
Computer Science • 20(3) 2019 https://doi.org/10.7494/csci.2019.20.3.3285

Önder Çoban
Selma Ayşe Özel

ADAPTING TEXT CATEGORIZATION
FOR MANIFEST BASED
ANDROID MALWARE DETECTION

Abstract Malware is a shorthand of malicious software that are created with the intent of

damaging hardware systems, stealing data, and causing a mess to make money,

protest something, or even make war between governments. Malware is often

spread by downloading some applications for your hardware from some down-

load platforms. It is highly probable to face with a malware while you try to

load some applications for your smart phones nowadays. Therefore it is very

important that some tools are needed to detect malware before loading them

to the hardware systems. There are mainly three different approaches to de-

tect malware: i) static, ii) dynamic, and iii) hybrid. Static approach analyzes

the suspicious program without executing it. Dynamic approach, on the other

hand, executes the program in a controlled environment and obtains informa-

tion from operating system during runtime. Hybrid approach, as its name

implies, is the combination of these two approaches. Although static approach

may seem to have some disadvantages, it is highly preferred because of its lower

cost. In this paper, our aim is to develop a static malware detection system by

using text categorization techniques. To reach our goal, we apply text mining

techniques like feature extraction by using bag-of-words, n-grams, etc. from

manifest content of suspicious programs, then apply text classification meth-

ods to detect malware. Our experimental results revealed that our approach

is capable of detecting malicious applications with an accuracy between 94.0%

and 99.3%.

Keywords Android, malware detection, text categorization, machine learning

Citation Computer Science 20(3) 2019: 305–327

305

https://doi.org/10.7494/csci.2019.20.3.3285
https://orcid.org/0000-0001-9404-2583
https://orcid.org/0000-0001-9201-6349

306 Önder Çoban, Selma Ayşe Özel

1. Introduction

As the use of smart mobile devices increases, the number of applications available for

these devices are gradually increasing as well. However, these applications may be

malicious software (i.e., malware) and cause security vulnerabilities such as stealing

data, causing a mess to make money, protest something, and even make war between

governments [21]. Installing an application on mobile devices was very difficult in

the past, as there was not any central download platform. But nowadays, the mobile

device users can easily download any application from the central platforms such

as App Store, Google Play Store, and Windows Store. Many users and developer

communities have focused on these platforms and this new model that is developed

for distributing and installing applications has been significantly successful [46].

The smart device platforms provide official application markets by adopting some

security approaches which are devoted to block malicious attacks. Despite such pre-

cautions, however, malware may be installed on the smart devices and/or get an entry

to the application markets [46]. Especially, Android platform allows users to install

applications from unauthorized sources (e.g., third party markets) and this enables

malware to be distributed easily [4]. This means that it is highly probable to face with

a malware while you try to load some applications for your mobile device from one

of these platforms. A report1 claimed that approximately half of the Android mal-

ware are multifunctional Trojans which steal personal information. There are also

approximately 750,000 new Android malware that were detected in the first quarter

of 20172. All of these indicators prove that effective malware detection is required for

Android applications.

In order to detect and block Android malwares, various approaches were em-

ployed so far. These approaches can be classified into three categories, namely, static,

dynamic and hybrid [2, 5, 18, 34]. In static analysis, features are extracted by re-

verse engineering from the Android application file (i.e., apk), without executing the

application [4, 5, 22, 58]. Notice that an apk file comprises of application codes and

resources and created with the files including AndroidManifest.xml and classes.dex in

DEX (Dalvik Executable) format. Static analysis aims to analyze malware using only

the information provided by the program itself. This is generally performed by de-

compilation process which recovers the static source (API/System calls, permissions,

opcodes, and hexadecimal byte sequences etc.,) of program [10, 35, 58]. The static

analysis has a disadvantage that it can not detect malware that dynamically download

malicious code [2] as Android operating system (OS) allows applications to load addi-

tional code (malicious or benign) from external sources at runtime. On the other hand,

dynamic analysis uses the execution traces of the application in a controlled environ-

ment [9] for malware detection. The analysis is performed by running the application

on device and such information as system calls, network access, and file and memory

1https://securelist.com/IT-Threat-Evolution-Q2-2017-Statistics/79432/
2G Data Security Blog: 8400 New Android Malware Samples Every Day

https://securelist.com/IT-Threat-Evolution-Q2-2017-Statistics/79432/

Adapting text categorization for manifest based Android malware detection 307

modifications are obtained from operating system during runtime [19, 47, 57, 61].

This approach removes the limitations (e.g., unpacking and obfuscation) of the static

analysis [2, 34]. However, dynamic approach generally requires more resources in

terms of memory space and running time when compared to static analysis [47]. The

main difference between the static and dynamic approaches is the necessity of run-

ning application on the device [3, 4, 12, 42]. The hybrid analysis is a combination of

static and dynamic methods, and it creates a framework to perform both of the anal-

yses [2, 7, 31, 49]. In hybrid approach, the static analysis is performed at first without

executing the application. Then, the dynamic analysis is performed, if necessary, by

using the information obtained from static analysis [5]. In all approaches, malicious

applications are generally detected by borrowing classifiers from the machine learning

field [1, 9, 11, 46, 56].

Although static approach may seem to have some disadvantages, it is highly

preferred because of its lower cost with respect to other methods. In this paper, our

aim is to develop a malware detection system for Android based mobile devices as

they are widely used nowadays. Our system is based on static malware detection

approach by using text mining methods. Currently, some of the existing works that

apply the static approach also use text mining methods by generally considering static

data (e.g., permissions, manifest content, meta-data, and source code) of applica-

tions [33, 37, 40, 44, 51, 55]. However, differently from existing works, our framework

adopts text categorization for this purpose and extracts different features directly

from the manifest content of each application to detect malware. Contributions of

our study can be summarized as follows:

• We designed a server-side system to enable users to perform malware analysis.

• Differently from existing works, our system is completely based on the manifest

contents of the suspicious applications and it employs text mining techniques for

the purpose of the malware detection.

• This is the first time that bow, n-gram, and sstf (see Section 3.2) features are

used in manifest based malware detection task.

• We conducted intensive experiments to explore the effect of applying dimension

reduction together with different circumstances where feature set and classifier

are different.

• We obtained better results than other static analysis based studies, from which

some of them are completely focused on the manifest file.

The remainder of this paper is as follows: In the next section, we summarize the

previous studies. In Section 3, we explain methods used in this paper. We present

our experimental results in Section 4. We then discuss the limitations and give future

directions of this study in Section 5 and, finally, we present our conclusions in the

last section.

308 Önder Çoban, Selma Ayşe Özel

2. Literature review

Android is an open source and widely used OS based on the Linux kernel. As pop-

ularity of the Android increases, the number of malwares that target this platform

rises as well. Therefore, there are many studies that use static, dynamic, or hybrid

approaches to detect malwares and prevent malicious attacks for Android. In this

section, we review the literature for Android malware detection (AMD) field and only

present studies that are similar to our study. We also summarize these previous works

in Table 1.

Table 1
Some of the research works which propose an AMD framework

in three different malware detection approaches

Approach Research Work Features Method Year

Static

SCANDAL [27] Bytecode of application
Dalvik Core

interpretation
2012

DroidMat [56]
Permissions, Intent messages

passing etc., and API calls
Machine learning 2012

MAMA [46] Permissions, uses-feature tags Machine learning 2013

DroidAPIMiner [1] API calls Machine learning 2013

AndroSimilar [20] Variable length signatures Fuzzy hashing 2013

PUMA [45] uses-permission/feature tags Machine learning 2013

DroidAnalytics [60] 3 level signatures Similarity score 2013

DREBIN [4] Manifest, Disassembled code Machine learning 2014

PMDS [42] Permissions Machine learning 2014

ANASTASIA [22] Disassembled code features Machine learning 2016

ADROIT [35]
Permissions and meta-information

from app store
Machine learning 2016

DMDAM [8] Permissions Machine learning 2017

Arslan et al. [6] Permissions Machine learning 2019

Kim et al. [28] Various Features Deep learning 2019

Our study
Manifest based textual features

(bow, n-gram, and sstf)
Machine learning 2019

Dynamic

TaintDroid [19] Data flows Taint tracking 2010

CrowDroid [9] Traces of system calls k-means clustering 2011

AntiMalDroid [59] Signatures based on behaviors Machine learning 2011

Andromaly [48] Device states and events Machine learning 2012

DroidScope [57] Traces of system calls
Virtual machine

introspection
2012

DroidScribe [18] Runtime behaviors Machine learning 2016

DroidCat [10] Application execution traces Machine learning 2016

CSCdroid [58] Determinate system calls Markov chain and SVM 2017

Monet [52] Runtime behavior signature Signature matching 2017

Wang et al. [55] HTTP flows Machine Learning 2018

Hybrid

Andrubis [31]
Manifest meta-data, bytecode,

Dalvik VM actions
Code coverage 2014

Mobile-Sandbox [49]
Permissions, smali codes etc.,

and runtime behaviors
Machine learning 2015

DroidNative [2]
ACFG and SWOD signatures

from MAIL patterns

A decision tree based

similarity detector
2017

Martin et al. [36] Static and dynamic features Machine Learning 2019

Adapting text categorization for manifest based Android malware detection 309

2.1. Static analysis

Kim et al. proposed a static analyzer, namely, ScanDal that uses Dalvik Core interpre-

tation method and extracts features from bytecode of the application [27]. Wu et al.

proposed DroidMat, a system that extracts the information from each application’s

manifest file, and regards components as entry points to trace API calls related to

permissions [56]. MAMA extracts permission and uses-feature tags from the appli-

cation’s manifest content and uses machine learning methods to distinguish benign

applications from malwares [46]. Drebin is a machine learning based method that

uses features extracted from manifest and disassembled code of application to perform

static analysis [4]. Rovelli et al. developed a permission based machine learning model

for malware analysis [42]. Aafer et al. proposed DroidAPIMiner, a machine learning

based system that relies on the API, package, and parameter level information [1].

AndroSimilar is an approach that generates signature by extracting statistically im-

probable features to detect malicious Android applications [20]. Sanz et al. present

PUMA for detecting malwares through machine learning techniques by analysing the

extracted permissions from the application [45]. Zheng et al. used opcode level sig-

natures of applications to perform static malware analysis [60]. Fereidooni et al.

presented a statics machine learning based system, namely, ANASTASIA which uses

560 different features extracted from disassembled code of applications [22]. ADROIT

uses text categorization approach to detect malicious applications. This method ex-

tracts features from the meta-data information of application which is available both

in the app store and Android manifest [35]. Bhattacharya and Goswami performed

malware classification based on permission features by using different machine learn-

ing classifiers [8]. Arslan et al. performed permission-based malware detection based

on machine learning [6]. They obtain results to be processed by a comparing the

observed frequencies of the requested permissions both in malicious and benign ap-

plications. Kim et al. proposed a framework that uses similarity-based feature (e.g.,

permission, component, environmental etc.) extraction and employs multimodal deep

learning for malware detection [28].

2.2. Dynamic analysis

Cox et al. proposed TaintDroid, a dynamic system that tracks the flow of privacy

sensitive data through third-party applications and uses the data flows to detect mal-

wares [19]. CrowDroid is a server-side framework that uses traces of system calls to

perform dynamic analysis of applications [9]. Zhao et al. proposed a software behavior

signature based framework which uses SVM algorithm to detect malicious applica-

tions [59]. Andromaly is a client-side application that employs features obtained from

the device states and events to perform machine learning based dynamic malware de-

tection [48]. DroidScope is an emulation based malware analysis engine that can be

used to analyze the java and native components of Android applications [57]. Dash et

al. present DroidScribe, a system that generates features at different levels including

pure system calls, decoded binder communication, and abstracted behavioral patterns

to perform SVM based Android malware family categorization [18]. DroidCat uses

310 Önder Çoban, Selma Ayşe Özel

a set of behavioral features obtained through systematic dynamic profiling of applica-

tions for dynamic detection of Android malwares [10]. Differently from other works,

CSCdroid uses all system calls to construct feature vectors in order to determine the

security of applications [58]. Sun et al. proposed Monet framework that includes both

client and server modules and uses both runtime behavior and static structures to

detect malware variants [52]. Wang et al. proposed a dynamic method which uses

text semantic features of mobile traffic for malware detection [55]. This method con-

siders every HTTP flow as a document and then uses n-grams to generate candidate

features for machine learning model.

2.3. Hybrid analysis

There have been only a few studies that perform hybrid analysis of Android applica-

tions. The published works that we aware of and use the hybrid approach as follows:

Andrubis uses features extracted both during the static analysis and dynamic anal-

ysis (e.g., Dalvik VM actions, activities etc.) for the purpose of malware detection.

Mobile-Sandbox is an easily accessible system through a web interface. It combines

both static and dynamic approaches and uses different features (e.g., permissions,

smali codes, and runtime behaviours etc.) to perform machine learning based mal-

ware detection [49]. DroidNative is a hybrid system that is able to detect malwares

embedded in bytecode or native code [2]. This system performs static analysis on

native code and hybrid analysis on byte code. It also adapts a technique from win-

dows malware detection, namely, MAIL for Android malware detection. Martin et al.

presented a dataset, namely, OmniDroid that includes 22K real-world malicious and

benign applications. They also performed malware detection on this dataset by using

their approach which is based on the fusion of static and dynamic features [36].

Similar to our paper, text categorization approach is employed in some stud-

ies to detect malicious applications especially in static approach. Wang et al. used

lexical features of HTTP header to discover malicious behaviors [55]. The authors ob-

tained HTTP header by tracing the mobile network traffic and utilize n-gram model

to extract features from this header that is a structured plain text. Suarez-Tangil

et al. proposed Dendroid, a framework that utilizes text mining approach for code

structures based malware detection [51]. The authors present a novel way to measure

similarity to automatically classify malwares into families. Santos et al. used n-gram

based file signatures to detect malicious Android application [44]. Milosevic et al.

used bag of words model to extract features from the source code of applications for

the purpose of malware detection [40]. Malhotra and Bajaj employed text mining

approach to extract instruction sets in their signature based pattern matching tech-

nique [33]. Mas’ud et al. explored the use of different feature selection methods in

the n-grams based malware detection. The authors extracted the n-grams from sys-

tem call sequences of the applications [37]. Wang et al. proposed a method, namely,

TextDroid which combines text mining and machine learning to detect Android mal-

wares [54]. This method is based on mobile network traffic and uses the HTTP flow

header to extract n-gram features that used in malware classification.

Adapting text categorization for manifest based Android malware detection 311

As it can be understood from the literature, our work advocates a different idea

than others (see Tab. 1) and the majority of text mining based Android malware de-

tection studies mentioned above utilize n-gram features and do not focus on manifest

content. Differently from existing works, in this paper, we utilize text mining approach

to extract different level of semantic features (e.g., bow, n-grams, and stylistic fea-

tures) from manifest content. We utilize these features both separately and together

with each other including permission features to observe the effect on performance.

3. System design

In this section, we introduce methods utilized in our server-side design which adopts

text categorization approach for AMD by using machine learning methods. As de-

picted in Figure 1, Android users and developers are able to perform analysis by send-

ing application file to the remote server hosting our system that uses the following

methods to perform malware detection: (1) decompilation of application archive files,

(2) textual feature extraction, (3) dimension reduction, and (4) classification. When

an application is sent (e.g., via a client module) to the remote server, it decompiles

APK file to get AndroidManifest.xml file.

Figure 1. Flowchart of our malware detection process

312 Önder Çoban, Selma Ayşe Özel

Then, it extracts features from this manifest content and transforms them into

feature vectors. After the feature extraction, dimension reduction is applied to select

distinctive features and, finally, the system builds a predictive model on preprocessed

data by training a machine learning algorithm. It uses this predictive model to classify

previously unseen applications as malicious or benign.

3.1. Text categorization

Text categorization methods are used in our proposed malware detection system. Text

categorization is a subfield of text mining and it is used to automatically assign one

of the predefined class labels to a document by using machine learning methods. Let

D = {d1, d2, . . . , dn} and C = {c1, c2, . . . , cm} represent document set and classes

respectively. In text categorization, one category cj is assigned to a document di and

this process is generally performed by using features extracted from a document set.

As the classes are predefined, text categorization is also considered as a supervised

machine learning task [16].

3.2. Preprocessing and feature extraction

Each APK file includes the codes and resources (e.g., image and manifest files) of

relevant application program. The Extensible Markup Language (XML) files included

in these resources are used for installing and/or activating the application. One of the

most important XML files is AndroidManifest.xml file. In order to run a component

by the Android OS, it must be defined in this manifest file. Therefore, the manifest

file must be included in application root, and components (e.g., Activities, Broadcast

Receivers, Services, and Content Providers) must be defined in this file. This file

must also include permission information (e.g., internet access or read access to user’s

contacts) required by the application, since declaring a permission implies intention

to use related API [46].

Our system utilizes text categorization for malware detection and differently from

previous studies, it solely focuses on the manifest content that is considered as a doc-

ument. To do this, the manifest file of each application is obtained by decompressing

and it is converted into a file with txt extension to extract textual features. Then, the

punctuation marks are removed and lowercase conversion is applied over the contents.

Next, bag of words (a.k.a bow), n-grams, and stylistic and structural properties (i.e.,

sstf) of the content are used as features, and performances of these well-known feature

extraction methods are compared for the malware detection task. In addition, per-

mission information are directly extracted from each application program file with the

help of ApkReader tool3 and each of the application’s required permission is also used

as a feature. In bow model, documents are tokenized by whitespaces and each token

considered as a feature (i.e., word or term) which is used to represented the documents

by assigning a weight to each term in the documents [24]. Assigning weight to each

3https://github.com/hylander0/Iteedee.ApkReader

https://github.com/hylander0/Iteedee.ApkReader

Adapting text categorization for manifest based Android malware detection 313

term (i.e., feature) in each document is performed by using the observed frequency

of the feature in the document. In n-gram model, on the other hands, features are

generally obtained in two different levels: character and word levels. In character

level n-gram, each feature is formed by taking the consecutive n-characters from the

document, in word-level n-gram, each feature contains n adjacent words. However, we

used the character level trigram features, since the character level is more successful

than the word level in general [25]. Notice that we chose trigrams as they often akin

to perform better than the bigrams [13]. The character level n-gram model is inde-

pendent from language used to form the document, and it is strong against some cases

as misspelling and abbreviation [32]. The sstf model is widely used in text mining

based fields (e.g., author identification, text genre detection, music genre classifica-

tion) to extract features (e.g., structural attributes and statistical information) from

structured or semi-structured texts [38, 50]. In this paper, we adopted 20 sstf features

(see Tab. 2) for malware detection. We believe that it is the first time that stylistic

and structural properties of the manifest content are utilized in AMD field. After the

feature extraction, we transformed each manifest file into a numeric feature vector by

applying term weighting methods. In term weighting phase, we employed BINARY

and Augmented Normalized Term Frequency (ANTF) methods [43] to assign weights

for permission-based and textual features respectively.

Table 2
Abbreviated (Abb.) names of the sstf features employed in our system.

Abb. Feature Abb. Feature

WPLA Words Per Line Average NOEX Number of Exclamation Mark

LLA Line Length Average NOE Number of Ellipsis Mark

NOQ Number of Question Mark NOW Number of Words

NODQ Number of Double Quotation Mark PR Punctuation Ratio

WLA Word Length Average NOH Number of Hyphen Mark

VR Vocabulary Richness CPWA Character Per Word Average

UWPL Unique Word Per Line NOC Number of Comma Mark

CPWV Character Per Word Variance NOL Number of Lines

NODV Number of Decimal Value NOUW Number of Unique Words

WPLV Words Per Line Variance NOCL Number of Colon Mark

The BINARY and ANTF methods are formulated as follows:

WBINARY (p,m) =

{
1, if m contains permission p

0, otherwise
(1)

WANTF (c,m) =
1 + TF (c,m)/maxt∈mTF (t,m)

2
(2)

In Equations (1) and (2), TF represents raw term frequency of term (feature) c in

a manifest content m, whereas p corresponds to a permission definition in m. The

maxt∈mTF (t,m) is also the maximum term frequency in related m.

314 Önder Çoban, Selma Ayşe Özel

3.3. Dimension reduction

We employed the Correlation based Feature Selection (CFS) method to select dis-

criminative features and reduce feature space. CFS is a feature selection (FS) filter

that ranks feature subsets in accordance with the relationship based on a heuristic

function. This heuristic function works on the feature subsets which have high ranked

correlation between the classes but does not include any correlation among each oth-

ers [23]. We preferred to use this feature selector as it does not need to know the

number of features to be selected. After selecting the most informative features we

use only these selected features to perform classification task.

3.4. Classification

To perform classification, we borrow Naive Bayes (NB), Multinomial Naive Bayes

(MNB), Support Vector Machine (SVM), Maximum Entropy (ME), and C4.5 clas-

sifiers from the machine learning field to investigate the effect of classifier on the

performance of malware detection. We employ these methods as they are well-known

and still commonly used classifiers in text categorization field [30]:

• NB and MNB are practical methods [39] based on Bayes’ probability theory

which is utilized in many fields.

• C4.5 algorithm [41] is used to construct decision trees from the data.

• SVM is a kernel based classifier [14] and also robust to data sparsity.

• ME [15] supposes that features are interdependent unlike classifiers that use the

Bayes theory.

4. Performance evaluation

4.1. Datasets

In AMD field, there are many studies which are evaluated on different datasets for

different purposes. Some of these datasets consist of only malware samples or various

malware families, whereas some of them contain only benign samples. We also have

a difficulty in this field that new malware samples arise constantly. In this paper,

therefore, we selected the following datasets as evaluation material:

• DREBIN4 dataset contains 5560 applications from 179 different malware fami-

lies [4].

• AndroTracker5 dataset includes 51179 benign and 4554 malware applications

from different malware families [26].

• M0DROID (M0) dataset includes 400 samples in benign and malware categories

that have equal distribution [17].

4http://user.informatik.uni-goettingen.de/~darp/drebin/
5http://ocslab.hksecurity.net/andro-tracker

http://user.informatik.uni-goettingen.de/~darp/drebin/
http://ocslab.hksecurity.net/andro-tracker

Adapting text categorization for manifest based Android malware detection 315

The DREBIN dataset does not include any sample in benign category and the An-

droTracker dataset is too large and unbalanced. The M0 dataset is balanced but its

size is quite small when compared with other two datasets. In this study, our aim is

to evaluate our system on balanced and different datasets that include both benign

and malware samples. Therefore, we created two different datasets using the DREBIN

and AndroTracker. In this way, we obtained a subset of AndroTracker (S-AT) by ran-

domly choosing 5311 samples in benign category and whole samples in the malware

category. By taking benign samples from the AndroTracker and malware samples

from the DREBIN, we also created Drebin-AndroTracker (DRBN-AT) dataset which

has 10000 samples equally distributed in two categories. In this process, our aim is

to create small and balanced datasets as the size of the datasets is out of the scope

of this paper. We use the M0 dataset as it is (without any change). Note that we

have removed some application files from which any manifest file or permission infor-

mation could not be extracted in decompilation process. This is because the reverse

engineering tool6 we used fails in some cases where it may require to find and install

mobile OS specific framework files in order to properly decode application program

files7. The number of samples before and after the decompressing in our selected

datasets are given in Table 3.

Table 3
Distribution of the samples among two classes of the selected datasets before and after the

decompilation (decompressing)

Dataset

of samples

Before Decompilation After Decompilation

Benign Malware Benign Malware

M0 200 200 128 192

S-AT 5311 4554 3933 4421

DRBN-AT 5000 5000 3933 4637

4.2. Configuration

We utilized the CFS, NB, MNB, SVM, and C4.5 methods through WEKA8 open source

machine learning toolkit. At the time of writing, we used WEKA 3.6.1, but any ver-

sion close to this will be sufficiently similar. We also employed the ME algorithm

by using MaxEnt package9 within the OpenNLP10 which is a machine learning based

toolkit for the processing of natural language text. For all the methods mentioned

above, we used the default parameter settings, where kernel of the SVM is linear,

6https://ibotpeaches.github.io/Apktool/
7https://ibotpeaches.github.io/Apktool/documentation/
8http://www.cs.waikato.ac.nz/ml/weka/
9http://maxent.sourceforge.net/about.html

10https://opennlp.apache.org/

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/documentation/
http://www.cs.waikato.ac.nz/ml/weka/
http://maxent.sourceforge.net/about.html
https://opennlp.apache.org/

316 Önder Çoban, Selma Ayşe Özel

search method of the CFS is Best First, and confidenceFactor of the C4.5 is 0.25.

We trained our ME model with the help of generative iterative scaling (GIS)

algorithm, assuming 100 iterations and no cutoff. We validated performance of

the classifiers with 10-fold cross validation [29] and evaluated the system for several

parameters like accuracy (Acc), precision, recall, and F-measure [53].

4.3. Results

We conducted experiments on three different datasets and investigated the classifica-

tion results for different classifier and feature set combinations. We also performed

experiments for the cases that the feature set is obtained by feature selection and

without feature selection. After decompilation of application files, textual features

are extracted by using three different (bow, n-gram, sstf) models. Note that we

applied preprocessing on manifest contents to remove in-comprehensive information

(e.g., punctuation marks) in bow model. In addition, permission information are

also extracted to be used as features. In this phase, new feature sets are created

by combining these four feature sets with each other and this approach resulted in

10 different feature sets in total. Table 4 gives our four basic and six combined feature

sets and their codes used in our experiments.

Table 4
Investigated feature groups and codes in our experiments

Feature Set Code Feature Set Code

Structural and Statistical (SSTF) SS SS + BW SB

BOW BW NG + SS NS

Character level trigram NG PF + NG PN

Permissions PF BW + PF BP

BW + NG BN PF + SS PS

After the feature extraction, the term weighting process is applied so that binary

term weighting is used for permission based features, and ANTF weighting is applied

for textual features. Afterwards, the datasets are converted into classification-ready

structure. This task is also done by feature selection to explore its effect on results.

Table 5 presents the number of unique features before and after the feature selection.

Even though there are 135 permissions offered by the Android OS11, developers could

define new permissions depending upon the requirements of the application. In ad-

dition, the permissions which have the same features can be grouped under different

names. Therefore, the number of permission features is greater than 135 in our study.

11http://developer.android.com/reference/android/Manifest.permission.html

http://developer.android.com/reference/android/Manifest.permission.html

Adapting text categorization for manifest based Android malware detection 317

Table 5
The number of unique features for each dataset before and after feature selection

Dataset FS
Feature Set

PF BW NG SS BN SB NS PN BP PS

M0
− 195 4105 3480 20 7585 4125 3500 3675 4300 215

+ 11 28 67 7 61 28 61 59 28 15

S-AT
− 493 35898 12184 20 48082 35918 12204 12677 36391 513

+ 17 54 99 8 71 50 89 54 40 16

DRBN-AT
− 563 38875 12854 20 51729 38895 12874 13417 39438 583

+ 15 51 70 4 67 51 63 54 55 15

As the final step, classification task is performed with the help of different clas-

sifiers to observe the effect of selected classifier on the performance of our system.

Obtained results for the M0, S-AT, and DRBN-AT datasets are presented in Table 6,

Table 7, and Table 8 respectively. The best result for each feature set is denoted

in boldface, whereas underlined results represent the best results for the datasets.

According to our results, the highest malware detection accuracy rates for the M0,

S-AT, and DRBN-AT datasets are obtained as 94.0%, 99.3% and 98.2%, respectively.

In Table 9, we also present weighted average values of evaluation measures for the

best results on the datasets. The most successful feature model for each of the three

datasets is bow model. The feature groups including the bow features (i.e., SB, BP

and BN) are more successful than combined feature sets and the SVM generally out-

performs other classifiers. It is observed that the feature selection process generally

decreases classification success, even though it increases the success in some cases (see

Tab. 6) especially for NB and MNB classifiers.

Our system has the highest success rate of 99.3% on S-AT dataset and this value

varies depending on the classifier and feature set. The success rate of the sstf model

reaches up to 92.2% (see Tab. 7) which is promising and quite important in terms of

performance, especially when we consider its low feature space.

Table 6
Classification accuracies for the M0 dataset [%]

Classifier FS
Feature Set

PF BW NG SS BN SB NS PN BP PS

SVM
+ 78.4 91.2 88.7 75.6 93.4 92.1 88.7 91.8 91.2 88.4

− 90.0 92.5 88.4 85.3 92.5 92.5 88.7 90.3 93.4 92.8

ME
+ 79.0 90.0 85.9 80.0 90.6 89.6 85.6 88.1 90.0 87.1

− 91.5 85.3 84.0 82.5 84.6 85.9 83.4 85.3 85.9 89.0

C4.5
+ 80.9 89.3 85.9 80.6 90.9 89.3 87.5 89.0 89.3 88.4

− 88.4 87.8 83.1 83.4 86.8 87.8 80.3 85.0 88.7 87.1

NB
+ 80.6 91.2 90.6 75.9 94.0 91.5 88.7 90.0 90.9 86.2

− 75.6 89.6 86.2 75.9 89.6 89.6 86.5 86.8 89.6 79.6

MNB
+ 78.7 91.5 90.0 60.0 94.0 91.5 90.3 92.8 92.8 74.3

− 79.6 87.8 85.6 60.0 91.5 85.3 85.6 88.7 89.6 79.6

318 Önder Çoban, Selma Ayşe Özel

Table 7
Classification accuracies for the S-AT dataset [%]

Classifier FS
Feature Set

PF BW NG SS BN SB NS PN BP PS

SVM
+ 88.2 96.3 92.3 83.3 97.5 96.5 94.7 92.8 95.7 90.7

− 96.2 99.1 95.8 86.6 99.3 99.2 96.3 97.7 99.3 96.7

ME
+ 88.3 96.3 92.6 86.9 96.7 96.2 92.9 92.2 93.5 90.8

− 93.4 97.4 94.2 88.5 97.1 97.6 94.7 94.8 97.7 94.2

C4.5
+ 87.8 97.1 93.3 91.9 97.7 97.0 93.6 92.6 96.6 91.2

− 96.8 97.6 94.0 92.2 97.7 96.6 93.1 95.5 97.4 96.6

NB
+ 87.8 93.6 87.6 78.7 93.9 93.9 86.5 80.6 91.9 90.0

− 91.3 94.7 86.5 79.6 92.5 94.9 86.7 86.7 94.9 89.3

MNB
+ 53.7 95.0 87.9 52.9 94.8 94.9 87.3 91.0 86.1 88.1

− 91.9 97.9 89.8 52.9 95.6 98.0 89.8 91.6 97.4 92.0

Table 8
Classification accuracies for the DRBN-AT dataset [%]

Classifier FS
Feature Set

PF BW NG SS BN SB NS PN BP PS

SVM
+ 92.3 91.7 85.4 79.2 92.4 91.7 89.0 93.0 93.8 92.3

− 93.6 98.0 93.6 80.5 97.7 97.9 94.2 97.1 98.2 94.0

ME
+ 92.4 91.9 88.1 82.0 92.7 91.9 89.2 93.5 93.5 92.1

− 88.3 93.4 91.2 83.3 93.5 93.8 91.6 92.6 93.8 89.8

C4.5
+ 92.1 93.5 88.6 86.6 93.6 93.5 90.4 93.7 95.4 92.4

− 94.9 93.1 91.1 87.2 91.7 93.5 90.0 94.6 94.8 95.0

NB
+ 91.8 86.4 76.5 76.4 88.8 86.4 76.9 72.3 88.1 91.5

− 86.3 88.0 80.8 74.0 88.0 88.1 81.1 81.2 88.3 83.2

MNB
+ 91.1 90.3 83.5 54.1 90.6 90.3 81.7 90.6 92.6 92.0

− 88.0 94.3 84.5 54.1 90.9 94.3 84.5 88.3 94.2 85.8

Table 9
Evaluation metrics for the best results on evaluated datasets

Dataset Classifier Feature Set
Evaluation Metric

Precision Recall F-Measure Acc [%]

S-AT
SVM BN 0.99 0.99 0.99 99.3

SVM BP 0.99 0.99 0.99 99.3

DRBN-AT SVM BP 0.98 0.97 0.97 98.2

M0 MNB, NB BN 0.93 0.91 0.91 94.0

To prove robustness and efficiency of our text mining based system, we also

performed detailed feature analysis to investigate the distribution of feature sets in

benign and malicious applications. We select the S-AT dataset for this analysis, as the

Adapting text categorization for manifest based Android malware detection 319

best accuracies are obtained on this dataset. For our feature analysis, we selected the

most observed 45 features (see Figure 2 and Figure 3) from bow and permission

feature sets, respectively.

Figure 2. The most frequently observed bow features for the S-AT dataset

Figure 3. The most frequently observed permission features for the S-AT dataset

As seen from the Figure 2, we found out that activity, intent, permission, and

filter are defined more frequently in malware applications. It is also clear that there

is a huge difference in frequently used features among benign and malware manifest

contents. Figure 3 shows that malware applications mainly use some permissions

(e.g., INTERNET, READ PHONE STATE) more frequently. We also observed that bow

features mostly consist of tokenized permission names (e.g., READ PHONE STATE →
“read’, “phone”, “state”). This proves that there is a relevance between bow and

permission-based features. In addition, we investigated the total weights of the sstf

features between malware and benign applications. In particular, we detected that

320 Önder Çoban, Selma Ayşe Özel

NOW and CPWV are the most discriminative features (see Figure 4) in sstf model.

All of the sstf features in malicious applications have also higher total weight when

compared to benign applications.

Figure 4. The weighted total frequencies of sstf features for the S-AT dataset

5. Limitations and future work

Our system classifies an Android application as malware or benign by only analyzing

its manifest content. However, it does not analyze other files that may contain mali-

cious code. In some scenarios, it may not prevent an application by only processing

its manifest content. But this application may still be a malware as it can download

malicious code at runtime. The reason for this is that the designed system utilizes

static analysis approach and lacks dynamic inspection. These issues can be mitigated

by combining our system with a complete AMD system that uses hybrid approach.

Table 10 supports this idea that our system could be an alternative, when compared

to the some of other studies which use static approach.

Table 10
Comparison of the developed system with some of related works that use static approach

Research Work Features
of APK

Acc [%]
malware benign

MAMA [46] Permissions, uses-feature tags 333 333 94.8

DREBIN [4] Manifest, disassembled code features 5560 123453 93.9

PMDS [12] Permissions 1450 1500 95.4

DroidMat [42] Permissions, API calls, intent messages 238 1500 97.8

DroidAPIMiner [56] API calls 3987 16000 99.0

Ours Bow, n-grams, sstf, permissions 4421 3933 99.3

Adapting text categorization for manifest based Android malware detection 321

As there is need to collect and process big data in AMD, it is still not practical

to employ most of the existing methods at mobile devices. The reason for this is that

the mobile device has limitations on computing resources, processing capability, and

memory storage. Therefore, we designed our system as a server-side system. But,

we are planning to develop a mobile prototype software which will make it possible

for the users to perform Android application analysis by sending the application file

to our malware analyzer remote server. We plan to enable the developed system to

analyze other source files by using text mining techniques and we will also try to

evaluate our improved system on large-scale datasets.

6. Conclusion

In general, malicious application programs are generally given permissions by most

Android based mobile device users in permission-based security model of Android,

even though the users are warned in risky cases. Therefore, detecting the malwares

is crucial before they are installed on the device. For this purpose, in this paper, we

designed a system to detect Android malwares by using the static analysis approach

based on text mining. Differently from existing works, our system constructs a fea-

ture vector for the software to be analyzed, and uses this feature vector to classify

the software as Android malware or not by applying text classification methods. The

features used in the classification process are mined only from the textual manifest

content of the suspicious application. Different feature sets extracted from the man-

ifest content are combined, then feature selection is applied to determine the most

important features to be used. Also, several classification algorithms are employed to

find out the most performant ones in terms of accuracy. Based on our experiments,

we observed that combined feature sets containing bow features improve accuracy,

especially when SVM is selected as classifier. Sstf features achieve promising results

especially when utilized with C4.5 classifier, even though they generally provide less

accuracy. Therefore, we suggest to use the sstf features to analyze not only manifest

content but also other source files.

Textual features are generally more successful than permission-based features.

On the other hand, manifest files of malware applications have richer content when

compared to the benign applications. Our analysis over the S-AT dataset discovered

that malware and benign applications have average number of 13 and 6 permissions,

respectively. It shows that if a manifest content of an application contains a large per-

mission list it is most likely a malware. Even majority of permissions are innocuous,

they may be included into manifest file to lead users to overlook other permissions

which can be used in malwares for different purposes. What is more, our experiments

prove that bow and n-gram features provide effective identification and detection of

malicious applications. Feature selection process decreases the accuracy in general.

We think that main reason for this is that bow and n-gram models produce sparse

representation of data. Therefore, in some cases, features selected by the CFS algo-

rithm may not highly correlated with classes, especially on large and sparse datasets.

322 Önder Çoban, Selma Ayşe Özel

Additionally, selected features may not be observed in test samples. The classifier

employed with the CFS method also affects the accuracy of malware detection. Con-

sequently, we conclude that our work provides a promising basis for future studies in

context of malware detection by using text mining techniques. This also demonstrates

that developed system is capable of being used as part of a complete static, dynamic

or hybrid AMD system.

References

[1] Aafer Y., Du W., Yin H.: DroidAPIMiner: Mining API-Level Features for Robust

Malware Detection in Android. In: International Conference on Security and

Privacy in Communication Systems, pp. 86–103, Springer, 2013.

[2] Alam S., Qu Z., Riley R., Chen Y., Rastogi V.: DroidNative: Automating and

optimizing detection of Android native code malware variants, Computers & Se-

curity, vol. 65, pp. 230–246, 2017.

[3] Amamra A., Talhi C., Robert J.M.: Smartphone malware detection: From a sur-

vey towards taxonomy. In: 2012 7th International Conference on Malicious and

Unwanted Software, pp. 79–86. IEEE, 2012.

[4] Arp D., Spreitzenbarth M., Hubner M., Gascon H., Rieck K.: DREBIN: Effective

and Explainable Detection of Android Malware in Your Pocket, NDSS, vol. 14,

pp. 23–26, 2014.

[5] Arshad S., Shah M.A., Khan A., Ahmed M.: Android Malware Detection &

Protection: A Survey, International Journal of Advanced Computer Science and

Applicatio, vol. 7(2), pp. 463–475, 2016.

[6] Arslan R.S., Doğru İ.A., Barişçi N.: Permission-Based Malware Detection Sys-

tem for Android Using Machine Learning Techniques, International Journal of

Software Engineering and Knowledge Engineering, vol. 29(01), pp. 43–61, 2019.

[7] Barsiya T.K., Gyanchandani M., Wadhwani R.: Android Malware Analysis:

A Survey Paper, International Journal of Control, Automation, Communication

and Systems (IJCACS), vol. 1(1), pp. 35–42, 2016.

[8] Bhattacharya A., Goswami R.T.: DMDAM: Data Mining Based Detection of

Android Malware. In: Proceedings of the First International Conference on In-

telligent Computing and Communication, pp. 187–194, Springer, 2017.

[9] Burguera I., Zurutuza U., Nadjm-Tehrani S.: Crowdroid: Behavior-Based Mal-

ware Detection System for Android. In: Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices, pp. 15–26, ACM, 2011.

[10] Cai H., Meng N., Ryder B., Yao D.: DroidCat: Unified dynamic detection of

Android malware, Technical report, Department of Computer Science, Virginia

Polytechnic Institute & State, 2016.

Adapting text categorization for manifest based Android malware detection 323

[11] Chakradeo S., Reaves B., Traynor P., Enck W.: MAST: Triage for Market-scale

Mobile Malware Analysis. In: 6th ACM conference on Security and Privacy in

Wireless and Mobile Networks (WiSec’13), pp. 13–24, ACM, 2013.

[12] Chan P.P.K., Song W.K.: Static detection of Android malware by using permis-

sions and API calls. In: 2014 International Conference on Machine Learning and

Cybernetics, vol. 1, pp. 82–87, IEEE, 2014.

[13] Çoban Ö., Özyer B., Özyer G.T.: A Comparison of Similarity Metrics for Senti-

ment Analysis on Turkish Twitter Feeds. In: 2015 IEEE International Conference

on Smart City/SocialCom/SustainCom (SmartCity), pp. 333–338, IEEE, 2015.

[14] Cortes C., Vapnik V.: Support-vector networks, Machine Learning, vol. 20(3),

pp. 273–297, 1995.

[15] Cuong N.V., Linh N.T.T., Thuy H.Q., Hieu P.X.: A Maximum Entropy Model

for Text Classification. In: The International Conference on Internet Information

Retrieval 2006, pp. 134–139, 2006.

[16] Dalal M.K., Zaveri M.A.: Automatic Text Classification: A Technical Review,

International Journal of Computer Applications, vol. 28(2), pp. 37–40, 2011.

[17] Damshenas M., Dehghantanha A., Choo K.K.R., Mahmud R.: M0droid: An An-

droid Behavioral-Based Malware Detection Model, Journal of Information Pri-

vacy and Security, vol. 11(3), pp. 141–157, 2015.

[18] Dash S.K., Suarez-Tangil G., Khan S., Tam K., Ahmadi M., Kinder J., Caval-

laro L.: DroidScribe: Classifying Android Malware Based on Runtime Behavior.

In: 2016 IEEE Security and Privacy Workshops (SPW), pp. 252–261, IEEE,

2016.

[19] Enck W., Gilbert P., Han S., Tendulkar V., Chun B.G., Cox L.P., Jung J., Mc-

Daniel P., Sheth A.N.: TaintDroid: An Information-Flow Tracking System for

Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer

Systems (TOCS), vol. 32(2), pp. 5:1–5:29, 2014.

[20] Faruki P., Ganmoor V., Laxmi V., Gaur M.S., Bharmal A.: AndroSimilar: ro-

bust statistical feature signature for Android malware detection. In: Proceedings

of the 6th International Conference on Security of Information and Networks,

pp. 152–159, ACM, 2013.

[21] Felt A.P., Finifter M., Chin E., Hanna S., Wagner D.: A Survey of Mobile Mal-

ware in the Wild. In: Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, pp. 3–14, ACM, 2011.

[22] Fereidooni H., Conti M., Yao D., Sperduti A.: ANASTASIA: ANdroid mAlware

detection using STatic analySIs of Applications. In: 2016 8th IFIP International

Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5, IEEE,

2016.

[23] Hall M.A.: Correlation-Based Feature Selection for Machine Learning. Ph.D.

thesis, University of Waikato Hamilton, New Zealand, 1999.

324 Önder Çoban, Selma Ayşe Özel

[24] Joachims T.: A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for

Text Categorization. Technical report, Carnegie Mellon Univwrsity Pittsburgh

PA Department of Computer Science, 1996.

[25] Kanaris I., Kanaris K., Houvardas I., Stamatatos E.: Words Versus Character

n-Grams for Anti-Spam Filtering, International Journal on Artificial Intelligence

Tools, vol. 16(06), pp. 1047–1067, 2007.

[26] Kang H.J., Jang J.w., Mohaisen A., Kim H.K.: AndroTracker: Creator Informa-

tion Based Android Malware Classification System. In: The 15th International

Workshop on Information Security Applications (WISA), vol. 8909, 2014.

[27] Kim J., Yoon Y., Yi K., Shin J.: ScanDal: Static Analyzer for Detecting Privacy

Leaks in Android Applications, MoST, vol. 12, p. 110, 2012.

[28] Kim T., Kang B., Rho M., Sezer S., Im E.G.: A Multimodal Deep Learning

Method for Android Malware Detection Using Various Features, IEEE Transac-

tions on Information Forensics and Security, vol. 14(3), pp. 773–788, 2019.

[29] Kohavi R.: A Study of Cross-validation and Bootstrap for Accuracy Estimation

and Model Selection. In: Proceedings of the 14th International Joint Conference

on Artificial Intelligence, vol. 2, pp. 1137–1145, Montreal, Canada, 1995.

[30] Kowsari K., Jafari Meimandi K., Heidarysafa M., Mendu S., Barnes L.E.,

Brown D.E.: Text Classification Algorithms: A Survey, Information, vol. 10(4),

pp. 1–68, 2019.

[31] Lindorfer M., Neugschwandtner M., Weichselbaum L., Fratantonio Y., Veen V.

van der, Platzer C.: Andrubis – 1,000,000 Apps Later: A View on Current

Android Malware Behaviors. In: 2014 Third International Workshop on Building

Analysis Datasets and Gathering Experience Returns for Security (BADGERS),

pp. 3–17, IEEE, 2014.

[32] Lodhi H., Saunders C., Shawe-Taylor J., Cristianini N., Watkins C.: Text Clas-

sification Using String Kernels, Journal of Machine Learning Research, vol. 2,

pp. 419–444, 2002.

[33] Malhotra A., Bajaj K.: A hybrid pattern based text mining approach for malware

detection using DBScan, CSI transactions on ICT, vol. 4(2-4), pp. 141–149, 2016.

[34] Malhotra A., Bajaj K.: A Survey on Various Malware Detection Techniques on

Mobile Platform, International Journal of Computer Applications, vol. 139(5),

pp. 15–20, 2016.

[35] Mart́ın A., Calleja A., Menéndez H.D., Tapiador J., Camacho D.: ADROIT:

Android malware detection using meta-information. In: 2016 IEEE Symposium

Series on Computational Intelligence (SSCI), pp. 1–8, IEEE, 2016.

[36] Mart́ın A., Lara-Cabrera R., Camacho D.: Android malware detection through

hybrid features fusion and ensemble classifiers: The AndroPyTool framework and

the OmniDroid dataset, Information Fusion, vol. 52, pp. 128–142, 2019.

Adapting text categorization for manifest based Android malware detection 325

[37] Mas’ud M.Z., Sahib S., Abdollah M.F., Selamat S.R., Huoy C.Y.: A Compara-

tive Study on Feature Selection Method for N -gram Mobile Malware Detection,

International Journal of Network Security, vol. 19(5), pp. 727–733, 2017.

[38] Mayer R., Neumayer R., Rauber A.: Combination of Audio and Lyrics Features

for Genre Classification in Digital Audio Collections. In: Proceedings of the 16th

ACM International Conference on Multimedia, pp. 159–168, ACM, 2008.

[39] McCallum A., Nigam K.: A Comparison of Event Models for Naive Bayes Text

Classification. In: AAAI-98 workshop on learning for text categorization, vol. 752,

pp. 41–48, Citeseer, 1998.

[40] Milosevic N., Dehghantanha A., Choo K.K.R.: Machine learning aided Android

malware classification, Computers & Electrical Engineering, vol. 61, pp. 266–274,

2017.

[41] Quinlan J.R.: C4. 5: programs for machine learning, Elsevier, 2014.

[42] Rovelli P., Vigfússon Ý.: PMDS: Permission-Based Malware Detection System.

In: International Conference on Information Systems Security, pp. 338–357,

Springer, 2014.

[43] Salton G., Buckley C.: Term-weighting approaches in automatic text retrieval,

Information Processing & Management, vol. 24(5), pp. 513–523, 1988.

[44] Santos I., Penya Y.K., Devesa J., Bringas P.G.: N -grams-based File Signatures

for Malware Detection. In: ICEIS 2009 – Proceedings of the 11th International

Conference on Enterprise Information Systems, vol. AIDSS, pp. 317–320, 2009.

[45] Sanz B., Santos I., Laorden C., Ugarte-Pedrero X., Bringas P.G., Álvarez G.:

Puma: Permission Usage to Detect Malware in Android. In: International

Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Special Sessions, pp. 289–298,

Springer, 2013.

[46] Sanz B., Santos I., Laorden C., Ugarte-Pedrero X., Nieves J., Bringas P.G.,

Álvarez G.: MAMA: manifest analysis for malware detection in android, Cy-

bernetics and Systems, vol. 44(6–7), pp. 469–488, 2013.

[47] Shabtai A., Fledel Y., Elovici Y.: Automated Static Code Analysis for Classifying

Android Applications Using Machine Learning. In: 2010 International Confer-

ence on Computational Intelligence and Security, pp. 329–333, IEEE, 2010.

[48] Shabtai A., Kanonov U., Elovici Y., Glezer C., Weiss Y.: “Andromaly”: a be-

havioral malware detection framework for android devices, Journal of Intelligent

Information Systems, vol. 38(1), pp. 161–190, 2012.

[49] Spreitzenbarth M., Freiling F., Echtler F., Schreck T., Hoffmann J.: Mobile-

-sandbox: Having a deeper look into Android applications. In: Proceedings of

the 28th Annual ACM Symposium on Applied Computing, pp. 1808–1815, ACM,

2013.

326 Önder Çoban, Selma Ayşe Özel

[50] Stamatatos E., Fakotakis N., Kokkinakis G.: Automatic Text Categorization in

Terms of Genre and Author, Computational Linguistics, vol. 26(4), pp. 471–495,

2000.

[51] Suarez-Tangil G., Tapiador J.E., Peris-Lopez P., Blasco J.: DENDROID: A text

mining approach to analyzing and classifying code structures in android malware

families, Expert Systems with Applications, vol. 41(4), pp. 1104–1117, 2014.

[52] Sun M., Li X., Lui J.C.S., Ma R.T.B., Liang Z.: Monet: A User-Oriented

Behavior-Based Malware Variants Detection System for Android, IEEE Trans-

actions on Information Forensics and Security, vol. 12(5), pp. 1103–1112, 2017.

[53] Varsha M., Vinod P., Dhanya K.A.: Heterogeneous feature space for Android

malware detection. In: 2015 Eighth International Conference on Contemporary

Computing (IC3), pp. 383–388, IEEE, 2015.

[54] Wang S., Yan Q., Chen Z., Yang B., Zhao C., Conti M.: TextDroid: Seman-

tics-based detection of mobile malware using network flows. In: 2017 IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS),

pp. 18–23, IEEE, 2017.

[55] Wang S., Yan Q., Chen Z., Yang B., Zhao C., Conti M.: Detecting Android

Malware Leveraging Text Semantics of Network Flows, IEEE Transactions on

Information Forensics and Security, vol. 13(5), pp. 1096–1109, 2018.

[56] Wu D.J., Mao C.H., Wei T.E., Lee H.M., Wu K.P.: DroidMat: Android Malware

Detection Through Manifest and API Calls Tracing. In: 2012 Seventh Asia Joint

Conference on Information Security, pp. 62–69, IEEE, 2012.

[57] Yan L.K., Yin H.: DroidScope: Seamlessly Reconstructing the OS and Dalvik

Semantic Views for Dynamic Android Malware Analysis. In: Presented as part

of the 21st USENIX Security Symposium (USENIX Security 12), pp. 569–584.

2012.

[58] Zhang S., Xiao X.: CSCdroid: Accurately Detect Android Malware via

Contribution-Level-Based System Call Categorization. In: 2017 IEEE Trust-

com/BigDataSE/ICESS, pp. 193–200, IEEE, 2017.

[59] Zhao M., Ge F., Zhang T., Yuan Z.: AntiMalDroid: An Efficient SVM-Based

Malware Detection Framework for Android. In: International Conference on In-

formation Computing and Applications, pp. 158–166, Springer, 2011.

[60] Zheng M., Sun M., Lui J.C.: Droid Analytics: A Signature Based Analytic Sys-

tem to Collect, Extract, Analyze and Associate Android Malware. In: 2013 12th

IEEE International Conference on Trust, Security and Privacy in Computing and

Communications, pp. 163–171, IEEE, 2013.

[61] Zhou Y., Wang Z., Zhou W., Jiang X.: Hey, You, Get Off of My Market: De-

tecting Malicious Apps in Official and Alternative Android Markets. In: NDSS,

vol. 25, pp. 50–52. 2012.

Adapting text categorization for manifest based Android malware detection 327

Affiliations

Önder Çoban
Cukurova University, Department of Computer Engineering, Adana, Turkey,
ocoban@cu.edu.tr, ORCID ID: https://orcid.org/0000-0001-9404-2583

Selma Ayşe Özel
Cukurova University, Department of Computer Engineering, Adana, Turkey,
saozel@cu.edu.tr, ORCID ID: https://orcid.org/0000-0001-9201-6349

Received: 8.05.2019

Revised: 8.05.2019

Accepted: 10.08.2019

https://orcid.org/0000-0001-9404-2583
https://orcid.org/0000-0001-9201-6349

	Introduction
	Literature review
	Static analysis
	Dynamic analysis
	Hybrid analysis

	System design
	Text categorization
	Preprocessing and feature extraction
	Dimension reduction
	Classification

	Performance evaluation
	Datasets
	Configuration
	Results

	Limitations and future work
	Conclusion

