
Computer Science • 20(2) 2019 https://doi.org/10.7494/csci.2019.20.2.3188

Marek Retinger

A CLIENT-BASED ENCRYPTION MODEL
FOR SECURE DATA STORING
IN PUBLICLY AVAILABLE
STORAGE SYSTEMS

Abstract This document presents a conceptual model of a system for protecting the
data stored in publicly available data storage systems. The main idea was to
apply encryption on both the client and server sides that would consequently
have a significant impact on data security. The compatibility with existing
systems allows us to deploy the solution fast and at a low cost. The tests
conducted on a simplified implementation have confirmed the solution’s validity,
and they have shown some possible performance issues as compared to the
classical system (which can be easily bypassed).

Keywords data storage, data protection, encryption, security

Citation Computer Science 20(2) 2019: 179–194

179

https://doi.org/10.7494/csci.2019.20.2.3188
https://orcid.org/0000-0003-3592-0942

180 Marek Retinger

1. Introduction

User privacy is one of the most popular topics these days. Most people do not want to
share more data than necessary. The rising popularity of free storage services causes
that more and more data is being stored in publicly available services. The huge
amount of data that is being processed implies a great number of mistakes made by
users (consciously or not) that may consequently lead to the disclosure of private and
sensitive data. It is important to remember that data shared on the Internet once
stays there forever.

Law [10] and users demand more sophisticated methods for secure data storage.
The expectations are more and more restrictive, which can lead to many problems.
Nowadays, one general solution does not exist.

The main goal of the research was to check the design and implementation pos-
sibilities of a system that could be used with existing solutions on the market that is
cross-platform and ultimately increases ordinary users’ data security. What is more,
the data protection model should not allow us to process data on the server side or to
obtain raw data even if the server’s cryptographic key is stolen. The secondary goal
was to define the system in such a way that it could work efficiently even on hardware
with average performance. This causes the solution to become more useful, and its
group of recipients increases.

The system described in the document discusses the case when the user stores
the data by himself and any additional processing on the server side is not required.
In real life, it could be useful for solutions where:
• no interaction between users occurs,
• no data sharing exists,
• no user data processing is required,
• problems between stored data and law may occur.
The proposed system application area is much wider. It can also be combined

with existing software as an “extension” and can manage only some part of the stored
data. In the future, new projects can be designed as described in the article in order
to take full advantages of the solution.

2. Related work
The concept of partial or full database encryption is nothing new. In the past, many
documents have been presented; however, no paper exists that describes a system sim-
ilar to the presented one that works on both the client and server sides simultaneously
without dedicated software on the user’s computer.

In the past, some database encryption models have been proposed [18]. They
mainly involve the protection of system tables, data transmission, and several strictly
specified parts of database system such as views, triggers, and stored procedures. The
idea is developed further. Today, each modern database management system includes
independent encryption on the database, table, or column level [2].

A client-based encryption model for secure data storing . . . 181

With the rapid growth of cloud service popularity, researchers decided to fill the
gap by introducing the concept of client-side encryption [4,17] based on homomorphic
encryption, modern cryptographical algorithms, and third “well-trusted parties”. The
problem is the different performance on the client side; each user has their own hard-
ware configuration and uses preferred software, which could cause performance issues.
For the reason, a slightly different idea was shown in [12]. The researchers decided to
introduce “encryption as a service” built based on XaaS (everything as a service) and
a private cloud. This features many advantages, but it does not exhaust the topic of
data encryption in public networks.

A most similar system was presented in [7]. The researchers used JavaScript
scripts for client-side encryption and storing a ciphertext in an external database.
They also used an HTML 5 feature – Local Storage. No more similarities were found;
the differences are much more significant. In [7], a simple key-management system was
introduced. It uses a file-based key and requires storing the key’s hash in an external
database. What is more, the raw user’s password is not processed. It is necessary to
enter approx. 43 bytes (chosen ASCII characters) – as mentioned in text, this could
be very difficult to remember by ordinary users. The data-processing model is also
different; it does not use a local in-browser database but an “encrypted object” [7].
The server uses one or more tables; it does not encrypt the data for a second time
using the server’s key. The dissimilarities are also visible in the libraries, tools, and
environment that are used.

In all of the documents mentioned above, the approaches to security and data
management are different. This results in the fact that no detailed comparison can
be accurate.

3. Model overview

The proposed system is based on a client-side model of data processing; it has many
features of a classical client-server model. The solution is detailed shown in a compo-
nent diagram (Fig. 1) and activity diagram (Fig. 2).

Web Client
Cryptography

Library

AES

SHA-2
(256/512)

RNG

Client Server

Provider

Cryptography
Library

AES

SHA-2
(256/512)

RNG

TLS/SSL Provider

Web interface

SSL SSL

Web Server

Database Storage

Provider Provider

Provider

Figure 1. System’s component diagram. Client’s component does not contain local database
module, as one is not required. RNG is random number generator. Connection between

components can be done via any type of network

182 Marek Retinger

ServerClient

Connect to the server

User enters data for new
account

Open login form

User enters login and
password

Open main form

Establish connec�on

Validate

Account created

Invalid data or
account exists

Validate

Logged in

Invalid data

Read data from database

Decrypt data

Decrypt data Build database

Present the data

User modifies
the data Encrypt data

Prepare data

User logs out

Open registra�on form

Close connec�on

Encrypt data

Prepare template form

Write data to database

The data are
still encrypted
with user's key

Figure 2. System’s activity diagram. Entire single communication session was described
(including account registration process)

A client-based encryption model for secure data storing . . . 183

The server (within the meaning of a service or a device) provides any kind of
database engine and — if necessary — file storage. The database system is not
strictly specified. The data can be stored in an advanced system such as a Microsoft
SQL Server, simple SQLite library, or simply a structuralized file. All of the data is
encrypted using a symmetric server key and random initial vector. The required pieces
of data are a resource identifier, an initial vector, and the encrypted data. Importantly,
the data is encrypted twice — on the client and server sides independently. This
implies that compromising a server’s data (including the server’s secret key) should
not affect the security of the stored data.

The client does not need to meet any special requirements. It is necessary to use
an environment where basic cryptographical algorithms are available at a minimum,
which allows us to store data securely. An additional advantage is local database
support. The performance of the application depends on the chosen application type:
stand-alone implementations in a high-level programming language will be most effi-
cient at the expense of portability; a web page as a service will have the advantage in
availability, but the data processing will be much slower.

The communication between the server and client is partially encrypted. Partial
encryption means that the payload is protected but any additional information (for
instance headers) is not. A good practice is to additionally use the SSL/TLS (Secure
Socket Layer/Transport Layer Security) protocol [11], which encrypts all of the data
transmitted.

In general, the client operates on the local copy of a database. When the edition is
completed, thewhole database is packedas abyte array, encryptedusing theuser’s trans-
formed key, and sent to a server. The server encrypts the data again using the server’s
key and stores the cryptogram in the database. Reading the data by the user is identical
to above, but the process is done in reverse order. This is shown in Figure 3.

User Web browser HTTP server Database engine

[password]

[id]

SELECT ... WHERE ID = [id]

Es (Ec (data))

Ec (data)

Well-formed
readable data

Data decrypting/processing
Building database structure
Preparing webpage

Figure 3. Reading data by user. Definitions of variables (in squared brackets) were presented
in Section 3.1. E means symmetric cipher with client’s key (c) or with server’s key (s).

SSL/TLS encryption layer intentionally omitted in scheme

184 Marek Retinger

3.1. System basis

The system works in several phases, which are described in detail below. In each
phase, specific tasks must be performed, which requires that the proper order of an
execution must be kept.

3.1.1. Registration phase

The starting state in which the user creates an account on the server. Firstly, the user
provides basic information such as username and a strong (not trivial) password [3].
The client-side software builds a unique identifier id, which is sent to the server and
validated there.

id = SHAdl[login||KDFitk,kl(password)] (1)

As shown in Formula (1), the password is processed by a key derivation function
(KDF), where itk is the number of iterations and kl is the output length. The
concatenated login and KDF output are hashed by an SHA (Secure Hash Algorithm)
function of a digest length equal to dl.

The client receives the server’s response; if the id does not occur in the database1,
it obtains a raw local database structure. The structure is encrypted with a processed
password (ppassword) and initial vector (civ), which is defined as shown in Formulas
(2) and (3):

ppassword = KDFitk,kl(password) (2)

civ = KDFitiv,kl(password) (3)

The encrypted structure is sent back to the server, encrypted using server’s key, and
stored in the server-side database.

3.1.2. Login phase

After the account-registration phase is finished, the user is able to obtain access to
his account. He provides the username and password to the system. A client-side
application transforms both values into an identifier as shown in Formula (1) and
sends it to the server. What is important, the system is case-sensitive even for login;
it cannot be resolved in any other way due to the use of the cryptographical hash
function.

The server chooses the corresponding record in the database (if it exists) and
decrypts it using the server’s key. The server-side encryption is fully transparent for
the client application. The data is further transmitted to the client and processed
there.

1The id may exist in the database if the user uses the same login and password as somebody
else or if a collision occurred.

A client-based encryption model for secure data storing . . . 185

The client decrypts the data using its own cryptographical key and uses plain
text to create a local database structure that can be queried. Finally, a profile page
can be prepared.

3.1.3. Work phase

The final phase is the “work phase”. The user is able to use all of the features of
the system. Each modification (for instance, adding a new item) is saved in the local
database and has an impact on the visible content. Two possible approaches for saving
data on the server are as follows:
1. data is saved manually by user — on demand;
2. data is saved automatically when specified period of time is exceeded.

In both cases, the local database is packed as a byte array, encrypted, and sent to
the server, where the data is encrypted once more using the server’s key. The result
is stored in the database — the proper record is updated.

3.1.4. Lost password

Data recovery is impossible when a user forgets a password. One possible solution
is a backup created by the system each time when changes are made. After account
registration and initial profile configuration, the system must generate recovery keys
(as Google allows) and save them in the local database. The user should also print
or securely store them.

When the user logs out or a certain amount of time has elapsed, an n-copy2 of the
local database is sent to the server. If the main password is lost, the user has to login
using one of the recovery keys. The problem that remains on the server side is the
detection of inactive accounts. In the case where the user has recovered the data,
the “old” database entry with the unreachable and unnecessary data will still remain
on the server. The only way to omit the problem is to add an additional column in
the server’s database and to register the data access, which might not be accurate.

3.2. The implementation

The practical value of the proposed solution can be determined only when an im-
plementation exists. It allows us to conduct tests and measure the performance in
real-life cases. The implementation is based on the assumptions mentioned in Sec-
tion 3. Intentionally, only well-tested algorithms were chosen; this guarantees the
high performance and high security of the system.

For implementation purposes, a simplified version of the web service was built.
The main goal was to create a website where a single user can create a private profile
and store sensitive data for himself as text notes. The profile can be accessed by
simply using a modern web browser without any add-ons. The client type was chosen

2The number of the copy depends on user’s profile configuration.

186 Marek Retinger

intentionally — “in-browser” applications offer much worse performance than equiva-
lent solutions in any high-level programming language [19]. The “web page” was built
using technologies such as JavaScript, HTML 5, and CSS 3. The purpose of their use
is described below.

• JavaScript — the application core was written with the use of several external
libraries and built-in tools like WebCrypto [1] (provides cryptographical tools)
and TaffyDB (provides database support). Encryption, decryption, the execution
of queries, and the preparation of a user interface are done in JavaScript. The first
version of the client is based on the CryptoJS library; however, it was replaced
by a native web browser cryptographical tool due to its low performance.
• HTML 5 — the fifth version of HTML introduces local space management called
Web Storage [9]. The most important and useful part of it (in the case of im-
plementation) is Session Storage, which provides a protected memory area. The
protected area is accessible locally and only for the tab that saved the data. In
the client, it was used for storing a cryptographical key. HTML 5 was also used
for front-end purposes.
• CSS 3 — used only for front-end purposes.

On the server-side, a Microsoft SQL Server was deployed as a database engine,
and Python 3.5.2.3 was deployed as a run-time environment. The database stores one
table containing three varbinary-type columns as mentioned in Section 3. The main
implementation was written in the Python language using the Flask web framework.
Due to some problems with the database server connector, the newest version of the
ODBC (Open DataBase Connectivity) driver was used. The connection string was
changed accordingly. For the encryption purposes, the PyCrypto library was chosen.

The cryptographical tools that were used are the AES (Advanced Encryption
Standard) cipher working in CBC (Cipher Block Chaining) mode with a key length
of 128 bits, the SHA hash function with an output length of 512 bits, and the PBKDF2
(Password-Based Key Derivation Function 2) [8] key derivation function. The num-
bers of iterations were 100 for the user key and 150 for the user initial vector. The
output length for PBKDF2 was 128 bits.

4. Security and performance analysis

The system’s performance was tested on three different platforms. Due to the fact
that the results were strongly dependent on processor performance, the tests were
conducted on different hardware as shown in Table 1. The client-side software was
the same on each platform and is not mentioned in the table – Google Chrome 70
was chosen.

The “classes” were defined for testing purposes only. Modern high-end platforms
were omitted; these are relatively uncommon [16], and the performance results would
obviously be difficult to obtain by ordinary users.

A client-based encryption model for secure data storing . . . 187

Table 1
Specification of testing platforms

Class 1 Class 2 Class 3

Processor Intel Atom D525
Intel Core 2
Quad Q8300

Intel Xeon
E3-1240v3

Memory DDR3 / 4 GB DDR2 / 6 GB DDR3 / 8 GB

Storage
device

WD 250 GB
5400 RPM

Plextor M5 Pro
128 GB

Samsung PM841
128 GB

Operating
system

Microsoft
Windows 7 x64

Microsoft
Windows 7 x64

Microsoft
Windows 10 x64

4.1. Performance analysis

The performance tests were divided into two main categories. The first one aggregates
the tests in which the cryptography overhead was measured. The second category
contains a performance comparison between the local “on-demand” database and the
relational databases when specified queries are being executed. All of the tests were
performed using the same database structure, which is shown in Figure 4. The amount
of data stored in the database was 1 record in the profile table, 100 records in the
album table, and 1 MB, 5 MB, or 10 MB in the photo table. The way the data is stored
is described in Section 3. The local database structure is rebuilt after decrypting the
retrieved ciphertext.

The main difference between the dataset categories is the photo’s table size. The
first group has a photo table truncated to reach the expected size of the database
(1 MB, 5 MB, 10 MB). The second group uses only a 10-MB database.

Figure 4. Sample database structure

The system used for the tests is described in Section 3.2 (“a”). There were two
independent implementations written in the C# language, which used the SQLite
database (“b”) and Microsoft SQL Server 2012 (“c”).

188 Marek Retinger

4.1.1. Cryptography overhead test

It is well known that the encryption and decryption processes are time-consuming.
In the cryptography overhead tests, the system is compared to the implementations
that do not use any cryptography techniques. During the tests, the data was retrieved
from the main database and decrypted, and a local database was built. In all cases,
only one simple query was executed. The results are listed in Table 2.

Table 2
Time required to obtain result

Time [ms]
Class 1 Class 2 Class 3

a b c a b c a b c
Sample (1 MB) 291 230 280 210 129 205 126 54 125
Sample (5 MB) 1219 242 470 474 139 220 180 62 130
Sample (10 MB) 2634 247 531 1025 157 239 382 64 158

As expected, the execution of cryptographical algorithms is costly. The time
difference between the encrypted and raw data increases in step with the size of the
sample. In the cases of 1 MB and 5 MB, the required time is acceptable. Processing
10 MB takes a little more time; some workarounds could be applied as described in
further sections. On the other hand, 10,240 kB is a lot of data for simple data types
such as keys, notes, and calendars, which implies that this size should not be reached
during a normal use. Thus, the performance drops should not be noticeable for a long
period of time.

4.1.2. Performance test

The performance test scenario refers to a user who has a collection of photos. The
information about the resources is stored in the database. In a probable scenario,
the user will attempt to retrieve the gathered information about his resources. The
performance was measured in three cases:
1. execution of a query that returns a list of all of the user’s albums;
2. execution of a query that returns all photos from the album;
3. execution of a query that returns a number of photos in each of the user’s albums.

As shown in Table 3, the solution shows worse results in the real-life examples
than in the cryptography overhead test. This is caused by the client-side database,
which requires all of the user’s data to be stored in the server’s database. The database
library uses the JSON (JavaScript Object Notation) data format, which impacted
the processing speed and size of the stored data (additional metadata is required).
A lower system efficiency is mainly visible when a small amount of data is being
processed; otherwise, the differences will be less significant. The solution efficiency
can be improved by using the guidelines described in Section 4.2.

A client-based encryption model for secure data storing . . . 189

Table 3
Time required to obtain result

Time [ms]
Class 1 Class 2 Class 3

a b c a b c a b c
Case 1 (10 MB) 4582 468 683 1932 182 271 864 43 98
Case 2 (10 MB) 8443 1579 1119 2801 416 321 1115 190 105
Case 3 (10 MB) 9186 3706 1370 2955 995 715 1373 467 274

4.2. Performance issues

Processing large volumes of data is not very efficient. The issue can be easily resolved
in numerous ways:
• parallel encrypted and unencrypted databases,
• use of high-performance environments on the client-side,
• off-line work and on-demand synchronization,
• decomposition of a single database.
The last method is the most important solution. Decomposition of a single

“cryptogram-based” column into several columns or tables resolves the problem for
a long period of time. The decomposition forces minor changes. The data transmission
should be done in two steps:
1. client receives root column, decrypts it, and determines which part of the data

(from which columns) will be required; the request is sent to the server;
2. client receives the required columns, decrypts it, and executes the query.

In general, the performance is highly dependent on the chosen number of columns
and their sizes. What follows is an example scenario:
• the data is stored in one column; the size of the data is 10 MB;
• the data is stored in five columns (one root column and four data columns); the
size of the data stored in the root column is 20 kB, and the size of the data stored
in each of the data columns is 2.5 MB.

Table 4
Size of data to be processed depends on number of required columns.

Size
Root column only 0,02 MB
1 data column 2,52 MB
2 data columns 5,02 MB
3 data columns 7,52 MB
4 data columns 10,02 MB

As shown in Table 4, it is very important to create a proper structure of a local
database. In the case where only two columns are required, only half of the data is

190 Marek Retinger

transferred; as a consequence, this reduces the processing time. In the worst case,
it is required to download more data than in the single-column model; however, this
situation is unlikely. The most important factor is the proper analysis of a target
system and grouping the data by the frequency of use. This allows us to reach a high
performance at a reduced amount of transmitted data.

4.3. Security analysis

The system security is guaranteed by cryptographical algorithms, which are known
to be secure. The data on both the client and server sides are encrypted indepen-
dently. An attacker who comes into possession of the whole database has to first
find the server’s secret key, which should be stored in a protected memory area. Even
if the adversary finds or steals the key, he has to find the second (user’s) symmetric
key and corresponding initial vector for each entry in the database. As 128-bit-length
keys are used, a significant amount of key space must be searched. Another way is to
generate all combinations of the input phrases, which consist of lowercase and upper-
case letters, digits, and special characters. The combinatorial space is huge, and any
attack would not be efficient3.

As local database may be represented as a structuralized form (for instance,
JSON), and the first block of the cryptogram could be constant in some block cipher
modes of operation. This is an undesirable effect. For text data encoded as UTF-8
and encrypted by a cipher with a block length of 128 bits, the first 16 characters
will be considered, and these will impact the rest of the cryptogram. Two solutions
could be used:

1. a random number of characters is put into the first line of the structuralized
data; this requires the pre-processing of the data before the local database will
be built;

2. a random key and value are inserted as a first element in the structuralized data;
this does not require pre-processing, but several characters will first be known
due to the publicly known structure.

The above steps are performed before the encryption phase and could be important
in some implementations.

The analysis involves data transmission security. Communication between client
and server should be protected by any known security protocol. The SSL/TLS proto-
col is preferred as the most common solution. The example mentioned below considers
a scenario where the protocol cannot be used nor is it supported. The session cookie
could be captured using a technique known as cookie hijacking [15]. In the case of the
system, the cookie is not sufficient to obtain any user data. The attacker needs an
additional cryptographical key to read the data. In some cases, the attacker is able
to update the data (in the server side database) and corrupt the user’s main profile.

3The minimal password length is eight characters.

A client-based encryption model for secure data storing . . . 191

However, there are still n copies of the user’s main profile that can be restored using
the user’s recovery key(s).

The system was also briefly analyzed for well-known attack techniques such as
Clickjacking [14] and XSS (Cross-Site Scripting) [6] attacks. Both of these are related
to implementation vulnerabilities, which does not prove that the system’s basis is
incorrect. The first group of attacks involves scenarios when a user clicks on the
specified element on the web page but the behavior is different than expected. The
simplified situation could be when a user opens a link that leads to an infected website
that was sent by a trusted user. Clicking a button that should perform the intended
action on the website in fact removes the user’s account from the other website in
which he was logged. The attack specification and methods of defense were clearly
described in [13]. The second group — also called the JavaScript code injection
attack – is a client-side attack performed using server-side weaknesses. The adversary
locates vulnerable websites and infects them with a malicious script. When a user
opens the website, the script is executed, and unpredictable actions are performed.
The situation is very dangerous, because data such as cookies, passwords, or any
other confidential information can be stolen without the owner’s knowledge. A basic
example could be a scenario in which an attacker finds out that a form of a guest
book module on a website is unprotected and the entries are published immediately.
He prepares and injects a malicious script, which starts mining cryptocurrency in
the web browser of each visitor. When any user opens the website’s guest book, he
becomes an unconscious worker of the adversary for the time he spends visiting the
web page. In this case, no information is stolen, but the client’s hardware resources
are used without the website owner’s or user’s consent. Detailed information about
XSS can be found in [6].

The implementation is resistant to known attacks from the groups by the
following:

• using a special JavaScript code that disallows opening a website in a frame
(HTML iframe element),
• filtering all input data and taking the proper actions (e.g., replacing special char-
acters to its entities or removing HTML and JavaScript tags),
• setting a flag for session cookies as HttpOnly, which prevents them from being
read from JavaScript,
• using an HTML 5 feature called Session Storage, which cannot be read from any
other web browser tabs/windows than the primary one.

Users can also increase the level of the client-side security themselves by using
web browser add-ons that can block unwanted and unsafe elements of websites (mainly
scripts). Their names have intentionally not been mentioned here.

The performed tests confirm the system’s resistance to chosen attacks. A security
aspect summary is placed below.

192 Marek Retinger

4.3.1. Confidentiality

Confidentiality is ensured by a double-encryption process using a symmetric cipher
that is known to be secure. The operation is done independently on both the client
and server sides. The client uses his own key transformed by a derivation function to
the secured key. Based on the output, the initial vector (IV) is built. The IV value
is dependent on number of iterations (which is customizable by the user). The server
uses an internal key for all stored data. The server’s IV is different for each entry in
the server’s database and it is generated on demand. It means that even copies of
a user’s profile are not encrypted by the same IV.

4.3.2. Integrity

Integrity is ensured indirectly; there are no signed checksums. The data is encrypted
twice, which causes that any modification of the data requires the possession of both
keys (or only one if the attacker has taken full control of the server). Storing encrypted
data prevents data processing; it forces “blind” bit (byte) manipulation in order to
make any changes. Blind, because symmetric ciphers use a global diffusion block(s),
which destroys the correlation between the input and output data. This means that
any changes (without knowing a valid key) will be seen by the client as an error during
the decryption process.

4.3.3. Availability

Availability is ensured in two ways. The first way is an automatic backup system. The
user decides how many copies should be created; this number should not be less than
two. The solution is still insufficient if a server would be inaccessible. The second
solution is to use a platform in a cloud. The nature of cloud systems is to provide
a high level of availability by distributing the data.

5. Future work

The proposed system is not fully mature yet. The next step will be a further develop-
ment and becoming a part of a secure data storage system [5]. The main goals are to
identify and resolve most of the performance and security issues. This may increase
the popularity of client-based encryption.

6. Conclusion

The security of data (in particular, that which is stored in publicly available storage
systems) is very important. There is no system that guarantees full security, even if
a service provider states otherwise. A good solution is to protect the data personally;
an even better solution is when the system does it for us, providing built-in tools.

The presented model of data protection is one step further and can improve
a user’s data security. The system is fully transparent for ordinary users, which

A client-based encryption model for secure data storing . . . 193

allows us to deploy the solution regardless of one’s computer skills. The underlying
cryptography algorithms can be replaced in an easy way and can be adapted to current
standards. The compatibility with existing systems allows us to deploy the solution
fast and at a low cost.

The system performance is on an acceptable level; however, it could be improved
as described. As the tests have shown, the solution is usable even with older and
low-end devices. It could also be provided as a web application, which additionally
increases the value of the proposed system and the number of targeted users.

Acknowledgements

This work was supported by the 04/45/DSPB/0197 PUT grant.

References

[1] Cairns K., Halpin H., Steel G.: Security Analysis of the W3C Web Cryptography
API. In: Security Standardisation Research, pp. 112–140, Springer, 2016. https:
//doi.org/10.1007/978-3-319-49100-4_5.

[2] Cebollero M., Natarajan J., Coles M.: Pro T-SQL Programmer’s Guide, Apress,
2015. https://doi.org/10.1007/978-1-4842-0145-9.

[3] Dell’Amico M., Michiardi P., Roudier Y.: Password Strength: An Empirical
Analy-sis. In: 2010 Proceedings IEEE INFOCOM, IEEE, 2010. https://doi.or
g/10.1109/infcom.2010.5461951.

[4] Gaur T., Sharma D.: A Secure and Efficient Client-Side Encryption Scheme in
Cloud Computing, International Journal of Wireless and Microwave Technolo-
gies, vol. 6(1), pp. 23–33, 2016. https://doi.org/10.5815/ijwmt.2016.01.03.

[5] Grocholewska-Czuryło A., Retinger M.: Secure cloud services – extended crypto-
graphic model of data storage, Przegląd Elektrotechniczny, vol. 1(3), pp. 164–169,
2018. https://doi.org/10.15199/48.2018.03.33.

[6] Gupta S., Gupta B.B.: Cross-Site Scripting (XSS) attacks and defense mech-
anisms: classification and state-of-the-art. In: International Journal of Sys-
tem Assurance Engineering and Management, vol. 8(S1), pp. 512–530, 2015.
https://doi.org/10.1007/s13198-015-0376-0.

[7] Kaczmarczyk V., Bradáč Z., Fiedler P., Arm J.: Client side data encryp-
tion/decryption for web application. In: IFAC-PapersOnLine, vol. 49(25),
pp. 241–246, 2016. https://doi.org/10.1016/j.ifacol.2016.12.041.

[8] Kaliski B.: PKCS #5: Password-Based Cryptography Specification Version 2.0,
RFC 2898, 2000. https://doi.org/10.17487/RFC2898.

[9] Laine M.: Client-Side Storage in Web Applications, Aalto University, 2012.

https://doi.org/10.1007/978-3-319-49100-4_5
https://doi.org/10.1007/978-3-319-49100-4_5
https://doi.org/10.1007/978-1-4842-0145-9
https://doi.org/10.1109/infcom.2010.5461951
https://doi.org/10.1109/infcom.2010.5461951
https://doi.org/10.5815/ijwmt.2016.01.03
https://doi.org/10.15199/48.2018.03.33
https://doi.org/10.1007/s13198-015-0376-0
https://doi.org/10.1016/j.ifacol.2016.12.041
https://doi.org/10.17487/RFC2898

194 Marek Retinger

[10] Layton R.: How the GDPR Compares to Best Practices for Privacy, Account-
ability and Trust, SSRN Electronic Journal, 2017. http://dx.doi.org/10.21
39/ssrn.2944358.

[11] Lee H.K., Malkin T., Nahum E.: Cryptographic strength of SSL/TLS servers.
In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement
– IMC ’07, ACM Press, 2007. http://dx.doi.org/10.1145/1298306.1298318.

[12] Rahmani H., Sundararajan E., Ali Z.M., Zin A.M.: Encryption as a Service
(EaaS) as a Solution for Cryptography in Cloud, Procedia Technology, vol. 11,
pp. 1202–1210, 2013. http://dx.doi.org/10.1016/j.protcy.2013.12.314.

[13] Rydstedt G., Bursztein E., Boneh D., Jackson C.: Busting frame busting: a study
of clickjacking vulnerabilities on popular sites. In: In IEEE Oakland Web 2.0
Security and Privacy Workshop, p. 6. 2010.

[14] Sankara Narayanan A.: Clickjacking Vulnerability and Countermeasures, In-
ternational Journal of Applied Information Systems, vol. 4(7), pp. 7–10, 2012.
http://dx.doi.org/10.5120/ijais12-450793.

[15] Sivakorn S., Polakis I., Keromytis A.D.: The Cracked Cookie Jar: HTTP Cookie
Hijacking and the Exposure of Private Information. In: 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016. http://dx.doi.org/10.1109/sp.
2016.49.

[16] Software – Avast PC Trends Report (Q3 2017), 2017. https://press.avast.co
m/hubfs/media-materials/kits/PC-trends-report-Q3-2017/avast_q3_201
7_pc_trends_report.pdf.

[17] Souza S.M.P.C., Puttini R.S.: Client-side Encryption for Privacy-sensitive Ap-
plications on the Cloud, Procedia Computer Science, vol. 97, pp. 126–130, 2016.
http://dx.doi.org/10.1016/j.procs.2016.08.289.

[18] Stokłosa J., Bilski T., Pankowski T.: Bezpieczeństwo danych w systemach infor-
matycznych, Wydawnictwo Naukowe PWN, 2001.

[19] Zakas N.C.: High Performance JavaScript: Build Faster Web Application Inter-
faces. YAHOO PR, 2010. https://www.ebook.de/de/product/9283796/nich
olas_c_zakas_high_performance_javascript_build_faster_web_applica
tion_interfaces.html.

Affiliations

Marek Retinger
Poznan University of Technology, Institute of Control, Robotics and Information Engineering,
ul. Piotrowo 3a, 60-965 Poznan, Poland, marek.retinger@put.poznan.pl,
ORCID ID: https://orcid.org/0000-0003-3592-0942

Received: 26.02.2019
Revised: 15.05.2019
Accepted: 16.05.2019

http://dx.doi.org/10.2139/ssrn.2944358
http://dx.doi.org/10.2139/ssrn.2944358
http://dx.doi.org/10.1145/1298306.1298318
http://dx.doi.org/10.1016/j.protcy.2013.12.314
http://dx.doi.org/10.5120/ijais12-450793
http://dx.doi.org/10.1109/sp.2016.49
http://dx.doi.org/10.1109/sp.2016.49
https://press.avast.com/hubfs/media-materials/kits/PC-trends-report-Q3-2017/avast_q3_2017_pc_trends_report.pdf
https://press.avast.com/hubfs/media-materials/kits/PC-trends-report-Q3-2017/avast_q3_2017_pc_trends_report.pdf
https://press.avast.com/hubfs/media-materials/kits/PC-trends-report-Q3-2017/avast_q3_2017_pc_trends_report.pdf
http://dx.doi.org/10.1016/j.procs.2016.08.289
https://www.ebook.de/de/product/9283796/nicholas_c_zakas_high_performance_javascript_build_faster_web_application_interfaces.html
https://www.ebook.de/de/product/9283796/nicholas_c_zakas_high_performance_javascript_build_faster_web_application_interfaces.html
https://www.ebook.de/de/product/9283796/nicholas_c_zakas_high_performance_javascript_build_faster_web_application_interfaces.html
https://orcid.org/0000-0003-3592-0942

	Introduction
	Related work
	Model overview
	System basis
	Registration phase
	Login phase
	Work phase
	Lost password

	The implementation

	Security and performance analysis
	Performance analysis
	Cryptography overhead test
	Performance test

	Performance issues
	Security analysis
	Confidentiality
	Integrity
	Availability

	Future work
	Conclusion

