means that the time required for this procedure is

longer; however, it is acceptable due to the increasing computing power of modern-day

computers. On the other hand, in case of the brute-force attack (i.e. searching pairs

of polynomials to encounter the correct one), the time needed to break the system

will also be extended, thus making it more secure. Further research works include

a performance analysis of the cryptosystem proposed in this paper as well as exploring

the application of modified Chebyshev polynomials in steganography.
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