COMPUTER SCIENCE e 13 (2) 2012 http://dx.doi.org/10.7494/csci.2012.13.2.63

Abstract

Keywords

MicHAEL MARKS

JAROSEAW JANTURA

EwaA NIEWIADOMSKA-SZYNKIEWICZ
PRZEMYSLAW STRZELCZYK
KRrzyszTor GOZDZ

HETEROGENEOUS GPU&CPU CLUSTER
FOR HIGH PERFORMANCE COMPUTING
IN CRYPTOGRAPHY

This paper addresses issues associated with distributed computing systems and
the application of mixed GPU&CPU technology to data encryption and de-
cryption algorithms. We describe a heterogenous cluster HGCC formed by two
types of nodes: Intel processor with NVIDIA graphics processing unit and AMD
processor with AMD graphics processing unit (formerly ATI), and a novel soft-
ware framework that hides the heterogeneity of our cluster and provides tools
for solving complex scientific and engineering problems. Finally, we present the
results of numerical experiments. The considered case study is concerned with
parallel implementations of selected cryptanalysis algorithms. The main goal of
the paper is to show the wide applicability of the GPU&CPU technology to
large scale computation and data processing.

parallel computing, HPC, clusters, GPU computing, OpenCL, cryptography,
cryptanalysis

63

64 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

1. Introduction

One of the biggest advantages of distributed systems over standalone computers is
an ability to share the workload between computers, processors, and cores. Clusters,
grids, and cloud computing are one of the most progressive branches in a field of
parallel computing and data processing nowadays, and have been identified as impor-
tant new technologies that may be used to solve complex scientific and engineering
problems as well as to tackle many projects in commerce and industry [6, 16, 28].
A broad spectrum of current parallel computing activities and scientific projects are
carried out. A new model for parallel computing that relies on usage of CPU and GPU
units to solve general purpose scientific and engineering problems revolutionized da-
ta computation last years [18, 19, 31]. The tasks that can be divided up into large
numbers of independent parts are good candidates. GPU-enabled calculations seem
to be very promising in data analysis, optimization, simulation, etc. Using CUDA or
OpenCL, and graphical processing units many real-world applications can be easily
implemented and run significantly faster than in multi-processor or multi-core sys-
tems [9].

We have designed and developed a hybrid cluster system HGCC (Heterogenous
GPU&CPU Cluster) — a novel computing architecture with multi-core CPUs working
together with many-core GPUs. Our cluster integrates two types of CPUs, i.e., Intel
and AMD processors equipped adequately with NVIDIA and AMD graphical units.
The novelty of our solution is not only the proposed hybrid architecture of the clu-
ster but a new software environment that can support a potential user in his task
execution. The goal of this software is to divide data into separate domains, allocate
the calculation processes to cluster nodes, manage calculations, and communication.
Therefore, from the user’s perspective, the cluster system serves as one server — its
heterogeneity due to various CPU and GPU architectures is hidden. The HGCC clu-
ster is dedicated to perform complex calculations and the processing of large amounts
of data. Data encryption and decryption algorithms are natural candidates. We have
designed and developed parallel versions of some cryptography techniques, and im-
plemented them employing the functionalities and facilities of our cluster. Numerical
tests were performed to show the efficiency and scalability of our implementations,
and possible applications of the HGCC system. It should be pointed out here that in
our case study we focused only on the efficient implementation of commonly used en-
cryption and decryption algorithms. We applied the SPMD (Single Program Multiple
Data) parallelization technique with domain decomposition. The goal was to speed
up calculations.

In this paper we show how to build a heterogenous cluster system that is compo-
sed of CPU and GPU units with different architecture. The remainder of this paper
is organized as follows. Selected software tools for CPU and GPU clusters are discus-
sed in section 2. In section 3, we provide description of our heterogenous system. In
section 4, we describe the HGCC software framework that manages calculations in
our cluster. Finally, we present a survey of the implementation of cryptography on

Heterogeneous GPU&CPU cluster for (...) 65

GPU, and briefly summarize the results of tests for selected types of cryptanalysis
algorithms.

2. CPU and GPU clusters

For HPC enthusiasts there are two important months in the year: June and November,
when the TOP500 list is published. The announcement of the list is not only a chance
to observe what are the most powerful supercomputers but also a great opportunity
to observe how the the HPC trends are changing. For the first time since the list
began to be published in 1993 the Top 10 supercomputers on the latest list remain
unchanged. However, we can observe a rising significance of GPU accelerators. In
the November 2011 ranking, there are 39 machines that have GPU accelerators, up
from 17 only six months ago. What is interesting 35 of them are using NVIDIA Tesla
GPU coprocessors or Quadro graphics cards and only two IBM’s Cell coprocessors
and two use AMD’s Radeon cards. There is no solutions utilizing GPU accelerators
from different vendors.

The most common operating systems used for building clusters are UNIX and
Linux. Clusters should provide the following features: scalability, transparency, recon-
figurability, availability, reliability, and high performance. There are many software
tools for supporting cluster computing. In the beginning of XXI century the common
idea was to provide a view of one supercomputer for a cluster built from a group
of independent workstations. SSI (Single System Image) clusters were designed and
developed. In this approach all servers’ resources such as disks, memory, processors
are seen by a user as one unique machine. The whole cluster is identified from outside
by one IP address. The popular systems that implement the idea of SSI are Mosix
(www.mosix.org) that does not cover all SSI features, and two comprehensive clu-
stering solutions offering full SST environments: OpenSSI (openssi.org) and Kerrighed
(www.kerrighed.org). A brief overview and comparative study of stability, performan-
ce and the efficiency of Mosix, OpenSSI, and Kerrighed systems is presented in the
literature [23, 28].

Other commonly used systems that can be applied to high performance data
processing and calculations in cluster systems are software frameworks that perform
job scheduling. A commonly used Portable Batch System PBS (www.pbsworks.com)
provides mechanisms for allocating computational tasks to available computing re-
sources. Various versions of the system are available (open source and commercial):
OpenPBS, Torque, PBS Professional.

Most of the presented cluster systems are mature solutions. However, they have
some limitations. Mosix, OpenSSI and Kerrighed systems focuss on load balancing.
The idea is to implement an efficient load balancing algorithm, which is triggered when
loads of nodes are not balanced or local resources are limited. In general, processes
are moved from higher to less loaded nodes. Unfortunately, the migration of processes
involves extra time for load calculation and overhead in communication. Moreover,
Mosix, OpenSSI, Kerrighed systems were designed for CPU clusters.

66 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

Currently, users are provided with software environments that allow us to perform
calculations on a single GPU device. There are only a few software tools for running
applications on GPU clusters. Virtual OpenCL VCL (www.mosix.org/txt_vcl.html)
is a software platform for GPU clusters. It can run unmodified OpenCL applications
on Linux clusters, with or without the Mosix system. VCL provides a view of one
superserver for a cluster built from a group of GPU units. The components of VCL,
its performance and applications are presented in [5].

Our goal is to develop a software framework that allows for unmodified OpenCL
applications to transparently and concurrently run on multiple CPU and GPU de-
vices in a cluster. In the case of our application we need a simple functionality, i.e.,
a calculation speed up, resistance, and ease of use. We perform a static decomposition
of the problem in calculating startup, hence dynamic load balancing is superfluous.
Our software framework is quite similar to VCL platform [5], however in our solution
it is possible to utilize both CPUs and GPUs on computational nodes.

3. HGCC hardware architecture

Beginning our work on utilizing a cluster composed of CPUs and GPUs in crypto-
graphy and complex data analysis we focused on three objectives from the hardware
perspective:

e validation of cryptographic and cryptanalysis algorithms efficiency on different

CPUs and GPUs from many vendors,

e evaluation of different interconnects for the proposed software environment,

e determination of a cost-effective solution.
Due to the above objectives we had to design a relevant architecture of hardware
components working together. The HGCC system is a heterogenous cluster system
with multi-core CPUs working together with many-core GPUs. It consists of 24 nodes
and integrates two types of CPUs: 12 servers with Intel Xeon X5650 processors and
12 servers with AMD Opteron 6172 processors. The system architecture is depicted
in Fig. 1. All servers are equipped with advanced GPUs, adequately, NVIDIA Tesla
M2050 and AMD FirePro V7800 units.

The choice of GPU in the case of Intel+NVIDIA nodes is quite easy, as there
are many HPC solutions based on Intel processors and NVIDIA Tesla GPUs. The
situation is more complicated if a user wants to build a cluster of AMD CPUs and
GPUs. In our case we had additional requirements on providing different intercon-
nects, hence we had to equip AMD nodes with single width GPUs. Therefore, the
set of admissible solutions was quite limited. We investigated four FireStream and
FirePro devices (see Table 1 — NVIDIA Tesla included as a reference solution), and
finally decided on FirePro V7800 card with the best single precision floating point
performance. It is worth to note that FirePro V7800 has a peak performance in the
single precision almost two times better than NVIDIA Tesla M2050 and a peak per-
formance in the double precision equal th 0.8 of Tesla’s performance. Moreover, AMD
GPU is approximately four times cheaper than NVIDIA GPU.

Heterogeneous GPU&CPU cluster for (...) 67

Computing nodes

Node 12: Intel+NVidia Node 24: AMD+AMD/ATI

Node 2: Intel+NVidia Node 14: AMD+AMD/ATI
Node 1: Intel+NVidia Node 13: AMD+AMD/ATI

Intel Xeon X5650 NVidia AMD Opteron 6172 AMD

Tesla FirePro
Intel Xeon X5650 M2050 AMD Opteron 6172 V7800

LAN 1GbE

. | |]]
LAN Management

Storage Node
Master Node

Intel Xeon X5650
Intel Xeon X5650

Intel Xeon X5650
Intel Xeon X5650

Figure 1. Hybrid system architecture with Intel+NVIDIA and AMD+ATI/AMD nodes

Table 1
List of considered AMD GPUs, where SP* and DP* denotes, adequately, the single and
double precision floating point performance in TFlops

| Model | SP* | DP* [RAM (size and bandwidth) |
AMD FireStream 9350 | 2.00 [0.40 [2GB (128 GB/s)
AMD FirePro V5800 1.10 | 0.22 | 1GB (64GB/s)
AMD FirePro V7800 | 2.02 | 0.40 | 2GB (128GB/s)
AMD FirePro V7900 1.86 | 0.46 | 2GB (160 GB/s)

NVIDIA Tesla M2050 | 1.03 | 0.51 [3GB (148 GB/s)

68 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

The computing nodes are supported by dedicated master and storage nodes pro-
viding access to disk arrays and management capabilities. Communication between
nodes is organized using different interconnects: InfiniBand 4x QDR, 10GbE and
1GDbE. Such an excess network configuration allows us to verify the impact of se-
lected interconnects on computation efficiency. Moreover, it is possible to separate
communication connected with IO operations from computational traffic. The cur-
rent configuration assumes utilizing the 10 GbE network for providing access to data
storage. InfiniBand and the 1 GbE Ethernet are used for computational purposes.

4. HGCC software framework

The effective utilization of heterogeneous cluster requires developing an integrated so-
ftware platform to manage calculations and provide interface between the application
program and the system kernel. The main goal of our HGCC software framework is
to minimize the user’s effort during the design, implementation, and execution of the
application. It allows the user to focus only on the numerical part of his application.
The main idea was to allow user applications to transparently utilize many CPU and
GPU devices in a cluster, as if all the devices were on the local computer. All servers’
resources such as CPU, GPU, disks, and memory are seen by the user as one unique
machine. Hence, applications written for HGCC benefit from the reduced program-
ming complexity of a single computer, the availability of shared memory and multi
threads, as in OpenMP (openmp.org/wp), and a concurrent access to cluster nodes
and their devices, as in MPI (mpi-forum.org).

In order to take advantage of GPU accelerators from different vendors we decided
to use OpenCL, which is a low level GPU programming toolkit, where developers
write GPU kernels entirely by themselves with no automatic code generation [18].
OpenCL is an industry standard computing library developed in 2009 that targets
not only GPUs but also CPUs and potentially other types of accelerator hardware. In
OpenCL efficient implementation requires the preparation of slightly different codes
for different devices, however, it is much less complicated than writing code in many
native toolkits for NVIDIA and AMD devices.

4.1. Framework architecture

The main goal of the HGCC framework is to provide an environment for parallel
calculations that are performed in a cluster formed by heterogenous CPU and GPU
devices. Hence, the system facilities are provided in the form of four groups of services.
These are:

e User interface services, which provide a consistent user interface. The most im-
portant tasks of the user interface are as follows: supporting the process of defi-
ning a considered application, processing of the calculation results, and providing
communication with the user.

e Calculation management services, which allocate the calculation processes into
cluster nodes and manage the execution of the user’s application.

Heterogeneous GPU&CPU cluster for (...) 69

e Communication services, which manage communications between running pro-
cesses and system kernel.
e Data repository services, which provide a store for all data objects.

Slave node 1

<<executionEnvironment>> <<device>

GNU/Linux ‘ cPU

SlaveApp <<device>

Master node GPU

<<executionEnvironment>> TCP/IP
GNU/Linux

MasterApp Slave node n

<<executionEnYironment>> <<device>
TCP/IP GNU/Linux ‘ CPU
<<user>> /

SlaveApp <<device>

GPU

Figure 2. Core components of the cluster framework

The cluster framework consists of several components. The most important are:
MasterApp — master node application (broker operating in the master node) and
SlaveApp — the computational node application (a daemon operating in computational
nodes) — see Fig. 2.

MasterApp is the main component that is responsible for the user-system com-
munication and calculation management. It provides consistent user interface. Two
mechanisms for interacting with our system will be provided: a command-line inter-
face CLI (currently available) and a graphical user interface GUI (in progress). The
main functionalities of the interface are: approving tasks assigned by the users, di-
splaying results of calculations, and presenting the current status of each task and
cluster node. The MasterApp component manages execution of all users’ tasks. It is
responsible for tasks creation, splitting data to be processed into separate domains,
load-balancing, tasks termination, and suspension.

Moreover, the MasterApp component is responsible for computational resources
management. From the user’s point of view all resources are visible as the resources
of a local machine. Hence, the master node creates a list of all available resources,
monitors and assigns a current occupancy state to each resource. The important func-
tionality of the MasterApp component is managing the communication between the
master node and the slave (computational) nodes. The considered tasks are: forwar-

70 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

ding user tasks, and allocating them to the cluster nodes, approving results, and
handling problems with computational nodes when they occur.

The second main component is SlaveApp. This component is responsible for cal-
culations that are performed by the assigned server. The computations are managed
using dedicated plugins. Plugins are dynamically loaded libraries. The following me-
thods provide the interface to these libraries:
init () — responsible for plugin initialization (precomputation, memory allocation,

ete.),
run() — responsible for running calculations,
terminate () — responsible for task termination, memory cleanup, etc.

Each computational node contains some number of resources. In our framework
we distinguish and collect information about two types of such resources:

o CPUs — central processing units,
e GPUs — graphics processing units.
The computational resource can be in one of the following states:
e WAITING - ready for loading a new task to execution,
e WORKING — occupied, calculations are executed,
e LOST — lost because of the node failure.

The resource description is an important requirement for providing master no-
de management capabilities. The resource descriptor file contains a list of available
resources. Similar to the Mosix system it provides information about node’s 1P, the
number of CPU cores and the number of GPU units in a given cluster. The sampled
resource descriptor is as follows:

slave 192.168.1.1
cpu 4 100
gpu 1 500

slave 192.168.1.2
cpu 12 100
gpu 2 500

4.2. Inter-process communication

The current version of the system implements the master-slave communication sche-
me. It is the natural protocol for applications with data decomposition into blocks and
iterative calculations. An XML-based communication protocol is proposed to perform
communication between master and slave nodes. It is based on the TCP/IP protocol
and BSD sockets. Our goal was to apply a very simple mechanism that fulfills the
following requirements:

o flexibility — the protocol should be easy to modify and extend with new messages,
e failure resistance — the protocol should be robust as much as possible,
e text format — not so fast as binary but easy to maintain and debug.

Heterogeneous GPU&CPU cluster for (...) 71

We are aware of the limitations of the presented protocol. Hence, we plan to
implement other communication schemes.

4.3. User task

A user’s task is to implement the computational task in an object oriented way. Next,
the user has to define his problem in the task descriptor. The XML Schema specifi-
cation for building XML files with task description is provided in HGCC. The task
descriptor contains: a type of the task, an algorithm, a destination platform, and devi-
ce. All these parameters are mandatory and parsed inside the MasterApp component.
The rest of this file is filled by parameters specific to a given task. A sampled task
descriptor is as follows:
<?7xml version="1.0" encoding="utf-8"7>
<task xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="schema/descriptor.xsd">
<cipher algo="des" device="cpu" platform="native">
<other direction="encrypt" key="5a8dd3ad0756a93ded72b823b19dd877"
mode="ECB" />
<file input="/tmp/data_in" output="/tmp/data_out" size="464058292" />
<split type="maxEquals"/>
</cipher>
</task>
In the descriptor presented above the problem to solve is to cipher data using
DES algorithm. The calculations will be performed on CPU and native platform (any
native executable form but not based on a virtual machine or interpreted ones). The
specific parameters of the algorithms are as follows: a decision about encryption or
decryption, a key and a mode of the execution. Next, input and output files are
pointed. Finally, the parameter defining the type of the task partitioning is fixed.

4.4. HGCC platform operation

The cluster framework can handle any calculation task, which inherits from any of
the core task classes. A committed task is sent to the MasterApp. Next, it is divided
into smaller tasks. The MasterApp creates list of such tasks. They are allocated to
the slave nodes, which contain any free resources. Hence, each task can be in one of
the following states:

e PENDING - ready for execution, waiting for allocation to a slave node,

e RUNNING - currently running,

e LOST — lost because of a node failure,

e SUSPENDED - terminated with persistent state (may be recovered),

e DONE - task that has been already done.

The state diagram is presented in Fig. 3.

Two operations are performed after the SlaveApp initialization: a plugin list is
loaded from a plugin descriptor file, and a socket is opened and waiting for MasteApp’s

72 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

[error/fail]

[recover]

[launch]

PENDING RUNNING

[restore]

[suspend]
[finish]

DONE

Figure 3. Subtask state machine

connection. The plugin descriptor file contains information about all plugins currently
available in the system. Whenever a slave node gets a new set of tasks to execute it
looks for available valid plugin, and loads it to the memory. Next, the control flow
inside SlaveApp splits, and the newly spawned thread launches calculations stored in
the loaded plugin.

5. Parallel implementation of cryptography and cryptanalysis

5.1. Cryptography and cryptanalysis on GPU

Graphic processing units allow us to perform massive parallel computations, which
can be especially exploited in the field of cryptography and cryptanalysis. The first
and the most common application of GPU in cryptanalysis is the password recovery
from hashes (usually based on MD4, MD5, SHA-1 or SHA-2). The hashes are easy
to compute but extremely hard to inverse. Therefore, the only general technique for
recovering a password from hash, which does not take into account algorithm weaknes-
ses, is to scan all potential passwords, compute their hash, and test the coincidence.
Cryptographic hash functions are based on integer and binary operations such as:
the addition modulo power of two, bit shift and rotation, bitwise xor, bitwise or, bit
negation and words permutation. Those operations are natively supported by GPU
computing units, allowing for maximum instruction throughput and the full use of
their computational power.

Three main approaches to password strength validation that are usually consi-
dered are: brute-force, rainbow-table, and dictionary test. The first two of these were
found very suitable for porting to GPU. Brute-force, thus not very sophisticated,

Heterogeneous GPU&CPU cluster for (...) 73

is the most common approach used together with GPUs. There are many brute-
force GPU implementations, among which the fastest are: whitepixel [4], ighashgpu
[11], BarsWF [30], ++oclHashcat plus[2], and password recovery tools offered by
Elcomsoft[1]. When only one GPU is used, they are capable of checking up to several
billion passwords per second (depending on the GPU type and version, whereas AMD
chips tend to perform better). All of the applications mentioned are capable of using
multiple GPUs installed on one host system, and in that case performance usually
scales linearly. To the authors knowledge only the solution offered by Elcomsoft is
capable of distributing the workload on many hosts [1].

Another method which benefits from GPU capabilities is the rainbow-table tech-
nique, which is based on the work of Philippe Oechslin [26, 27]. This algorithm is an
example of time-memory trade-off. At the beginning it pre-computes hashes for all
potential passwords, which is the most time consuming operation, and stores them in
special compressed form called a rainbow table. The actual password search is reduced
to several million hash calculations and rainbow table look-ups. In contrary to the
brute-force approach the rainbow-table attack does not guarantee success, but speeds
up the search significantly. There are several rainbow table implementations, among
which Rainbowcrack is the most popular[3]. The creators of this application appre-
ciated the capabilities of the GPUs both for table preparation and actual password
testing, and now they offer a version with NVIDIA CUDA support. Other developers
followed this approach but used the AMD chips instead.

Symmetric ciphers were also found to give significant speed when ported to GPU,
especially when used to encrypt or decrypt huge data volumes or attack secured
communication protocols. Due to its structure and popularity the AES algorithm is
most often implemented [8, 7, 20, 24, 12], but other methods were also successfully
optimized, e.g. RC4, 3DES, DES and BlowFish [21, 32, 22].

When asymmetric cryptography is concerned (RSA and ECC) with conjunction
with GPUs, the main research goal is to design a parallel multi-precision arithmetic
routines and Montgomery reduction algorithms, which are the basic building blocks.
There were several efforts, which indicate that in some applications, GPU outperforms
the best available CPU-based implementations [10, 17, 13, 25], but further research
is still required.

Last but not least, the GPU are also used to increase the performance of the
asymmetric cryptography methods which are alternative to RSA and ECC, eg. NTRU
and Goldreich-Goldwasser-Halevi(GGH) [15, 14], which are examples of a lattice-
based cryptography.

5.2. Numerical results in HGCC

Our HGCC cluster is dedicated to performing complex calculations and processing
large amounts of data. The focus is on the parallel implementation of cryptography
and cryptanalysis algorithms. We have performed multiple tests to show the efficiency

74 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

of parallel implementation of cryptanalysis on GPU, and utility and scalability of our
cluster system. The selected results are presented in Tables 2—4.

The goal of the first series of experiments was to compare the efficiency of parallel
implementations of rainbow table generation on CPU and GPU devices. A rainbow
table is a precomputed table used for reversing one-way functions, especially crypto-
graphic hash functions. This technique is placed between a CPU-intensive exhaustive
search and storage-intensive full precomputation (often infeasible). Rainbow tables
enable us to make time-memory tradeoffs: we can sacrifice more CPU time to reverse
such a function keeping storage requirements under strong constrains or minimize
computational effort using larger storage capacity.

Our experiments were performed on devices provided by different vendors:
CPU Intel : Intel Xeon X5650, 2.66GHz/3.06GHz turbo, 6 cores/12 threads, 6x256

L2, 12MB L3 cache.

CPU AMD : AMD Opteron 6172, 2.1GHz, 12 cores/12 threads, 12x512KB L2,
12MB L3 cache.
GPU NVIDIA : NVIDIA Tesla M2050, 448 CUDA cores, 384-bit memory bus.
GPU AMD : AMD FirePro V7800, 1440 stream processors (equivalent of 288 CUDA
cores), 256-bit memory bus.
The calculation times for three series of experiments performed for various sizes of
rainbow tables RT'[n, [], where n denotes number of rows (chains), I number of columns
(chain length) are presented in Table 2. The following rainbow tables with assumed
success rate equal to 43.766% per table (99% for 8 tables) were generated:
e RT _1: n = 491080457, | = 1000, size 7.4 GB,
e RT_2: n = 49041409, [= 10000, size 750 MB,
e RT_3: n = 19614714, | = 25000. size 300 MB.

Table 2
The calculation times (in seconds) for rainbow tables generation

Device | RT1 RT_2 RT_3
GPU

NVIDIA Tesla M2050 1358.5 1363.0 1374.0
AMD Firepro V7800 1145.3 1127.2 1142.5
CPU - calculations done using single thread

Intel Xeon X5650 @2.67 GHz 74558.7 74781.3 74554.2
AMD Opteron 6172 @2.1 GHz 184758.7 | 184100.6 | 183593.2
CPU - calculations done using number of threads equal number of processors’ cores
Intel Xeon X5650 @2.67 GHz 6211.4 6217.8 6213.1
AMD Opteron 6172 @2.1 GHz 7656.3 7658.6 7660.3

It should be noted that the number of calculations C' needed to create a ta-
ble is equal to C = n - [l. Our experiments satisfied the theoretical considerations,
as differences in time are minor and can be accounted by thread scheduling. Since

Heterogeneous GPU&CPU cluster for (...) 75

table generation can be done in parallel using domain decomposition the accelera-
tion factor on CPU units is equal the number of utilized cores. Even though, GPU
implementations were much more efficient that CPU ones.

The results presented in Table 3 show the performance of different CPU/GPU
devices in the MD5 hashes generation [29]. The table collects the number of hashes
generated per second using a multi-threaded version of the MD5 algorithm for CPUs
and the same number of hashes generated using a single-threaded code for CPU
with appropriate kernels for GPU (OpenCL). The best results were obtained for the
OpenCL version of the MD5 hash function executed on AMD FirePro V7800 — almost
1900 million hashes. The efficiency of NVIDIA Tesla M2050 was worse, but still over
two times better than results obtained using only CPU units. It should be pointed
that in case of CPUs, two Opteron processors with 12 cores each, generated more
hashes than two Intel Xeons with higher frequency but only 6 cores each plus Hyper-
Threading technology.

Table 3
Number of generated MD5 hashes per second (in millions) — no hash inversions, no precom-
putations, full MD5 rounds

Device ‘ Number of MD5 hashes
Intel Xeon X5650 342.8
AMD Opteron 6172 443.6
NVIDIA Tesla M2050 935.1
AMD FirePro V7800 1896.2

Two hash functions (MD5 and SHA1 [29]) were also used in order to verify the
scalability of the HGCC platform. We tested both implementations working on CPUs
and GPUs. The numerical experiments were carried out on a group of 8 Intel+NVIDIA
nodes. As can be seen in Table 4 and Figure 4 the algorithms scales up very well —
the speed up value for 4 nodes is between 3.46 and 3.81 and for 8 nodes is up to 7.81.

Table 4
Scalability of hashes generation using MD5 and SHA1 algorithms
— hashes per second (in millions)

Nodes [MD5(CPU) | MD5(GPU) [SHA1(CPU) [SHA1(GPU) |
1 node 342.8 935.1 156.0 181.0
4 nodes 1330.8 3 236.9 580.1 707.0
8 nodes 2513.8 5 259.9 1131.2 1 414.0

6. Summary and conclusion

In this paper we presented the components of the heterogenous cluster system in-
tegrating CPU and GPU devices of various types. We described both the hardware

76 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

6 000

Millions

5000

4000

H 1 node

3 000
i 4 nodes

2 000 H 8 nodes

1000

MD5(CPU) [c/s] MD5(GPU) [c/s] SHA1(CPU) [c/s] SHA1(GPU) [c/s]
Figure 4. Scalability of hashes generation using MD5 and SHA1 algorithms

architecture and the software platform that provides a single system image in our clu-
ster. The cluster system was designed to be powerful, effective, scalable, flexible, and
easy to use. The cluster is especially useful in complex calculations and parallel pro-
cessing of large amounts of data, in which speed of calculation and data decomposition
are of essence, such as cryptography and cryptanalysis algorithms. Our experimental
results presented in this paper demonstrate the effectiveness and scalability of the clu-
ster system. As a final observation we can say that heterogeneous computing systems
offer a new opportunity to increase the performance of parallel HPC applications on
clusters, by combining traditional CPU and general purpose GPU devices.

Acknowledgements

The work was supported by the National Centre for Research and Development
(NCBiR) under grant number O R000091 11.

References

[1] Elcomsoft — privately owned company offering premium password recovery softwa-
re. http://www.elcomsoft.com/.

[2] Hashcat — advance password recovery project website.
http://hashcat.net/oclhashcat-plus/.

[3] Rainbowcrack project website. http://project-rainbowcrack.com/.

[4] Whitepizel project website with brute-force crackes comparision.
http://whitepixel.zorinaq.com/.

Heterogeneous GPU&CPU cluster for (...) 7

[5] Barak A., Shiloh A.: The mosiz virtual opencl (vel) cluster platform. [in:] Proc.
Intel Furopean Research and Innovation Conf., page 196. Leixlip, 2011.

[6] Berman F., Fox G., Hey A. J. G.: Grid Computing: Making the Global Infra-
structure a Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[7] Bos J., Osvik D., Stefan D.: Fast implementations of aes on various platforms.
Technical report, Cryptology ePrint Archive, Report 2009/501, 2009. http://
eprint.iacr.org, 2009.

[8] Di Biagio A., Barenghi A., Agosta G., Pelosi G.: Design of a parallel aes for gra-
phics hardware using the cuda framework. [in:] Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pp. 1-8. IEEE, 2009.

[9] (ed.) W.-M. W. H., editor. GPU Computing Gems Emerald Edition. Morgan
Kaufman.

[10] Fleissner S.: Gpu-accelerated montgomery exponentiation. Computational
Science—ICCS 2007, pp. 213-220, 2007.

[11] Golubev IL.: Ighashgpu project website. http://www.golubev.com/hashgpu.htm.

[12] Harrison O., Waldron J.: Aes encryption implementation and analysis on commo-
dity graphics processing units. Cryptographic Hardware and Embedded Systems-
CHES 2007, pages 209-226, 2007.

[13] Harrison O., Waldron J.: Efficient acceleration of asymmetric cryptography on
graphics hardware. Progress in Cryptology-AFRICACRYPT 2009, pp. 350-367,
2009.

[14] Hermans J., Vercauteren F., Preneel B.: Implementing ntru on a gpu. 2009.

[15] Hermans J., Vercauteren F., Preneel B.: Speed records for ntru. Topics in
Cryptology-CT-RSA 2010, pp. 73-88, 2010.

[16] Karbowski A., Niewiadomska-Szynkiewicz E.: Parallel and distributed computing
(in Polish). WUT Publishing House, 2009.

[17] Kaya Koc C., Acar T., Kaliski Jr B.: Analyzing and comparing montgomery
multiplication algorithms. Micro, IEEE, 16(3):26-33, 1996.

[18] Kindratenko V., Enos J., Shi G., Showerman M., Arnold G., Stone J., Phillips J.,
Hwu W.: Gpu clusters for high-performance computing. [in:] Proc. PPAC’09
Workshop, 2009.

[19] Kunzman D. M., Kalé L. V.: Programming heterogeneous clusters with accelera-
tors using object-based programming. Sci. Program., 19:47-62, January 2011.

[20] Le D., Chang J., Gou X., Zhang A., Lu C.: Parallel aes algorithm for fast data
encryption on gpu. [in:] Computer Engineering and Technology (ICCET), 2010
2nd International Conference on, vol. 6, pp. V6-1. IEEE, 2010.

[21] Li C., Wu H., Chen S., Li X., Guo D.: Efficient implementation for md5-rc4
encryption using gpu with cuda. [in:] Anti-counterfeiting, Security, and Identi-
fication in Communication, 2009. ASID 2009. 3rd International Conference on,
pages 167-170. IEEE, 2009.

[22] Liu G., An H., Han W., Xu G., Yao P., Xu M., Hao X., Wang Y.: A program

78 Michal Marks, Jaroslaw Jantura, Ewa Niewiadomska-Szynkiewicz, et al.

behavior study of block cryptography algorithms on gpgpu. [in:] Frontier of Com-
puter Science and Technology, 2009. FCST’09. Fourth International Conference
on, pp. 33-39. IEEE, 2009.

[23] Lottiaux R., Boissinot B., Gallard P., Vallee G., Morin C.: Openmosiz, openssi
and kerrighed: A comparative study. [in:] Proceeding of IEEE International Sym-
posium. on Cluster Computing and the Grid (CCGrid ’05), vol. 2, pp. 1016-1023,
2005.

[24] Mei C., Jiang H., Jenness J.: Cuda-based aes parallelization with fine-tuned gpu
memory utilization. [in:] Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on, pp. 1-7. Ieee, 2010.

[25] Moss A., Page D., Smart N.: Toward acceleration of rsa using 3d graphics hardwa-
re. [in:] Proceedings of the 11th IMA international conference on Cryptography
and coding, pp. 364-383. Springer-Verlag, 2007.

[26] Oechslin P.: Making a faster cryptanalytic time-memory trade-off. Advances in
Cryptology-CRYPTO 2003, pp. 617-630, 2003.

[27] Oechslin P.: Password cracking: Rainbow tables explained. Constituent Contri-
butions, 14, 2005.

[28] Osinski P., Niewiadomska-Szynkiewicz E.: Comparative study of single system
image clusters. [in:] Evolutionary Computation and Global Optimization, vol. 169,
pp- 145-154, 20009.

[29] Paar C., Pelzl J., Preneel B.: Understanding Cryptography: A Textbook for Stu-
dents and Practitioners. Springer, 2010.

[30] Svarychevski M. A.: Barswf project website. http://3.14.by/en/md5.

[31] Tsoi K., Luk W.: Axel: a heterogeneous cluster with fpgas and gpus. [in:] Proc.
of the 18th ACM/SIGDA international symposium on Field programmable gate
arrays (FPGA ’10), pp. 115-124, 2010.

[32] Wang Z., Graham J., Ajam N., Jiang H.: Design and optimization of hybrid
md5-blowfish encryption on gpus.

Affiliations

Michal Marks
Institute of Control and Computation Engineering, Warsaw University of Technology,
Nowowiejska 15/19, 06-665 Warsaw, Poland, mmarks@ia.pw.edu.pl;
Research and Academic Computer Network (NASK), Wawozowa 18, 02-796 Warsaw, Poland,

mmarks@nask.pl

Jarostaw Jantura
Research and Academic Computer Network (NASK), Wawozowa 18, 02-796 Warsaw, Poland,
jaroslaw. jantura@nask.pl

Ewa Niewiadomska-Szynkiewicz
Institute of Control and Computation Engineering, Warsaw University of Technology,
Nowowiejska 15/19, 06-665 Warsaw, Poland, ens@ia.pw.edu.pl;
Research and Academic Computer Network (NASK), Wawozowa 18, 02-796 Warsaw, Poland,
ewan@nask.pl

Heterogeneous GPU&CPU cluster for (...) 79

Przemyslaw Strzelczyk
Research and Academic Computer Network (NASK), Wawozowa 18, 02-796 Warsaw, Poland,
przemyslaw.strzelczyk@nask.pl

Krzysztof G6zdz
Hewlett-Packard Poland, krzysztof . gozdz@hp. com

Received: 16.12.2011
Revised: 27.02.2012
Accepted: 23.04.2012

