
Computer Science • 20(2) 2019 https://doi.org/10.7494/csci.2019.20.2.3185

Maciej Czekaj
Ernest Jamro

FLOW CACHING EFFECTIVENESS
IN PACKET FORWARDING APPLICATIONS

Abstract Routing algorithms are known to be potential bottlenecks for packet processing.

Network flow caching can function as a general acceleration technique for packet

processing workloads. The goal of this article is to evaluate the effectiveness

of packet flow caching techniques in high-speed networks. The area of focus

is the data distribution characteristics that lead to the effectiveness of caching

network flows (connections). Based on a statistical analysis and simulations,

the article sets the necessary conditions for the effective use of caches in packet

forwarding applications. Public domain network traces were examined and

measured for data locality. Software simulations show a strong correlation

between the flow packet distance metrics and the cache hit rate.

Keywords computer networks, caching, SDN

Citation Computer Science 20(2) 2019: 145–163

145

https://doi.org/10.7494/csci.2019.20.2.3185
https://orcid.org/0000-0003-4632-2470


146 Maciej Czekaj, Ernest Jamro

1. Introduction

Routing algorithms are known to be potential bottlenecks for packet processing if

the routing table is large [3]. The principle of network packet locality allows us to

accelerate the task of routing, which is based on pattern-matching the destination

subnet by a simple dictionary lookup. Moreover, if the packet processing pipeline

is longer (e.g., after routing, when there is a policing stage, QoS stage, etc.), then

caching can accommodate for all of the stages, effectively bypassing the whole packet

processing procedure with a simple hash table lookup. Of course, only a subset of

traffic can be accelerated by the cache, and the cache hit ratio should be high in order

to justify the effort.

Caching is a common technique for accelerating data access that is known to

work in various fields; e.g., CPUs, storage devices, Web serving, Content Delivery

Networks, etc. The main notion that explains the usefulness of caching is called the

locality principle. It is based on the observation that data placement on the Internet

is highly non-uniform and most likely follows a power law such as Zipf’s [1]. In other

words, the majority of the data is placed in relatively few locations, forming a good

opportunity for employing various types of caches in the traffic path.

In addition, the power law distribution function is described as self-similar or

scale-free, which suggests that the statistical processes behind the data pattern have

long-term memory [7]. This characteristic can be observed on various levels; e.g., from

web page popularity [1] through TCP connections [34] to IP traffic [9]. The scale-free

data phenomenon forms a natural limit to the effectiveness of caching [28], as some

fraction of the traffic is not going to be local.

This paper is specifically focused on packet forwarding applications such as

switches, routers, IP gateways, or software-defined network overlays. Translating the

general problem of caching to packet forwarding, the locality principle applies to

the packet arrival time or network address distribution. Given the current packet

arriving at the network interface, there is a high probability that many subsequent

packets are going to be from the same network flow. The traffic is bursty in nature [24],

and a single burst contains packets from relatively few flows.

Figure 1 presents the statistics from an HTTP traffic sample [23]. The x axis

presents a distance between packets from the same flow measured in the pack-

ets; e.g., x = 2 means the probability that the second packet is from the same

flow. On the y axis, there are two data series: a histogram (or sampled probabil-

ity mass function, PMF) of the flow packet distance, and the cumulative distribu-

tion function (CDF) computed from the given histogram. The histogram is well-

fitted to power law function f(x) = αx−λ. The network flow is defined as 5-tuple:

(IPsrc, IPdst, Portsrc, Portdst, protocol). Given this interpretation, the CDF chart

shows a c.a. 40% likelihood that the next packet is going to be from the same flow,

a 60% chance that at least one of the two packets meets the criteria, and as high as

80% that at least one of the five packets is from the same flow.



Flow caching effectiveness in packet forwarding applications 147

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

PMF[packet in flow] Power law regression CDF[Packet in flow]

distance btw packets in flow

P
ro

b
a

b
ili

ty

Figure 1. Network traffic histogram (PMF) fitted to αx−λ and its CDF

The definition of flow is application-dependent, but unique flow is typically de-

fined by a combination of addresses and ports taken from Layers 2 through 4 of the

OSI model (e.g., Ethernet, IP, TCP). As it turns out from further analysis, the specific

definition of the flow as either an IP flow (IP source and destination address), 5-tuple

(TCP or UDP connection), or any other does not affect the overall picture. Given the

most narrow definition of flow selected from the L2, L3, and L4 address fields, the same

traffic property holds. Choosing any definition that is less “constrained” (contains

fewer fields) can only improve the performance.

Caching as a means for speeding up packet processing is popular in both academia

and the developer community [31]. On the other side, flow caching is subject to strong

opposition due to its non-deterministic behavior and security issues [17]. Certainly,

it is not a panacea to all networking challenges. Therefore, it is greatly desired to

evaluate the risks and benefits associated with employing a cache as a front-end

to a forwarding application. This paper focuses on the potential benefits, but the

risks mentioned in [17] should be properly addressed for any real-world deployment.

While trying to improve the performance of a packet forwarding application,

a designer meets following dilemmas:

• How to tune the cache size if the deployment site is not known (or could be any

site for that matter)?

• How to assess cache effectiveness against potential data patterns that can be met

“in the field”?



148 Maciej Czekaj, Ernest Jamro

The main contribution of this paper is to develop a method for predicting

cache effectiveness against a given traffic profile and confirm it by simulation results.

The effectiveness becomes a function of cache size, but it also depends on traffic com-

plexity benchmarks. It builds upon the results obtained from previous publications

that only addressed this issue in fragments. The metrics introduced in the paper are

developed by contrasting several traffic data sources used in academic research and

running an independent set of simulations to confirm their predictive power.

1.1. Paper organization

This paper is organized as follows. Section 2 provides a tour of the scientific literature

on the subject of caching and its effectiveness. Both hardware and software solutions

are taken into account, as caching is not limited to software alone. Section 3 shows

the original measurements and statistics based on publicly available packet traces typ-

ically used for research purposes. Simulations of the cache performance are discussed

in Section 4. Finally, Section 5 gives a summary of the paper.

2. Related work

Caching as a way to improve the performance of a routing gateway has been known

for a few decades (as extensively discussed in [15]). This work identifies the key

ingredients of a successful approach to the problem: the measurement of inter-packet

arrival time for identically addressed packets and a time of last reference chart similar

to Figure 1. The paper gives promising simulation results: a fully-associative cache

with as few as 20 cache entries had an over 90% hit ratio. In the paper, the cache was

only indexed by an IPv4 destination address. Note that the total number of unique

addresses for the gateway in the 24h period was 1250, so cache capacity accounted

for merely 1.6% of all of the IPv4 addresses used in the network.

A deeper analysis of cache performance with a focus on cache replacement poli-

cies can be found in [20]. The cache is also indexed by a destination IP address, so

the results are expected to be comparable (except for differences in the data set).

The WAN traffic trace used in [20] appears to have a much worse data locality, which

results in cache sizes that approach 10,000 entries and more. Also, there are stark

differences between the performance of different cache replacement policies. There

are two main takeaway points from this paper. First and foremost, the data locality

may vary across different Internet links. The second point is that the Least Recently

Used (LRU) replacement policy can be suboptimal; it is worth seeking alternatives

when the experiments show low cache performance. This is somewhat in line with the

observations from the CPU data cache research, where LRU can cause so-called “per-

formance cliffs” (drastic hit rate reductions for working sets larger than the threshold

value) for data sets that slightly exceed the cache capacity [4].

An attempt to employ a cache in an Application Specific Integrated Circuit

(ASIC) designed for ethernet switching is discussed in [12]. The simulation results



Flow caching effectiveness in packet forwarding applications 149

for a campus LAN network and datacenter LAN show high data locality and a high

cache hit ratio (60–70%) – even for a simple 4-entry cache. This may be explained by

the fact that LAN traffic is less diverse than what can be found in WAN links. The

very nature of WAN links assumes thousands of connections originating from equally

as many hosts. This hypothesis will be explored further in the paper.

Another hardware approach discussed in [26] places a cache component onto

a packet processing FPGA board. The cache functions as an offload to the main

packet processing engine, which leads to either a reduction in the utilization of packet

processor or, conversely, an increase in the overall throughput of the system. The ex-

periments in [26] were carried out using WIDE project [38], backbone router traces.

The caching approach resulted in a 60–90% cache hit ratio for a 4K 4-way set as-

sociative cache with an LRU replacement policy. Unfortunately, cache size was not

a variable in that experiment, so it is difficult to assess the hit ratio as a function of

cache size.

As an emerging trend, SDN places a strain on both the CPU and networking

hardware. In [19], we see a hybrid approach for accelerating the SDN OpenFlow pro-

cessing by using a hardware cache combined with software switches. The hardware

cache module keeps track of the OpenFlow rules [22], which correspond more to an

IP subnet than to a single IP flow (as can be found in previously discussed publi-

cations). Nonetheless, an SDN controller can store tens of thousands of hierarchical

OpenFlow rules, which is beyond the capabilities of hardware switches. On the other

side, hardware switches use Ternary Content Addressable Memory (TCAM) to pro-

cess all of the rules in parallel, which makes it a constant time operation as opposed

to a multi-dimensional tree search [16].

The result of using a small TCAM cache in front of a large software-based Open-

Flow database gives very optimistic results. A 125-entry TCAM can serve 70–80% of

the traffic.

3. Measurements

3.1. Methodology

Among the freely available data sources, four popular representatives have been se-

lected:

• Lawrence Berkeley National Laboratory Enterprise Tracing Project

(LBNL) [21,27]. This is traffic collected from a single site’s internal net-

work.

• Naples University traffic traces [13, 14, 23]. This is WWW traffic from the uni-

versity’s Internet gateway.

• Waikato Internet Traffic Storage archives from WAND research group (WAND)

[11,39]. The traffic used in the paper comes from New Zealand’s ISP core router.

• MAWI Working Group Traffic Archive (MAWI) [8, 38]. This is the most recent

traffic coming from Japan’s ISP’s backbone link.



150 Maciej Czekaj, Ernest Jamro

The selection criteria for the traffic traces is their usage in other research so that

the results can be compared. Also, they represent a wide spectrum of traffic profiles,

which allows us to make general statements about network traffic.

For the sake of the measurements, the network flow is defined as a 5-tuple

(IPsrc, IPdst, Portsrc, Portdst, protocol) constructed from the inner IP header, which

is consistent with the NetFlow standard used by network infrastructure devices [10].

The same definition of flow is used by the network gateways [35] and SDN con-

trollers [5,6], so the conclusions from this paper are relevant to engineering problems

found in the data center network infrastructure. The definition of flow accounts for

both IPv6 and IPv4, and the port numbers are from the TCP and UDP connections.

In case there is no Layer 4, the respective fields are zeroed so all IP-only flows that do

not have a transport layer are merged. Using an inner IP header ensures that IP over-

lays such as VXLAN or MPLS/GRE are decapsulated. This is important, as most

SDN software is focused on processing inner flows. Obviously, IPSec tunnels cannot

be treated this way, but IPSec processing is typically done at the gateway or network

edge level; therefore, traces taken at the gateway should account for this traffic class.

0 100 200 300 400 500 600 700
nanoseconds

500B frame 64B 300B frame

Figure 2. Timing diagram of Ethernet frames in 10Gb/s link

Since this paper is primarily focused on packet forwarding and SDN applications,

it is important to select the measurement method that is most appropriate for this

field. In the case of a router, switch, firewall, or even a TCP/IP stack, the amount

of work is proportional to the number of packets, not the network bandwidth or

payload bytes. The latter is used in data processing workloads such as deep packet

inspection [29] or encrypted traffic such as IPSec [33], where the payload is subject

to intensive processing.

The reason for this distinction is based on the fact that packet forwarding only

inspects network headers, which can be considered to be a fixed size. A typical In-

ternet packet header can be as small as 42 bytes (UDP packet) or reach 100 bytes

or more in the case of tunnels or excessive IPv6 options. The payload that follows

is ignored (passed-through) by the network infrastructure and processed only at the

endpoints (except for encrypted tunnels). Ethernet is a serial medium, where trans-

mission time plays a major role. For instance, a 10Gb/s interface, such as XGMII,

transmits 32 bits of data in one cycle [18] and this cycle lasts 3.2 ns. Figure 2 shows

the timing diagram of the Ethernet frame being received by such a network interface.

For a 10Gb/s link, even the smallest frame takes 48 ns to transmit. Each frame is

preceded by a preamble (8B) and followed by an inter-frame gap (12B), so the trans-

mission time adds up to 67.2 ns. The typical maximum transmission unit (MTU)



Flow caching effectiveness in packet forwarding applications 151

of IP networks is 1500B (counted in the IP layer), so a frame is 1518B after adding

the Ethernet header and Frame Check Sequence (FCS). This amounts for a 1200-ns

transmission time for the MTU. Despite the difference in payload length and trans-

mission time, the smallest and the largest packets are considered to be an equal load

for the packet forwarding engine (hardware or software alike) since the forwarding

operation is only based on the limited-size header.

The statistical results presented below were produced by a custom traffic analysis

program suite created for the purpose of the publication. The traffic analysis part

used the PcapPlusPlus library [30], and the statistical processing (e.g., regressions)

was programmed in NumPy [25].

3.2. Results

Figure 3 represents the flow length breakdown measured in packets for all traces.

This is a cumulative distribution function (CDF), so point (x, y) on the chart means

that fraction y of all flows have a length of x or less; e.g., in a WAND packet trace,

c.a. 70% of all network flows have no more than four packets. The curved shapes

differ among traces in a significant manner. MAWI traces are notorious for extremely

short flows (more than 80%), but so do the others (except for the WWW traffic from

Naples).

1 4 16 64 256
Flow length in packets

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
a
ll 

fl
o
w

s

MAWI
WAND
LBNL
Naples

Figure 3. CDF of flow length in packets

Despite the fact that most of the flows are short, the bulk of the traffic remains in

longer flows (which is shown in Figure 4). For the same MAWI trace that is dominated

by short flows, they represent only a tiny fraction of the overall volume.



152 Maciej Czekaj, Ernest Jamro

Notably, 90% of all packets from MAWI belong to longer connections (more than

100 packets). This supports the locality principle, but only partially, since the flows

must also be localized in time.

100 101 102 103 104 105 106 107

Flow length in packets

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
vo

lu
m

e

MAWI
WAND
LBNL
Naples

Figure 4. CDF of flow length in packets weighted by traffic volume

The metrics that support the flow locality in time domain concentrate on the

duration of the flow as well as the number of simultaneous flows. The number of

active connections in one millisecond is shown in Figure 5.

25 26 27 28 29 210 211 212 213

Number of active flows

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
b
a
b
ili

ty

MAWI
WAND
LBNL
Naples

Figure 5. CDF of number of active flows in millisecond time frame



Flow caching effectiveness in packet forwarding applications 153

There is a clear split between the ISP traces (MAWI,WAND) and site-local traces

(LBNL, Naples), as the ISPs aggregate more connections. Despite this, the number of

simultaneous connections does not surpass 10,000 (even in the worst case – MAWI).

There are two issues with a flow activity estimator based on the time window. First,

a 1-ms time window is chosen arbitrarily just for comparison with [24]. It is worth

examining different window sizes in order to observe the trend in the data. Second,

a fixed time window may not be “fair” to all packet traces, as they represent different

link speeds; e.g., for a fast 10Gb/s link, a 1-ms time window is enough to transmit

833 MTU-sized packets, but a 1Gb/s link can transmit only 83 of them. Moving from

the time domain to the packet sequence domain makes it independent of link-speeds

and more in line with the network device processing model described in Section 3.1.

29 210 211 212 213 214 215 216 217

packet window size

0

2500

5000

7500

10000

12500

15000

17500

90
-th

 p
er

ce
nt

ile
 o

f a
ct

iv
e 

flo
ws

MAWI
WAND
LBNL
Naples

Figure 6. Number of active flows as function of packet window size. Data is fitted to power

law function αxλ

Figure 6 shows the number of active flows as a function of the packet window

size. This measurement was done in a sequence domain, and the active flow number is

a 90th percentile number from the active flow distribution of the given packet window.

Let us consider a window size of 216 and the number of active flows which is bigger

than 90% of the samples (i.e. y = 0.9 on a CDF chart). For that criteria the result for

a WAND trace is 10,573 flows and 6706 for Naples, respectively. The 90th percentile

rule was selected to avoid the need to display two-dimensional data, especially when

the data distribution in the second dimension is similar to that in Figure 5. The data

points are fitted to power law curve f(x) = αxλ with a high degree of similarity.



154 Maciej Czekaj, Ernest Jamro

This means that increasing the window size by multiplying its size by a constant

gives a proportional increase in the number of active flows; e.g.:

f(cx) = c′f(x) (1)

for some constants c and c′. Using the function from Figure 6 gives a more specific

result:

f(cx) = α(cx)λ = cλf(x) (2)

It is worth noting that the ranking of traces (i.e., those with bigger active flows

number) measured in a time-independent manner is different than the one computed

using the time window. This observation becomes useful when confronted with the

simulation results from Section 4.

10 2 10 1 100 101 102 103 104

Flow duration (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
vo

lu
m

e

MAWI
WAND
LBNL
Naples

Figure 7. Flow duration (s) as fraction of total volume (CDF)

Figure 7 represents a CDF plot of the flow duration in seconds weighted by the

volume of traffic in the packets. As an example, point (100, 0.3) (which is close to

Naples curve) means 30% of the traffic belongs to connections that last for one second

or less. This figure clearly shows that most of the traffic is localized in long-lasting

connections. The short flows do not contribute to the overall bandwidth, despite their

quantity (shown in Figure 3).

Both the time-domain and packet count statistics seem to be in line with the

locality principle, but this is not definite proof. It is always possible that both time

and volume are independent random variables. The last piece of the puzzle is to

show that the traffic is bursty in nature. The burstiness benchmark is postulated

by [15] as a flow distance distribution. It is examined in detail by [24] and [9],



Flow caching effectiveness in packet forwarding applications 155

although they only use a time-domain analysis. The flow distance statistics can be

obtained by computing the cumulative distribution function of the distance between

packets from the same flow. It is important to measure the distance in units, which

represent a packet ordering that is independent of time. This time-less view is the

best approximation of the way traffic is processed by the network infrastructure.

100 101 102 103 104 105 106

Distance btw packets in flow

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
a
ll 

fl
o
w

s

MAWI
WAND
LBNL
Naples

Figure 8. CDF of flow distance

Figure 8 shows the flow distance plot for all of the traces. According to [15], flow

distance distribution is a measure of flow locality and should predict the performance

of the flow cache. Let us consider a fully-associative cache with an LRU policy.

The order in which the flow was referenced last time with respect to the other flows

becomes a criterion for replacement. In other words, the “oldest” referenced flow

is the first to be replaced. The replacement policy activates when the number of

referenced flows is greater than the cache capacity.

According to Figure 8, c.a. 30% of the packets from the WAND trace have a flow

distance of 100. If the cache capacity is 100, then the complementary 70% of traffic

bandwidth with flow distances greater than 100 are less likely to hit the cache. It

should be noted that the hypothesis of similarity between the CDF function and the

cache behavior is empirical in nature and may not hold in general. Still, further

experiments prove that the flow distance metrics correctly predict the performance of

the cache for all selected data sets. If the CDF function is interpreted as a benchmark,

it ranks the data sets with respect to cache effectiveness (with WAND having the

lowest rank).

Most of the metrics (e.g., flow duration, flow packet count, and active connec-

tions) are not able to produce similar rankings, and each of the mentioned charts ranks



156 Maciej Czekaj, Ernest Jamro

the packet traces differently; e.g., LBNL has the lowest number of active connections

in a 1-ms time window, but WAND is ranked in the middle, not as an extreme. The

only exception to this rule is the active flow metrics based on the packet sequence

window shown in Figure 6. This ranks the traces in the same way as in Figure 8. Both

metrics are time-less and based on packet sequence numbers, which suggests that this

approach has more predictive power than the others. The possible explanation of

this fact is partially given in Section 3.1 – this method is independent of link and

bandwidth characteristics.

4. Simulations

In this section, the theoretical predictions of flow distance distribution are confronted

with the simulation results. The method for determining the flow is the same as in

Section 3.1 (i.e., 5-tuple). The software cache simulator was implemented as a part

of the traffic analysis program used to produce the statistics in Section 3. The im-

plementation is a special variant of a hash table with a fixed bucket size (1 to 4,

depending on the variant) and additional LRU state and logic.

Four types of caches were implemented:

• fully associative, LRU replacement policy,

• 4-way associative, LRU replacement policy,

• 2-way associative, LRU replacement policy,

• direct mapped (one-way), random replacement policy.

The direct mapped cache is implemented as a hash table with a bucket size of 1. The

flow replacement happens when a new key is inserted into a bucket already occupied

by an older flow. In this way, the randomizing property of the hash function is used

for a “random policy”. This is the simplest implementation for both the software and

hardware, as it requires no additional memory for the LRU state.

Figure 9 is a detailed look at the relationship between the cache hit ratios and the

CDF. This data is based on the WAND network trace. For cache sizes of between 4 and

65,536 entries, the CDF curve behaves like an approximation of the cache hit ratio.

Another important conclusion is that a direct mapped cache with random replacement

is a viable alternative for the implementation (although it is consistently worse than

all of the other caches). There is a slight increase in performance from the random

through the 2-way and 4-way up to the fully associative cache, which is expected

based on the literature (e.g., [36]). On the other hand, a marginal improvement in

the performance results in a significant increase of complexity when comparing a fully

associative cache to simpler alternatives.

This is an important point, especially for hardware designers. It seems that

the real choice lies between a 2- or 4-way LRU cache and a direct-mapped random

cache. The choice between a stateless and stateful replacement policy such as LRU

depends on the implementation trade-off. Maintaining the state (i.e., the history of

last accesses) consumes more memory and other resources (energy, processing time,



Flow caching effectiveness in packet forwarding applications 157

circuit logic) in the software and even more in the hardware, where it results in

multiple memory banks being activated in parallel [32]. Also, state representation

becomes more complex when the associativity is greater than two [2].

20 22 24 26 28 210 212 214 216

Merged axes of cache size (entries) and flow distance in packets

0.2

0.4

0.6

0.8

1.0

H
it
 r

a
ti
o
 o

r 
Pr

o
b
a
b
ili

ty

random
fully-associative
2-way
4-way
flow distance CDF

Figure 9. Cache hit ratio versus flow distance CDF, WAND trace

Figure 10 shows the results for a fully associative LRU cache and CDF functions

for all traces.

25 27 29 211 213 215 217

Cache size (number of entries)

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 r

a
ti
o

MAWI-cache
WAND-cache
LBNL-cache
Naples-cache
MAWI
WAND
LBNL
Naples

Figure 10. Cache hit ratio for fully associative cache combined with CDF function



158 Maciej Czekaj, Ernest Jamro

In each analyzed case, the CDF can be treated as a lower bound of cache effec-

tiveness. Except for WAND, the simulation shows good performance of the cache.

Even with small cache sizes; e.g., for a 128-entry cache, the hit ratio is more than

70% for all traces other than WAND (which only achieves 30%). The 512-entry cache

has a consistent effectiveness of at least 50% for all data sets.

When assessing cache effectiveness, it is worth expressing the cache size not in

an absolute number but as a fraction of the number of active flows. For this task, the

90th percentile active flow benchmark from Figure 6 was selected. The window size

for the measure should be chosen so that it spans a range of values that illustrate the

change in behavior of the cache when its capacity is exceeded. In addition, when

the cache size is bigger than the number of flows it is expected to handle nearly 100%

of the traffic.

Table 1 shows the chosen active flows measurement for a window size of 216.

Table 1
Number of active flows in 64K-packet window

Trace WAND Naples Mawi LBNL

Active flows 10,573 6706 3198 1513

The key observation that leads to computing the hit ratio is the fact that a cache

with a given size may be more effective for data sets with smaller active flows measure;

e.g., for an LBNL dataset with 1513 active flows, a cache size bigger than 1500 has

a nearly 100% hit rate simply because there are more cache entries than active flows.

Replacement in a cache rarely occurs when all of the active flows fit the cache.

Looking at Figure 11 gives an overview of cache effectiveness across all traces. For

data point 2−6 ≈ 1.5%, the hit ratio varies from c.a. 35% (WAND) to 98% (LBNL).

The worst performer (WAND) has a 50% hit ratio for a cache of 5% (512 entries) of

the active flows.

The usefulness of the metrics developed in this article stretches beyond an anal-

ysis of the network data. Assuming that the traffic profile keeps its characteristics,

it can be predicted how changing the bandwidth affects the cache or, conversely,

how changing the cache size affects its effectiveness if the traffic bandwidth does not

change. As an example exercise, let us answer the question of what happens when the

traffic bandwidth is doubled. Doubling the bandwidth could be treated as doubling

the window size in the active flow metrics. By the power law in Equation (2), the

number of flows increases by a constant factor c′ = 2λ, with λ derived from the active

flow curve. As a result, this ”shifts” the cache effectiveness left on the efficiency curve

with a factor of 2−λ. The WAND trace is fitted with λ ≈ 0.65, so it gives a shift

factor of 0.63. If the previous cache was 5% of all active flows, it is now 3.15%, and

an expected hit ratio can be interpolated from Figure 11 to c.a. 35%.



Flow caching effectiveness in packet forwarding applications 159

2 12 2 10 2 8 2 6 2 4 2 2 20 22

Cache size (s) to active flows (f) ratio: s/f

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 r

a
te

MAWI
WAND
LBNL
Naples

Figure 11. Fraction of active flows versus hit rate

5. Summary

The main point of this paper is to show the effectiveness of flow caching for packet

forwarding. The methodology applied to the problem is based on a statistical analy-

sis of flow locality and cache simulations. The statistics presented in Section 3 show

that the locality principle manifests itself in various measurements: arrival time, flow

address distribution, flow length, etc. This holds true for all of the examined data

traces and is consistent with prior art on this subject from Section 2. The recom-

mended method to predict caching effectiveness is to calculate two benchmarks. The

first is the flow distance distribution – the simulation results in Section 5 show a high

similarity between the flow distance and the cache hit ratio. The second benchmark is

the number of active flows in a given packet sequence and limited to a certain window

size. Combining these two results gives a cache effectiveness metrics that could be

used for future predictions.

The simulations from Section 4 show that a moderately-sized flow cache can

have a big impact on system performance. The exact number of cache entries that

guarantee a high hit ratio may range from 16 to 1024 depending on the traffic profile.

Modeling various cache designs shows that increasing the associativity of the cache

reaps little benefit, so simpler 1-way or 2-way caches are preferred.

For the software, the performance cost of adding a flow cache is minimal; it may

result in a large speedup of the processing pipeline. Packet processing on CPU is

often dominated by random lookups in the data structures (e.g., a routing table).

This kind of workload depends on memory subsystem latency, which increases with

working set size. Contemporary data center CPUs have 256-512kB of private L2 and



160 Maciej Czekaj, Ernest Jamro

more than 1MB of shared L3 cache per core. A 1024-entry flow cache can fit entirely

in a CPU’s L2 or L3 data cache, which leads to the better utilization of computing

resources by avoiding costly CPU stalls caused by DRAM access.

A conclusion for hardware designers is that implementing flow caches need not

be expensive. Even a simple direct-mapped cache can work efficiently, which means

that the energy and logic cost paid by adding a cache is smaller as compared to CPU

caches. In the latter case, the high associativity and replacement policy apparently

matter more [2] than in the case of network processing.

Critics of network flow caching are often concerned that it causes a state explosion

when an application operates on pattern matching rules; e.g., as in the Longest Prefix

Match for IP routing. In this case, a single 24-bit subnet can potentially contain

millions of flows. This is true in general, but the measurements in Section 3 show

that the number of simultaneous flows is in fact limited and is subject to the same

power law behavior as found in the page popularity ranking. If the principle of locality

is taken into account, then the concern about state explosion must be re-examined

on the new ground and simply rejected in some cases.

One of the possible research avenues concerning flow locality and caching is to

characterize the traffic types that lead to local or non-local behavior. In other words,

a predictor of cache-friendliness that does not require an actual statistical analysis

is highly desired. If one exists at all, such a predictor could possibly stem from the

structural properties of the network.

References

[1] Adamic L., Huberman B.: Zipf’s law and the Internet, Glottometrics, vol. 3,

pp. 143–150, 2002.

[2] Al-Zoubi H., Milenkovic A., Milenkovic M.: Performance Evaluation of Cache

Replacement Policies for the SPEC CPU2000 Benchmark Suite. In: Proceedings

of the 42nd annual Southeast regional conference, ACM, pp. 267–272, 2004.

[3] Asai H., Ohara Y.: Poptrie: A Compressed Trie with Population Count for Fast

and Scalable Software IP Routing Table Lookup, 2015. http://dx.doi.org/1

0.1145/2785956.2787474.

[4] Beckmann N., Sanchez D.: Talus: A simple way to remove cliffs in cache per-

formance. In: 2015 IEEE 21st International Symposium on High Performance

Computer Architecture (HPCA), pp. 64–75, 2015. http://dx.doi.org/10.1109

/HPCA.2015.7056022.

[5] Bhuvaneswaran V., Basil A., Tassinari M., Manral V., Banks S.: Benchmarking

Methodology for Software-Defined Networking (SDN) Controller Performance.

RFC 8456 (Informational), 2018. http://dx.doi.org/10.17487/RFC8456.

[6] Bhuvaneswaran V., Basil A., Tassinari M., Manral V., Banks S.: Terminology

for Benchmarking Software-Defined Networking (SDN) Controller Performance.

RFC 8455 (Informational), 2018. http://dx.doi.org/10.17487/RFC8455.

http://dx.doi.org/10.1145/2785956.2787474
http://dx.doi.org/10.1145/2785956.2787474
http://dx.doi.org/10.1109/HPCA.2015.7056022
http://dx.doi.org/10.1109/HPCA.2015.7056022
http://dx.doi.org/10.17487/RFC8456
http://dx.doi.org/10.17487/RFC8455


Flow caching effectiveness in packet forwarding applications 161

[7] Borgnat P., Dewaele G., Fukuda K., Abry P., Cho K.: Seven Years and One

Day: Sketching the Evolution of Internet Traffic. In: IEEE INFOCOM 2009,

pp. 711–719, 2009. https://doi.org/10.1109/INFCOM.2009.5061979.

[8] Cho K., Mitsuya K., Kato A.: Traffic Data Repository at the WIDE Project.

In: Proceedings of USENIX 2000 Annual Technical Conference: FREENIX Track,

pp. 263–270, 2000.

[9] Çiftlikli C., Gezer A., Tuncay Özşahin A.: Packet traffic features of IPv6 and

IPv4 protocol traffic, Turkish Journal of Electrical Engineering and Computer

Sciences, vol. 20, pp. 727–749, 2012. https://doi.org/10.3906/elk-1008-696.

[10] Claise B. (ed.): Cisco Systems NetFlow Services Export Version 9. RFC 3954

(Informational), 2004. https://doi.org/10.17487/RFC3954.

[11] Cleary J., Graham I., McGregor T., Pearson M., Ziedins L., Curtis J., Don-

nelly S., Martens J., Martin S.: High precision traffic measurement, IEEE Com-

munications Magazine, vol. 40(3), pp. 167–173, 2002.

[12] Congdon P.T., Mohapatra P., Farrens M., Akella V.: Simultaneously Reducing

Latency and Power Consumption in OpenFlow Switches, IEEE/ACM Transac-

tions on Networking (TON), vol. 22(3), pp. 1007–1020, 2014.

[13] Dainotti A., Pescapé A., Rossi P.S., Palmieri F., Ventre G.: Internet traffic

modeling by means of Hidden Markov Models, Computer Networks, vol. 52(14),

pp. 2645–2662, 2008.

[14] Dainotti A., Pescapé A., Ventre G.: A cascade architecture for DoS attacks de-

tection based on the wavelet transform, Journal of Computer Security, vol. 17(6),

pp. 945–968, 2009.

[15] Feldmeier D.C.: Improving gateway performance with a routing-table cache.

In: IEEE INFOCOM’88, Seventh Annual Joint Conference of the IEEE Com-

puter and Communcations Societies. Networks: Evolution or Revolution? New

Orleans, LA, USA, pp. 298–307, 1988.

[16] Gupta P., McKeown N.: Algorithms for Packet Classification, IEEE Network,

vol. 15(2), pp. 24–32, 2001. https://doi.org/10.1109/65.912717.

[17] git.kernel.org, ipv4: Delete routing cache. https://git.kernel.org/pub/scm/l

inux/kernel/git/davem/net-next.git/commit/?id=89aef8921bfbac22f00e

04f8450f6e447db13e42.

[18] IEEE Standard for Information Technology – Telecommunications and Informa-

tion Exchange Between Systems – Local and Metropolitan Area Networks – Spe-

cific Requirements Part 3: Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) Access Method and Physical Layer Specifications Amendment: Me-

dia Access Control (MAC) Parameters, Physical Layers, and Management Pa-

rameters for 10 Gb/S Operation. In: IEEE Std 802.3ae-2002 (Amendment to

IEEE Std 802.3-2002), pp. 271–272, 2002. https://doi.org/10.1109/IEEEST

D.2002.94131.

https://doi.org/10.1109/INFCOM.2009.5061979
https://doi.org/10.3906/elk-1008-696
https://doi.org/10.17487/RFC3954
https://doi.org/10.1109/65.912717
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
https://doi.org/10.1109/IEEESTD.2002.94131
https://doi.org/10.1109/IEEESTD.2002.94131


162 Maciej Czekaj, Ernest Jamro

[19] Katta N., Alipourfard O., Rexford J., Walker D.: Rule-Caching Algorithms for

Software-Defined Networks. In: Techical Report, Princeton University, 2014.

[20] Kim N., Jean S., Kim J., Yoon H.: Cache replacement schemes for data-

driven label switching networks. In: 2001 IEEE Workshop on High Perfor-

mance Switching and Routing (IEEE Cat. No.01TH8552), pp. 223–227, 2001.

http://dx.doi.org/10.1109/HPSR.2001.923636.

[21] LBNL/ICSI Enterprise Tracing Project. http://www.icir.org/enterprise-tr

acing/download.html.

[22] McKeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rex-

ford J., Shenker S., Turner J.: OpenFlow: Enabling Innovation in Campus Net-

works, SIGCOMM Computer Communication Review, vol. 38(2), pp. 69–74, 2008.

https://doi.org/10.1145/1355734.1355746.

[23] Naples University traffic traces, Trace 1 14th June 2004 11:00-12:00. http://tr

affic.comics.unina.it/Traces/ttraces.php.

[24] Network Traffic Characteristics of Data Centers in the Wild. Association for Com-

puting Machinery, Inc., 2010. https://www.microsoft.com/en-us/research

/publication/network-traffic-characteristics-of-data-centers-in-th

e-wild/.

[25] NumPy, scientific computing with Python. https://www.numpy.org/.

[26] Okuno M., Nishimura S., Ishida S.i., Nishi H.: Cache-Based Network Proces-

sor Architecture: Evaluation with Real Network Traffic, IEICE transactions on

electronics, vol. 89(11), pp. 1620–1628, 2006.

[27] Pang R., Allman M., Paxson V., Lee J.: The devil and packet trace anonymiza-

tion, ACM SIGCOMM Computer Communication Review, vol. 36(1), pp. 29–38,

2006.

[28] Park K., Kim G., Crovella M.: On the Effect of Traffic Self-similarity on Network

Performance. In: Proceedings Volume 3231, Performance and Control of Network

Systems, 1997.

[29] Paxson V.: Bro: A System for Detecting Network Intruders in Real-Time, Com-

puter Networks, vol. 31(23–24), pp. 2435–2463, 1999. https://doi.org/10.101

6/S1389-1286(99)00112-7.

[30] PcapPlusPlus, a multiplatform C++ network sniffing and packet parsing and

crafting framework. https://seladb.github.io/PcapPlusPlus-Doc/.

[31] Pfaff B., Pettit J., Koponen T., Jackson E., Zhou A., Rajahalme J., Gross J.,

Wang A., Stringer J., Shelar P., Amidon K., Casado M.: The Design and Imple-

mentation of Open vSwitch. In: 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 15), pp. 117–130. USENIX Association, Oak-

land, CA, 2015. https://www.usenix.org/conference/nsdi15/technical-s

essions/presentation/pfaff.

http://dx.doi.org/10.1109/HPSR.2001.923636
http://www.icir.org/enterprise-tracing/download.html
http://www.icir.org/enterprise-tracing/download.html
https://doi.org/10.1145/1355734.1355746
http://traffic.comics.unina.it/Traces/ttraces.php
http://traffic.comics.unina.it/Traces/ttraces.php
https://www.microsoft.com/en-us/research/publication/network-traffic-characteristics-of-data-centers-in-the-wild/
https://www.microsoft.com/en-us/research/publication/network-traffic-characteristics-of-data-centers-in-the-wild/
https://www.microsoft.com/en-us/research/publication/network-traffic-characteristics-of-data-centers-in-the-wild/
https://www.numpy.org/
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1016/S1389-1286(99)00112-7
https://seladb.github.io/PcapPlusPlus-Doc/
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff


Flow caching effectiveness in packet forwarding applications 163

[32] Powell M.D., Agarwal A., Vijaykumar T., Falsafi B., Roy K.: Reducing Set-

-Associative Cache Energy via Way-Prediction and Selective Direct-Mapping.

In: Proceedings of the 34th annual ACM/IEEE international symposium on Mi-

croarchitecture, pp. 54–65, IEEE Computer Society, 2001.

[33] Security Architecture for the Internet Protocol. https://tools.ietf.org/htm

l/rfc430.

[34] Sikdar B., Vastola K.S.: The Effect of TCP on the Self-Similarity of Network

Traffic. In: Proceedings of the 35th Conference on Information Sciences and Sys-

tems, pp. 21–23, 2001.

[35] Srisuresh P., Holdrege M.: IP Network Address Translator (NAT) Terminology

and Considerations. RFC 2663 (Informational), 1999. http://dx.doi.org/10.

17487/RFC2663.

[36] Su C.L., Despain A.M.: Cache design trade-offs for power and performance opti-

mization: a case study. In: Proceedings of the 1995 international symposium on

Low power design, pp. 63–68. ACM, 1995.

[37] The CAIDA UCSD Anonymized Internet Traces 2014–2018. http://www.caida.

org/data/passive/passive 2014 dataset.xml.

[38] WIDE project. http://mawi.wide.ad.jp/mawi/.

[39] WITS: Waikato Internet Traffic Storage. https://wand.net.nz/wits/.

Affiliations

Maciej Czekaj
AGH University of Science and Technology, mczekaj@agh.edu.pl

Ernest Jamro
AGH University of Science and Technology, Faculty of Computer Science, Electronics
and Telecommunications, al. Mickiewicza 30, 30-059 Kraków, jamro@agh.edu.pl,
ORCID ID: https://orcid.org/0000-0003-4632-2470

Received: 21.02.2019

Revised: 09.04.2019

Accepted: 09.04.2019

https://tools.ietf.org/html/rfc430
https://tools.ietf.org/html/rfc430
http://dx.doi.org/10.17487/RFC2663
http://dx.doi.org/10.17487/RFC2663
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://mawi.wide.ad.jp/mawi/
https://wand.net.nz/wits/
https://orcid.org/0000-0003-4632-2470

	Introduction
	Paper organization

	Related work
	Measurements
	Methodology
	Results

	Simulations
	Summary

