
Computer Science • 20(2) 2019 https://doi.org/10.7494/csci.2019.20.2.3193

Aybeyan Selimi
Samedin Krrabaj
Muzafer Saračević
Selver Pepić

MEMOIZATION METHOD FOR STORING
MINIMUM-WEIGHT TRIANGULATION
OF CONVEX POLYGON

Abstract This study presents a practical view of dynamic programming, specifically in

the context of the application of finding optimal solutions for the polygon tri-

angulation problem. The problem of the optimal triangulation of a polygon is

considered to be a recursive substructure. The basic idea of the constructed

method lies in finding an adequate method for the rapid generation of optimal

triangulations and storing them in as small a memory space as possible. Our

method is based on a memoization technique, and its emphasis is in storing the

results of the calculated values and returning the cached result when the same

values occur again. The significance of the method is in the generation of the

optimal triangulation for a large number of n. All of the calculated weights

in the triangulation process are stored and performed in the same table. The

processing of the results and implementation of the method were carried out

in the Java environment, and the experimental results were compared with the

square matrix and Hurtado-Noy method.

Keywords Catalan number, data storage, memoization, recursion, minimum-weight

triangulation.

Citation Computer Science 20(2) 2019: 195–211

195

https://doi.org/10.7494/csci.2019.20.2.3193
https://orcid.org/0000-0001-8285-2175
https://orcid.org/0000-0003-2577-7927

196 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

1. Introduction

Triangulation is a term that appears in various disciplines of mathematics as well as

in computer science. Triangulation is defined as the decomposition of a particular

region into smaller pieces (called triangulation elements – usually triangles) and that

are easy to handle. An application of triangulation can be seen in different areas

where there is a fixed set of points, such as algebra, topology, volume calculations,

and meshing [20].

The triangulation problem is generally based on determining a set of all triangu-

lations for a given geometric figure (construction of triangular meshes) or in finding

the optimal triangulation of a given set of points in a plane or in space. Triangular

meshes represent the dominant discretization of surfaces in computer graphics, for

which there is a significant amount of research. Many triangulation applications in

geometry rely on an orthogonal primal/dual network structure. The use of such dual

structures of triangulation depends on the type of application used in physical sim-

ulation [4], parametrization [10, 15], and architecture modeling [9, 13], for example.

Most of the obtained research results are based on planar triangular meshes.

In many applications of computational geometry, determining the boundary of

a surface occurring by connecting to one or more closed geometric figures is necessary

in the problem of triangulation. Such surfaces are encountered when filling the holes of

an incomplete mesh, while this is dealt with by introducing more identified boundaries

such as the outer boundary and several inner islands in the complex holes problem [1].

In contour interpolation, 2D curves from neighboring flat parts must be connected

with one or more surfaces. In practice (and in the case of arbitrary planar points), an

initial mesh for the surface treatment is first created; this is usually a triangulation

involving only the vertices of the polygon and then refining this starting surface in

order to achieve better smoothness or mesh quality. The initial triangulation of one

polygon can be calculated by using a simple dynamic programming algorithm [2, 3].

The important feature of the proposed algorithm is the production of an optimal

triangulation that minimizes the sum of a certain “weight”, whether it is the size that

can be measured individually for each triangle or for each pair of adjacent triangles.

Optimization of the triangulation is important for the successful construction of a final

mesh and depend on the quality of the initial mesh.

In this paper, we present an algorithm in order to find the optimal triangulation

of a convex polygon with memoization. We suggest a formula that avoids the calcu-

lation of the same values several times and does not endanger the optimality of the

obtained results. More precisely, given the number of calculations required in deter-

mining the gravity of the triangles in triangulation, our algorithm finds the optimal

triangulation value by minimizing the optimal function that is defined as the sum

of all of the individual triangulation weights in the triangulation. Practically, this

paper also presents the optimal triangulation algorithm of a convex polygon based

on the principles of dynamic programming, significantly reducing the computational

cost when compared to the algorithm constructed in this paper [17].

Memoization method for storing minimum-weight triangulation of convex polygon 197

2. Related works

The triangulation of a planar polygon is one of the basic problems of computational

geometry. It is applied in obtaining the process of three-dimensional representations

of objects from a given set of points. The main purposes of the triangulation process

is obtaining the speediest polygon triangulation of all possible variants. The speed

in this process is important, as the number of these different triangulations increases

drastically with increases in the number of polygon vertices.

There are many efficient algorithms that generate the triangulation of different

geometric figures [6,19], where the optimality of the constructed triangulation is most

often not guaranteed. In papers [8, 12], the algorithms are given for the calculation

of minimum weight polygon triangulation into the plane; these are also known as

algorithms that minimize the sum of the total lengths of the edges and have time

complexity O(n3). Algorithms improved on the principle of dynamic programming

are aimed at constructing the optimal triangulation of larger domains and use the

previously calculated optimal triangulation of the smaller sub-domains.

Paper [3] presents an algorithm that finds the optimal polygon triangulation by

minimizing the triangle weight in the triangulation process with the same complexity.

There are other approaches for polygon triangulation, but they do not guarantee

optimality and are often limited to specific class inputs. In cases where the polygon

is sufficiently planar, there are algorithms that use polygon projection in the best-

fitting plane and ultimately get the required triangulation after the triangulation of

this projected polygon [16].

However, this algorithm cannot be applied to the triangulation of the polygon

curve; in many cases, these polygons do not have planar projections. In addition to

the concept of triangulation, there are also methods that construct quadrangulations

of the polygon by interpolating sketches with flow lines [5]. For triangulation of the 3D

polygon in [11], extracts of near-developable surfaces using convex hulls are presented.

A calculation of the optimal triangulation of a convex polygon can be constructed

on the basis of the block method for generating triangulations that have been ex-

posited in [14]. The presented/recommended method in this paper reflects on the

fact that the recorded values are used in order to find the optimal triangulation and

directly record the values of the vertices and their weights.

Another approach of convex polygon triangulation is presented in [18, 21]. In

these papers, authors developed an algorithm for convex polygon triangulation that

uses previously constructed triangulations.

3. Minimum-weight triangulation method based on memoization

Dynamic programming is a technique that analyzes the solution of problems with

methods based on the principles of optimization. The optimal solution of a problem is

independent of the initial position and is obtained as a succession of optimal solutions

of subproblems. The variables that correspond to the system in dynamic programming

198 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

are determined consecutively. The method developed in this paper is based on the

principle storage of the best solution by memoization.

In solving the optimization problem with the dynamic programming technique,

the optimal substructure and overlapping property of the subproblems are two key

elements that are examined. Our method for finding and storing the optimal tri-

angulations of a convex polygon use this overlapping property of the subproblems.

The first step in solving an optimization problem by dynamic programming is to

characterize the structure of an optimal solution [7].

The idea for the construction of the method for obtaining the optimal triangula-

tion of a convex polygon with memoization starts from the possibility that gives Java

as a programming language in the implementation of the weight storage results that

are determined with the advanced application of packages in the work with table cells.

Memoization is a set of dynamic programming and recursion. The technique is in the

top-down direction, where all solutions are stored in the memory. This technique does

not solve the same problem many times; it uses the previously calculated solutions

to find the solution to the general problem. The dynamic matrix initially denoted

with 0.

The DefaultTableCellRendererJava package takes the main role in storing the

triangulation’s weight. This package enables the storage of multiple values within

a single table cell (which provide efficient cell division into multiple columns and

rows) [17]. The calculations of the constructed method are based on the principles of

dynamic programming techniques. Except for the possibility of the fast calculation

of optimal triangulations, the memoization technique provides an opportunity to save

memory space and time during the calculation of polygonal triangulations.

Let P = 〈v0, v1, . . . , vn−1〉 represent a convex polygon by listing its vertices in

counterclockwise order. Given two non-adjacent vertices vi and vj , δij is a diagonal

of the polygon. A triangulation of a polygon is a set T of the diagonals of the polygon

that divide the polygon into triangles with nonintersecting diagonals. In the optimal

polygon triangulation problem, weight function w is defined on the triangles formed

by the edges and diagonals of P . The problem is to find a triangulation with a minimal

sum of the weights of the triangles in the decomposition of a convex polygon. Weight

w of triangle vivjvk is calculated as follows:

w(i, j, k) = |vivj |+ |vjvk|+ |vkvi| (1)

where |vivj | is the length of the edge with vertices vi and vj of the triangle.

We have developed a method that uses a correspondence between polygon trian-

gulation, Catalan numbers, and balanced parenthesis. The edges of a convex polygon

with n vertices are denoted as matrices Ai, i = 1, 2, . . . , n − 1. The balanced

parenthesized product of n − 1 matrices correspond to a polygon with n vertices.

Each matrix Ai from this product corresponds to edge vivi+1 of the polygon, and

diagonal δij , (i < j) corresponds to matrix Ai+1,...,j that is obtained during the ma-

trix product calculation. From the fact that the matrix chain is a special case of the

Memoization method for storing minimum-weight triangulation of convex polygon 199

optimal triangulation problem for matrix product A1A2 · · ·An, we consider the tri-

angulation of a convex polygon with (n+ 1) vertices. For matrix Ai with dimension

pi−1 × pi, the weight function of the triangulation is w (i, j, k) = pipjpk.

By replacing matrix dimensions p0, p1, . . . , pn in the matrix chain with ver-

tices v0, v1, . . . , vn of a convex polygon, we have the following weight function of

triangulation:

w = m [i, k] + m [k + 1, j] + w (i, j, k) | (2)

The weight of the optimal triangulation is the sum of the weights of sub-polygons

〈v0, v1, . . . , vk〉 and 〈vk, vk+1, . . . , vn〉 and triangle 4v0vkvn in the triangulation (see

Figure 1).

Figure 1. Optimal triangulation of convex octagon with associated weights

Similar to the computation of minimum cost m [i, j] in the matrix chain, for

1 ≤ i < j ≤ n, w [i, j] is defined to be the weight of the optimal triangulation of

sub-polygon vi−1, vi, . . . , vj , and the optimal triangulation of the polygon is w [1, n].

Then, the optimal triangulation has the following recursive formulation:

w [i, j] =


0 if i = j

min
i≤k<j

w [i, k] + w [k + 1, j] + w (i, j, k) if i < j
(3)

The method for storing triangulation weights is based on a table with (n × n)

dimension (i = j = n), where i represents a row, j represents a column, and n is

the number of vertices of the polygon. Table (n× n) is used for the calculation of the

weights of the triangles in the triangulation. The table is divided diagonally into two

parts. The diagonal divides (i = j) the table into left and right parts. The left side

of the table is filled with the edges of the triangles whose lengths are represent by

matrices A1, A2, . . . , An−1 in the triangulation. The elements in the diagonal of the

200 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

table represent the vertices of the polygon and are filled with zero because they have

no weights. From the correspondence between the n balanced parenthesized product

and the (n+ 1)-vertex polygon, the elements of the n−th column of the table were

not needed in the matrix chain calculation and are filled with X.

For k = 1, we have the polygon edge that is determined by adjacent vertices v1
and v2 (see Figure 2). Similarly, for k = 2, 3, . . . , n−1, we get the others edges of the

polygon that are determined from adjacent vertices vi and vj for i = 2, 3, . . . , n− 1

and j = i+ 1.

Figure 2. General scheme of labeling of cells in table

By increasing the number of rows in the table, we obtain the edges of the triangles

that are the elements of triangulation; i.e., the edges that are obtained from the non-

adjacent vertices of the polygon. For example, for k = 1, 2, we have the weight

of the edge between vertices v1 and v3, k = 2, 3, the weight of the edge between

vertices v2 and v4, and so on. Similarly, in the end for k = 1, 2, . . . , n− 1, we obtain

the weight of the edge between vertices v1 and vn, which represents the total weight

of the triangulation.

Below, we present a 5×5 table for pentagon triangulation according to the filling

general scheme given in Figure 2.

We present Algorithm 3.1 for finding and storing the optimal triangulation. At

the beginning, the algorithm expects the number of rows and columns of table n that

Memoization method for storing minimum-weight triangulation of convex polygon 201

correspond to the n−vertex polygon. All vertices of the polygon match the diagonal

elements of the table.

The n−th column of the table consists of those elements that do not have a role

in the calculation of the weights in the triangulation process; due to this, they are

labeled with X, which has the meaning of a cell that does not have a weight.

Algorithm 3.1 Storing of optimal triangulation with memoization

Require: n, Table (n × n).

1: Create a new (n× n) Table for (i = 1; i ≤ n; i+ +)

Label the field (i, j) = 0, where is i = j and (i, j) = adj, where is j − i = 1

2: Filling the other fields for (i = 1; i ≤ n; i + +) for (j = 2; j ≤ n; j + +) j =

i + 1

3: Calculate the Matrix Chain Product for elements of Table

if (w[i, j] <∞) return w [i, j]

if (i == j) then w [i, j] = 0 else k = i;

Opt w = w [i, k] + w [k + 1, j] + w (i, j, k)

for (k = i+ 1; k < j; k + +)

if (Opt w < w [i, j]) then Optw = w [i, j]

return w [i, j]

Based on correspondence P (n + 1) = Cn for pentagon (n = 5), we obtain five

different triangulations. The edges of the pentagon are labeled with matrices Ai, i =

1, 2, . . . , 4. The matrices with an even number of indexes have a dimension of 5× 1,

and the matrices with an odd number of indexes have a dimension of 1 × 5. This

example shows the recursion tree of the memorized matrix chain for the pentagon.

The proposed algorithm has three steps:

1. We form table i × j and fill the cells along the diagonal with 0 where (i = j).

Then, we fill the edges of the polygon at position (i, j) , i = 2, 3, . . . , n and

j = 1, 2, . . . , n−1. They are the adjacent vertices of a polygon that can be used

to form a (i, j, k) triangle in the triangulation process. Their weights are filled

in the cells of the table where (i, j) , i = 1, 2, . . . , n − 1, j = i + 1; this means

that there is no value k for them between (i, j).

2. We calculate all triangulation weights w[i, j] based on memoization, bearing in

mind that the calculations do not calculate multiple times the same weight for

the rows and columns of the table where j–i > 1 and i = 2, 3, . . . , n − 1.

According to Eq. 3, we will go to the next step. To the assigned k values in

position (i, j), we add their correspondent weights on position (j, i).

3. In cell 1× (n−1) of the table, we obtain the weight of the optimal triangulation.

There is a (5 × 5) table for all five triangulations containing the optimal trian-

gulation that corresponds to the minimum weight in the triangulation process of the

pentagon (see Table 1). The table for the pentagon is given in the following example

according to the labeling of the general scheme from Figure 2.

202 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

We describe the acquisition of the optimal triangulation for the irregular convex

pentagon with the following steps:

• Step 1: In this step, the 5× 5 table is formed, the cells in the diagonal are filled

with zeroes, and the cells below the diagonal on the left side are represented by

the adjacent vertices (that is, the vertices of the polygon). Thereafter, the values

for all (i, j, k) triangles are set up. The values in parentheses represent the

number of vertices that are part of the triangulation; for example, 2 is between

Vertices 1 and 3 and is in cell (3, 1) of the table. After these steps, the table

takes the following form.

Table 1
Optimal triangulation table of pentagon

0 25 10 35 X

(2,1) 0 5 10 X

2 (3,2) 0 25 X

2,3 3 (4,3) 0 X

2,3,4 3,4 4 (5,4) 0

• Step 2: We find the weights of the triangles that are part of the triangulation

procedure for the C3 rows that are given in the 5 × 5 table. The table for the

generated triangulations is created on the basis of Algorithm 3.1. The sums of

all of the triangle weights are saved in the button-up technique in memoization

(see Figure 3). Below, the table (Tab. 2) of weights is given that correspond to

the diagonals in the possible triangulation of the pentagon (see Figure 4).

Table 2
Extended table for triangulation of pentagon

Triangulations Diagonals in triangulation Optimal triangulation

1 δ13, δ35 71

2 δ14, δ24 61

3 δ24, δ25 35

4 δ25, δ35 51

5 δ14, δ13 76

• Step 3: In this step, Opt w is calculated according to the following condition:

Opt w < w [i, j] (4)

where is 1 ≤ i ≤ 5. Based on Equation 4, optimal triangulation Optw = 35 is

obtained.

Memoization method for storing minimum-weight triangulation of convex polygon 203

Figure 3. Recursion tree of memorized matrix chain of pentagon

Figure 4. Triangulation of pentagon

After finding the optimal triangulation from the generated 5 × 5 table, drawing

the same triangulation of the pentagon based on non-crossing diagonals δij that corre-

spond to the upper portion of the cells in the table; i.e., pair (i, j): Optw = {δ14, δ24}
(see Table 2).

204 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

4. Comparative analysis

For the purpose of analysis, we present the Hurtado–Noy algorithm for generating

the polygon triangulation based on the predecessor’s results of triangulation; that is,

triangulation Pn is obtained from Pn−1. This algorithm defines the triangulation tree

of in the procedure of the n−vertex polygon triangulation. All of the Tn triangulations

are arranged at level n of the tree and are used for calculating the weights in the

process of storage. Each triangulation at level n has a “father” in Tn−1 and two or

more “sons” in Tn+1. The sons of the same father are “brothers”. There is an order

among the children of a triangulation and, consequently, among all triangulations [11].

From the Hurtado-Noy algorithm, it follows that each triangulation at level n − 1

is needed to perform 2n − 5 checks to find the diagonals that can be drawn from

vertex n − 1. From this starting point for all possible triangulations, we see that

(2n− 5)Cn−3 is the number of checkings that can be taken. Further, we must go

through the diagonals and copy some without transforming them, while some of them

should be transformed, and two new diagonals should be inserted for each incident

diagonal that has been found. In such a way, we make 2n− 3 pairs that describe one

new triangulation.

The total number of incident diagonals is equal to Cn−2. All together, in the case

of the Hurtado–Noy algorithm, the following number of weight calculations are given

with Equation 5:

HNw = (2n − 5)Cn−3 + (2n − 3)Cn−2 (5)

The developed method of storing weights in this paper is compared with the

Hurtado-Noy method and square matrix method [11].

In order to get a better overview for the developed method, we first need to

analyze the calculations in the Hurtado-Noy and square matrix methods, which are

needed to find the weight of each triangulation of the polygon separately. In [17], the

square matrix method is presented for storing and finding the optimal triangulations

of the polygon. In the square matrix method, the values of number k that are in the

square matrix are determined in the beginning. According to the general scheme of

this method in the filling of the matrix elements, number k increases as it goes further

from the diagonal. In the first row of the matrix that is constructed by this method,

there are no elements since they represent the so-called adjacent vertices; the second

has one element, the third has two, and so on. The last diagonal row contains (n−2)−
vertices since the difference between the first and last n−vertex is always two, as the

first and last vertices are always subtracted from the total [17]. The total number of

stored k−vertices in an n−vertex polygon is labeled with Vn, which is given with the

relationship in Equation 6.

Vn =

n−2∑
i=1

i (n− i− 1) (6)

Memoization method for storing minimum-weight triangulation of convex polygon 205

By using this relationship, the following results are obtained in this paper: V5 =10,

V6 = 20 and V7 = 35. The number of calculated weights in the triangulation process

is determined with SMw = Vn.

Our method as a procedure is developed on the basis of the generic dynamic

programming concepts that use the iteration technique through all subproblems in the

calculation of the optimal triangulation. The iteration starts from the “smallest” and

continues to the “biggest” subproblems. By using the previously computed optimal

values of the smaller problems for each subproblem, the optimal value is found. The

choices of recording the calculations of the weights allows us to obtain the optimal

triangulation weight. At the case of pentagon triangulation, we have the value 35 as

the optimal solution of the optimal triangulation problem. The calculations are made

according to the relationship given in Equation 3. From requirement 1 ≤ j ≤ i ≤ n in

relationship w [i, i+ 1] = w [i, i] + w [i+ 1, i+ 1] + pi−1pipi+1, we have w[i, i] = 0

and w [i, i+ 1] = pi−1pipi+1 for i = j. These values are the weights of the vertices and

edges of the pentagon. The other calculations are made in the following order:

• Step 1. w [1, 2] = p0p1p2 = 5 · 1 · 5 = 25, k = 1

w [2, 3] = p1p2p3 = 1 · 5 · 1 = 5, k = 2

w [3, 4] = p0p1p2 = 5 · 1 · 5 = 25, k = 3

• Step 2. w [1, 3] = w [1, 1] + w [2, 3] + p0p1p3 = 0 + 5 + 5 · 1 · 1 = 10, k = 1

w [1, 3] = w [1, 2] + w [3, 3] + p0p2p3 = 25 + 0 + 5 · 5 · 1 = 50, k = 2

• Step 3. w [2, 4] = w [2, 2] + w [3, 4] + p1p2p4 = 0 + 25 + 1 · 5 · 5 = 50, k = 2

w [2, 4] = w [2, 3] + w [4, 4] + p1p3p4 = 5 + 0 + 1 · 1 · 5 = 10, k = 3

• Step 4. w [1, 4] = w [1, 1] + w [2, 4] + p0p1p4 = 0 + 10 + 5 · 1 · 5 = 35, k = 1

w [1, 4] = w [1, 2] + w [3, 4] + p0p2p4 = 25 + 25 + 5 · 5 · 5 = 175, k = 2

w [1, 4] = w [1, 3] + w [4, 4] + p0p3p4 = 10 + 0 + 5 · 1 · 5 = 35, k = 3

In the triangulation of the pentagon, there are ten diagonals with repetition;

from these, only six are used in the calculation of the optimal triangulation with the

memorization algorithm. Our method use memoized matrix chain product [7]; due to

this, the rows in Steps 2 (k = 2), 3 (k = 2), and 4 (k = 2 and k = 3) are skipped. Our

algorithm obtains the optimal triangulation from the upper portion of table n×n. We

notice that we have n− 2 calculations in the first row of the table, n− 3 calculations

in the second, and n− (n− 1) calculations in the n− 1th. From here in the optimal

triangulation of the n vertex polygon for the total number of saved calculations, we

have

MM = n−2+n−3+ ...n− (n−1) = n−2+n−3+ ...+2+1 =
(n− 2) (n− 1)

2
(7)

different savings. In Table 3, a comparative analysis of our method with the square

matrix and Hurtado–Noy methods is given according to Equation 7.

206 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

Table 3
Comparative analysis: numbers of operations

n-gon HN SM MM S(HN, MM) S(SM,MM) R(SM,MM)

7 45 35 15 30 20 2.33

8 161 56 21 140 35 2.67

9 588 84 28 560 56 3.00

10 2178 120 36 2142 84 3.33

11 8151 165 45 8106 120 3.67

12 30745 220 55 30690 165 4.00

13 116688 286 66 116622 220 4.33

14 445094 364 78 445016 286 4.67

Legends: HN(Hurtado–Noy method), SM (square matrix method), MM (memoization method),

S (savings), R (ratio, speedup).

5. Experimental results

In our method, the optimal triangulation determination process is based on access/in-

put to weight storing on filling the upper part of the table with subproblem solutions.

While using the memoization technique in the table, the solutions of the subproblem

are filled only once; the same results are not calculated several times. Each cell in

the table has its own entry that shows that the weight of a particular triangle in the

triangulation process is calculated the first time and then stored in the upper part of

the table.

Each subsequent time when the weight of a triangle that is part of the triangula-

tion is required, it is first checked whether this value is stored in any cell of the table.

If this value is previously stored in the table, it is not calculated again but is used. If

it is not stored, this value is computed for the first time and stored in the adjacent

cell in the table.

In the upper part of the table constructed with our method are all values of

w[i, j] that represent the solutions of the optimal triangulation problem of the convex

polygon. Each cell in the table is initially assigned with infinity, which indicates that

the input has yet to be filled in that cell of the table. In the calculation of Optw, if

w[i, j] < ∞, then we return to the previous w[i, j]; else, calculate w[i, j] and store it

in field (i, j) of the table and return. In determining the value of Optw the return

w[i, j] is calculated only if it first appears where the Optw is called with parameters

i and j.

Table 4 presents the testing results for n = {5, 6, ..., 14} and shows the calculation

time for two methods: 1) the MWT method, which is based on the square matrix,

and 2) the MWT method, which is based on memoization (A – Filling time of the

matrix without the graphical generation of the minimum triangulation, and B – total

execution time; i.e., Finding optimal triangulation with plotting, Ratio (R) for cases

A and B) (see Figures 5, 6, 7).

Memoization method for storing minimum-weight triangulation of convex polygon 207

The main class OptimalTriangulation was developed in the Java NetBeans envi-

ronment. This main class has the method computed that is responsible for calculating

all of the weights in the table. The DefaultTableCellRenderer from the Swing pack-

age was used in working with the table cells. This class inherits the table class and

allows manipulation over the table cells (in this case, it allows us to assign a series

of independent values to one cell of the table). In addition to this class, JTable,

TableCellRenderer, and BasicTableUI from the Swing package were also used. The

obtained values can be recorded in the form of the table in the execution of the

Java NetBeans application in the service of working with databases.

Table 4
Comparative analysis (in seconds): MWT square matrix (MwtS) vs. MWT memoization

(MwtM)

n-gon T MwtS(A) MwtS(B) MwtM(A) MwtM(B) R(A) R(B)

5 5 0.01 1.7 0.01 0.8 1.00 2.13

6 14 0.03 2.4 0.02 1.4 1.50 1.71

7 42 0.09 2.8 0.05 2.1 1.80 1.33

8 132 0.12 3.7 0.09 3.0 1.33 1.23

9 429 0.19 5.2 0.10 4.7 1.90 1.11

10 1430 0.27 14.8 0.13 13.3 2.08 1.11

11 4862 0.41 27.4 0.19 24.9 2.16 1.10

12 16796 0.62 48.7 0.31 44.1 2.00 1.10

13 58786 1.04 64.6 0.63 59.3 1.65 1.09

14 208012 1.59 85.5 1.04 78.5 1.53 1.09

Figure 5. Matrix completion time

208 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

Figure 6. Total execution time

Figure 7. Ratio (speedup): MWT square vs MWT memoization (A – Filling time of matrix

without graphical generation; B – total execution time)

In this case for testing the module of the "NetBeans" environment, the profiler for

CPU testing was used. The testing was performed over a computer analysis with the

following performance: CPU – Intel Core2 Duo, 2.40GHz, Cache 4MB, RAM: 2Gb,

Graphics: NVIDIA GeForce 8600M GS.

The significance of this method of storage reflects the fact that the obtained

values from the above method can effectively provide the drawing of the least weighted

triangulation, provided that there is a method that will ensure the generation of all of

the triangulations. In addition to the speed of searching for and plotting the optimal

triangulation, it is important to emphasize that this saves memory.

Memoization method for storing minimum-weight triangulation of convex polygon 209

6. Conclusion and further works

This paper describes an algorithm that finds the optimal triangulation of a convex

polygon based on the dynamic programming technique. As a part of dynamic pro-

gramming, memoization is the technique used in the algorithm. As an approach,

memoization is very effective and suitable for solving certain types of complex prob-

lems. The basic idea in the method developed in this research is to avoid multiple

calculations of the same value by using additional space in which the values are stored

among the results.

The constructed algorithm is formulated using the rows and columns of an n×n
table. The algorithm finds the optimal triangulation on the principle of row/column

pairings on different sides of a table diagonal. An optimization task is achieved via the

memoization technique that corresponds to the values found in the upper and lower

parts of the table. The complete cell fill strategy in the table is developed based on the

calculation of the weights of the triangles that are parts of the polygon triangulation.

The filling is done by finding the mutual matching of the values between the cell

tables found on different sides of the diagonal.

The presented algorithm provides a good basis for expanding this technique in the

case of concave polygons and polyhedrons. The optimal triangulation process of a con-

cave polygon would begin by clipping off the ears, which would end up with another

closed polygon that would itself possess two ears to clip off. This procedure would be

repeated until no more ears are left to clip off. The ear-clipping strategy would be de-

veloped using the memoization technique. By choosing an interior point and drawing

the edges to the three vertices of the triangle that contains this point, our algorithm

can be developed in the case of 3D shapes. The algorithms would be ended when all

of the interior points of the polyhedron are finished.

References

[1] Attene M., Campen M., Kobbelt L.: Polygon Mesh Repairing: An Application

Perspective, ACM Computing Surveys, vol. 45, pp. 1–33, 2013.

[2] Barequet G., Dickerson M., Eppstein D.: On triangulating three-dimensional

polygons. In: Proceedings of the twelfth annual symposium on Computational ge-

ometry, SCG‘96, ACM, pp. 38–47, 1996.

[3] Barequet G., Sharir M.: Filling gaps in the boundary of a polyhedron, Computer

Aided Geometry Design, vol.12, pp. 207–229, 1995.

[4] Batty C., Xenos S., Houston B.: Tetrahedral Embedded Boundary Methods for

Accurate and Flexible Adaptive Fluids, Computer Graphics Forum (Eurograph-

ics), vol. 29, pp. 695–704, 2010.

[5] Bessmeltsev M., Wang C., Sheffer A., Singh K.: Design-Driven Quadrangula-

tion of Closed 3d Curves, VACM Transactions on Graphics, SigGraph Asia,

vol. 31(5), 2012.

210 Aybeyan Selimi, Samedin Krrabaj, Muzafer Saračević, Selver Pepić

[6] Chazelle B.: Triangulating a Simple Polygon in Linear Time, Discrete Computa-

tional Geometry, vol. 6, pp. 485–524, 1991.

[7] Cormen T.H., Leiserson C.E., Rivest R.L., Clifford S.: Introduction to Algorithms,

Third Edition, MIT Press, 2009.

[8] Gilbert P.D.: New results in planar triangulations, Technical report, Urbana,

Illinois: Coordinated Science Laboratory, University of Illinois, 1979.

[9] de Goes F., Breeden K., Ostromoukhov V., Desbrun M.: Blue Noise Through

Optimal Transport, ACM Transactions on Graphics, vol. 31(6), pp. 1–11, 2012.

[10] Jin M., Kim J., Luo F., Gu X.: Discrete surface ricci flow, IEEE Transactions

on Visualization and Computer Graphics, vol. 14(5), pp. 1030–1043, 2008.

[11] Kenneth R., Sheffer A., Wither J., Cani M.P., Thibert B.: Developable Surfaces

from Arbitrary Sketched Boundaries, Proceedings of Eurographics Symposium on

Geometry Process, 2007.

[12] Klincsek G.T.: Minimal Triangulations of Polygonal Domains, Combinatorics 79,

Annals of Discrete Mathematics, vol. 9, Elsevier, 1980.

[13] Liu L., Bajaj C., Deasy J., Low D.A., Ju T.: Surface Reconstruction

from Non-Parallel Curve Networks, Computer Graphics Forum, vol. 27(2),

pp. 155–163, 2008.

[14] Mašović S., Saračević M.: Finding optimal triangulation based on block method,

Southeast Europe Journal of Soft Computing, vol. 3(2), pp. 14–18, 2014.

[15] Mercat C.: Discrete Riemann surfaces and the Ising model, Communications in

Mathematical Physics, vol. 218, pp. 177–216, 2001.

[16] Roth G., Wibowoo E.: An Efficient Volumetric Method for Building Closed

Triangular Meshes from 3-D Image and Point Data. In: Proceedings of the

Conference on Graphics Interface’97, Canadian Information Processing Society,

pp. 173–180, 1997.

[17] Saračević M., Mašović S., Stanimirović P., Krtolica P.: Method for finding and

storing optimal triangulations based on square matrix, Applied Sciences Elec-

tronic Journal, vol. 20, pp. 167–180, 2018.

[18] Saračević M., Selimi A.: Convex polygon triangulation based on planted trivalent

binary tree and ballot problem, Turkish Journal of Electrical Engineering and

Computer Sciences, vol. 27(1), pp. 346–361, 2019.

[19] Seidel R.: A simple and fast incremental randomized algorithm for computing

trapezoidal decompositions and for triangulating polygons, Computational Ge-

ometry, vol. 1, pp. 51–64, 1991.

[20] Selimi A., Saračević M.: Computational geometry applications, Southeast Europe

Journal of Soft Computing, vol. 7(2), pp. 8–15, 2018.

[21] Stanimirović P.S., Krtolica P.V., Saračević M.H., Mašović S.H.: Block Method

for Convex Polygon Triangulation, Romanian Journal of Information Science and

Technology, vol. 15(4), pp. 344–354, 2012.

Memoization method for storing minimum-weight triangulation of convex polygon 211

Affiliations

Aybeyan Selimi
International Vision University, Faculty of Informatics, Gostivar, aybeyan@vizyon.edu.mk,
ORCID ID: https://orcid.org/0000-0001-8285-2175

Samedin Krrabaj
University of Prizren, Faculty of Computer Science, samedin.krrabaj@uni-prizren.com

Muzafer Saračević
University of Novi Pazar, Department of Computer Science, muzafers@uninp.edu.rs,
ORCID ID: https://orcid.org/0000-0003-2577-7927

Selver Pepić
Educons University, Department of Computer Science, Novi Sad, selverp@gmail.com

Received: 02.03.2019

Revised: 26.04.2019

Accepted: 26.04.2019

https://orcid.org/0000-0001-8285-2175
https://orcid.org/0000-0003-2577-7927

	Introduction
	Related works
	Minimum-weight triangulation method based on memoization
	Comparative analysis
	Experimental results
	Conclusion and further works

