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Abstract In our study, we present the results of the implementation of the SHA-512 algo-

rithm in FPGAs. The distinguished element of our work is that we conducted

the work using OpenCL for FPGA, which is a relatively new development

method for reconfigurable logic. We examine loop unrolling as an OpenCL

performance optimization method and compare the efficiency of the different

kernel implementation types: NDRange, Single-Work Item, and SIMD kernels.

In our conclusions, we compare the metrics of the created FPGA accelerator

to the corresponding GPGPU solutions. Also, our paper is accompanied by

a source code repository to allow the reader to follow and extend our survey.
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1. Motivation

FPGA technology has been around for 35 years now. The idea of semiconductor

devices that provide loosely organized logic blocks with connections that could be

configured and reconfigured with software has evolved over time. As the technol-

ogy has advanced and the transistor count of a single chip has increased (from ca.

100,000 in 1984 to 20 billion in 2018), FPGAs have grown from glue logic confined

chips (through components suitable for interface and peripheral development) to high-

performance custom computing eligible machines [14,18]. The cost and time of hard-

ware development has grown, as the gap between hardware designer productivity and

semiconductor capacity has constantly increased. This leads to new design meth-

ods and tools that started as schematic-based design entry tools, evolved throughout

hardware description languages and platforms for IP core integration, and expanded

to high-level hardware synthesis languages (HLS). It is worth noticing that all of

the above-mentioned methods co-exist today. The hardware description languages

(HDLs) are, in fact, the basic tools for hardware development; however, this method

is tedious, time-consuming, and often demands a detailed understanding of the hard-

ware. In contrast, HLSs speed up design time thanks to the relaxed hardware defini-

tion rules, imposed processing models, and definite data types. Typically, they share

their syntax and structure with commonly used software programming languages

(e.g., C/C++) for practical reasons. Additionally, to keep the HLS code compatible

with software compilers, hardware synthesis is directed thanks to the extra compiler

directives. These directives are necessary, as no software language is rich enough to

fully accommodate the designing flexibility that comes with unrestricted hardware ar-

chitecture. For example, the special directive sets the pipelined execution of the loop;

this is a common hardware acceleration strategy that is not necessary for software

development.

Today, software development time has shrunk thanks to newer programming

abstraction layers, models, and tools. One of the important trends is to produce

software that is hardware agnostic; i.e., the code that is portable at the program

execution level (e.g., Java). Meanwhile, thanks to the dissemination of multi- and

many-core CPUs as well as GPGPU devices, parallel programming languages have

drawn the attention of the community. Despite existing traditional models for parallel

programming (like Threads, OpenMP, and MPI), new methods have been proposed

as a consequence(e.g., Intel Cilk, nVidia, and CUDA). On this scene, the parallel

programming language that marks itself is OpenCL (Open Computing Language) [2].

Its underlying programming model is SPMD (Single Program Multiple Data), where

the computing device executes many instances of a single program (called a kernel).

The kernel’s threads form the computing grid, and each thread gets a unique identifier

to let the programmer distribute the data in the grid. The OpenCL standard allows

us to write applications that execute kernels on heterogeneous platforms consisting

of different processors or hardware accelerators like CPUs, GPGPUs, and DSPs. The

broad list of supported computing platforms makes OpenCL an attractive choice for
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many software coders; as a consequence, the OpenCL community continues to grow.

Simultaneously, the numerous body of developers presents an opportunity for FPGA

vendors to broaden the understanding of reconfigurable computing. As the result,

tools like Intel FPGA SDK for OpenCL are offered as methods of FPGA development

today.

In our work, Altera OpenCL SDK 16.0 (which is now Intel FPGA SDK because

of Intel’s acquisition of Altera) was studied. We were particularly interested in com-

paring the performance of the FPGA platform to other OpenCL platforms. Similar

to all HLS tools, Altera OpenCL (AOCL) compilation is controlled by a rich set of

program directives; this alters the resulting hardware architecture. Thus, we also

wanted to examine and compare the implementation strategies offered by the AOCL

compiler. Thanks to our access to the high-performance computing infrastructure of

the Academic Computer Centre CYFRONET of the University of Science and Tech-

nology in Cracow [1], we conducted our experiments on an OpenCL host with the

Nallatech 395 Stratix V D8 FPGA device.

Simultaneously, the work is a piece of the plan to create a password discovery

system that allows for the fast elimination of weak user passwords from the ICT infras-

tructure. System administrators would perform brute force and dictionary password

attacks to forewarn users and defeat the real threats. The successful operation of such

a system depends on its throughput; therefore, an accelerated platform is favored for

the purpose of its execution. Meanwhile, password hashing is an essential part of the

practical password authentication procedure; as for safety, a password is not stored

as plain text but rather as its corresponding number; i.e., hash. In the common

scheme, the password entered by the user is processed by the hash algorithm, and

the result is compared to the number stored in the database. It is not possible to

convert the hash back to the password for any hash algorithm; thus, the password is

safe if the database is stolen. Consequently, we selected the SHA-512 algorithm to

carry out our experiments.

2. SHA-512 algorithm

The SHA-512 hash function is a part of the SHA-2 standard that was first published

in 2001 (and later updated) by the National Institute of Standards and Technology.

The complexity of a good hash function is low enough to let the hash to be calculated

without unnecessary overhead; simultaneously, it is high enough to prevent too-easy

brute-force attacks. SHA-512 fulfills all of these requirements, taking original mes-

sages that are less than 2128-bits long and returning a 512-bit hash. The message,

padding, and message length make a message block that is split into N blocks (Fig. 1),

and the 1024-bit blocks are processed in consecutive SHA-512 passes. However, in

order to limit our calculations to a single algorithm pass, messages of up to 896-bit

long are assumed. Thus, the message block can be processed in one SHA-512 pass.

For N = 1, the message length is up to 1024− 128 = 896 bits in this work.
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Figure 1. Structure of SHA-512 message block

A detailed description of SHA-512 can be found in [11]; for the purpose of clarity,

we provide only a brief description here. The processing of a single 1024-bit block

is presented in Figure 2. The algorithm’s input is a 1024-bit message and 512-bit

digest. The message is organized as 16 64-bit words (wi; 0 ≤ i ≤ 15). The digest is

the algorithm output for the preceding message block or the value specified by the

standard for the first block. In our case, the algorithm is executed only once, so

the digest is a constant value.

The algorithm consists of 80 similar rounds. Each round runs with the unique

constant Ki (defined by the standard) and value Wi (computed out of the message

block by the message expansion function).

Wi =

 wi; i ≤ 15

Wi−16 ⊕ RotShift1−8−7(Wi−15)⊕Wi−7 ⊕ RotShift19−61−6(Wi−2); i > 15
,

where RotShiftl−m−n(x) = Rorl(x) ⊕ Rorm(x) ⊕ Lsrn(x), while Rork(x) is rotated

x right by k bits, and Lsrk(x) is shifted x right by k bits.

It is worth noting that the expansion function includes the bit-shift, rotate, and

exor operations only. The digest ABCDEFGH of each iteration is calculated using

the following functions:

Ch(x,y,z) = (x and y)⊕ (x̄ and z)

Ma(x,y,z) = (x and y)⊕ (y and z)⊕ (z and x)

Σ(x) = Ror28(x)⊕ Ror34(x)⊕ Ror39(x).

Please note again that the above functions use bitwise and, not, and exor oper-

ations as well as bit rotations only.

The dataflow and simple control of SHA-512 make the FPGA technology particu-

larly fitting for its implementation. The FPGAs usually outperform CPUs for bitwise

manipulation and logic operation, and they exploit pipelining efficiently. Addition-

ally, the number of iterations in the outer loop is static (80 repetitions); therefore,

it can be fully un-looped and pipelined to maximize the data throughput. Although

pipelining consumes much hardware (each iteration stage requires separate resources)

and makes sense only if a batch of data is processed (each pipeline stage executes

a single element of the set at a time), it is worth a try in our case, where a big input

set is expected – as in a brute force method, for example.
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Figure 2. Dataflow of SHA-512 algorithm

3. AOCL architectures

In contrast to other OpenCL devices, FPGA devices do not have fixed architectures.

The internal architecture of the processing units (cores are named units in AOCL

manuals), number of units, and memory interface are hardwired for multi- and many-

core CPUs, GPGPUs, and DSPs; these can be customized in the FPGA OpenCL

technology.

This flexibility of FPGA allows AOCL to offer extra parametrization of the

OpenCL project. The designer chooses between Single Work Item and NDRange

kernels; he/she configures a number of the unit’s SIMD lanes and selects the number

of computing units (CU). These attributes are detailed below; a full reference for this

section can be found in [4, 5].
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3.1. Single work item

OpenCL is a language for massively parallel processing (MPP); thus, the number of

units is expected to be high – like in the case of GPGPUs and many-core CPUs.

Although OpenCL adheres to the MPP programming model, it is not restricted to

MPP hardware architectures. Contrarily, many-core CPUs provide a few cores/units,

while FPGA typically grants a single or couple of units – like in this study. A special

case of CU when only one computing unit is invoked by AOCL is the Single Work

Item (SWI) CU. The OpenCL kernels that are implemented as SWI units do not use

work-item identifiers (returned by OpenCL’s get global id() function, for example).

Typically, the SWI kernel executes an outer loop that iterates throughout all elements

of the input data set. The example SWI kernel is given in Listing 1.

Listing 1: The example SWI kernel

k e r n e l void SWIKernel ( g l o b a l x type ∗ r e s t r i c t x , . . . )

{
#pragma u n r o l l

for ( int id =0; id < nbrOfElements ; id++){ /∗ outer loop ∗/
y = doFi r s t ( x [ i ] ) ; /∗ outer ∗/
z = doSecond ( y ) ; /∗ l oop ∗/
r e s [ i ] = doThird ( z ) ; /∗ body ∗/

}
}

The SWI model is a part of the OpenCL standard [10], but it is not an attractive

configuration for CPUs nor GPUs, as the SWI kernel code is executed sequentially by

a single CU on these devices. The FPGA devices are different because the hardware of

CU is customized. The body of the outer loop can be pipelined [13]. In the Listing 1,

variables yi, zi−1, and resi−2 would be calculated simultaneously (where i denotes

the iteration number). Thanks to the pipelining, the CU is able to output the results

at a high processing rate; however, the individual result can be delayed by many clock

cycles with respect to its corresponding input. Consequently, the throughput rate of

the SWI CU can be outstanding in FPGAs. The throughput rate is

R =
clock rate

II
,

where II is an iteration interval; i.e., the number of clock cycles between reads of the

consecutive inputs. The unroll directive controls the loop unrolling in AOCL. The

kernels that are not SWI are called NDRange kernels.

3.2. Multiple compute units

The kernels that are not SWI are called NDRange kernels. Contrary to SWI, the

scheduler distributes work-items to the NDRange computing units. However, it should
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be considered that NDRange kernels require more FPGA resources, as the automatic

organization of computing grid costs. The advantage of NDRange kernels is that

they can be easily multiplied (within available FPGA resources) by AOCL. This

increases the overall performance in general; however, the available bandwidth of the

global memory should be weighted, as multiplied CUs share the memory bandwidth

(Fig. 3a). It may also happen that the clock frequency will be reduced in the case of

higher area utilization; then, more CUs are implemented.

a) b) c)

Figure 3. Methods to multiple performance of FPGA device in AOCL: a) Two CUs; b) Dual

SIMD CU; c) Two SIMD CUs

Also, it is possible to apply multiple SWI-type kernels in the FPGA device.

Nonetheless, it required manual replication of the kernel code in the OpenCL pro-

gram – AOCL 16.0 does not multiply SWI kernels automatically. In practice, we

duplicated the SWI kernel function, giving its clones different names; e.g., using suf-

fixes 0, 1, etc.. During host program execution, the kernels were enqueued separately

with the input and output buffers containing only a fraction of the total workload.

Additionally, the manual replication allows the designer to create kernels that perform

different functions – they do not work in the SPMD manner.

3.3. SIMD computing units

An interesting way to multiply the performance is to aggregate multiple CUs into

a unison Single Instruction Multiple Data (SIMD) block (Fig. 3b). The computing

power of the SIMD CU block matches the combined power of all of the involved CUs.

In the SIMD computing unit, individual CUs share a memory interface, and this pays

off twofold: first, it introduces logic resource savings; second, the aggregated read or

write from the global memory is typically faster than separate memory accesses.

It is important to consider that only work-items within the same work-group

execute in the SIMD manner. The specification of a required work-group size (RWGS)

is possible. AOCL relies on this specification to optimize the hardware usage of the

kernel without involving excess logic. To take effect, the introduction of the SIMD

size attribute in conjunction with the RWGS attribute is necessary. Also, the specified
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SIMD size attribute must evenly divide the RWSG attribute. Additionally, the SIMD

CU blocks can be combined into multiple NDRange kernels (Fig. 3c).

4. Experiments and results

In our experiments, we tried the SHA-512 kernel in the three computing unit config-

urations; i.e., NDRange, SWI, and SIMD. Due to the available FPGA resources, we

tested up to the two units at a time: two independent NDRange CUs, two SWI CUs,

and one dual-SIMD CU. The performance tests were performed with an input data

set that contained 220 passwords.

In the first experiment, we studied the impact of the local work-group size (LWS)

parameter on the overall performance of the system. LWS is a software parameter

specified during the host program run; it dictates the size a work-group for the given

thread execution – the work-group contains a set of work-items that must be able to

make progress in the presence of barriers, and it must be mapped to a single compute

unit. We have found that LWS only impacts the NDRange kernel that was compiled

with no RWGS specified. The LWS parameter has no sense for SWI kernels, as they

do not recognize threads. Also, we did not observe the significant impact of LWS on

the performance of the SIMD kernels – they performed well for the small and large

LWS values. The performance of the two NDRange CUs is given in Figure 4. The

maximum performance was measured for LWS = 128; the average kernel time for

a single hash was 7.13 ns, which corresponded to the throughput of ca. 140 million

hashes per second.
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Figure 4. Performance of two computing units of NDRange type

In the next experiment, we compared the best results of the different kernel

modes for the SHA-512 implementation. Table 1 summarizes the CU clock frequency
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and average hash execution time for the NDRange, SWI, and SIMD kernels. The loop

unrolling was tested for the NDRange and SWI kernels; the requested work group size

equaled 64 or 256 for the SIMD kernel. The very best performance was achieved for the

unrolled NDRange 2×CU kernel: the kernel hash time was 7.13 ns. It is worth noting

that the total execution time includes both the kernel and host time. In our case,

the best total execution time of a single hash value was 127 ns. In Table 1, we only

provide the kernel time because it allows us to perform a clear comparison of different

kernel implementations; the host time is constant and kernel-type independent.

Table 1
Result metrics of various kernel implementation modes

Kernel Unrolled Clock #CU #SIMD Hash

mode [MHz] kernel time [ns]

NDRange no 175 1 1 531

SWI no 208 1 1 399

NDRange yes 236 1 1 8.13

NDRange yes 236 2 1 7.13

SWI yes 258 1 1 8.22

SWI yes 237 2 1 7.37

SIMD; RWGS=64 yes 205 1 2 9.78

SIMD; RWGS=256 yes 205 1 2 9.81

The program source codes that were used in conducted experiments are available

in repository [15].

5. Conclusions and contribution

The SIMD and SWI optimizations presented in Table 1 provide only a minuscule

performance growth with respect to the single unrolled NDRange CU. The reason for

this lies in the Global Memory access bottleneck. The memory access statistics are

provided by the AOCL profiler; these are presented in Table 2. Read Stall gives the

percentage of the time that the global memory causes pipeline stalls, and Read Oc-

cupancy is the fraction of the time the work-item executes the memory operation [5].

For all kernels given in Table 2, we see Read Stall that is close to 100%; this

means a wait cycle for every memory read. For the NDRange kernel, Read Occupancy

is close to 50%; as half of the execution time, the work-item is idle waiting for memory

access completion. The Read Occupancy value is 25% for the SIMD kernels, as the

performance could double due to the additional compute units; however, it does not

due to the Global Memory bandwidth saturation.
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Table 2
Global memory performance for unrolled kernels

Kernel Read Read Total Hash

stall [%] occupancy [%] bandwidth [MB/s] kernel time [ns]

NDRange 93.99 48 23,822 8.13

SIMD, RWGS 64 93.75 25 19,697 9.78

SIMD, RWGS 256 93.75 25 19,695 9.81

The total Global Memory bandwidth reported by the profiler is 34 GBs. In Ta-

ble 2, the bandwidth consumed by the unrolled NRDange CU is ca. 24 GBs. The hash

time is approximately 8 ns – therefore, at a 250-MHz clock frequency, each hash takes

two clock cycles. This leads to the conclusion that we need a 48-GBs bandwidth to

fully utilize the computing performance of the single NDRange CU and 96 GBs to

reach the maximum performance with the two SIMD units. It is worth mentioning

that the four SIMD units do not fit the FPGA resources of Stratix V GS; therefore,

further requests for higher memory bandwidth are not necessary.

In the presented experiments, the two NDRange CUs turned out to be the quick-

est solutions (7.13 ns per hash); this can be estimated as two clock cycles per hash at

the 236 MHz operating frequency. In this configuration, each CU uses its own Global

Memory interface. Apparently, a smaller transfer size allows it to transfer more data

than in the aggregated SIMD optimization.

Our observations explain the reason – the GPGPUs are equipped with fast Global

Memory. For example, the Nvidia GTX 1080 has 8 GB of memory, which offers 320

GBs of bandwidth [12]; this is four times smaller but more than nine times faster

than the examined FPGA board.

The presented performance was also compared to the respective GPGPU results;

these were compared in terms of performance and performance per watt. The results

are summarized in Table 3. Despite the fact that the detailed power consumption was

not measured in our experiment, we considered the power given by the manufacturers.

The Radeon R9 is not the most power-efficient GPU, and we see that our FPGA

represents a better performance-per-watt ratio. However, the Geforce GTX (which

is the best choice for crypto-currency mining) is more than three times more energy

efficient and nearly eight times faster than our FPGA accelerator.

Table 3
Performance and performance per watt of FPGA vs. GPGPUs

SHA-512 r Power Performance Performance

accelerator [W] [Mhash/s] [Mhash/s per W]

Nallatech PCIe395 FPGA 75 140 1.87

AMD Radeon R9 290 [7] 300 527.5 1.76

Nvidia Geforce GTX 1080 [12] 180 1088 6.04
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Our results lead to conclusions that are similar to the opinions given by the au-

thors of the papers in the topic of the FPGA-accelerated computing using OpenCL. As

shown in [19], FPGA’s results depend greatly on the applied optimizations. The exe-

cution of an unoptimized kernel may lead to extremely low performance; we observed

this with the base implementation of the NDRange kernel. Even well-optimized ker-

nels usually show lower performance when compared to GPUs and CPUs fabricated

from the same semiconductor technology. Nevertheless, the benefit is often better

power efficiency [19].

There are many advantages of FPGAs over CPU and GPU accelerators, which are

the result of their high reconfigurability and availability of private block memory [17].

Tucci et al. implemented the Smith-Waterman algorithm on the Stratix V GX

FPGA, which was 4.94 and 3.78 times more energy-efficient than the Nvidia Tesla

K20 and Intel Xeon Phi 5110P, respectively [16]. There are many remarks about the

efficiency of the compilation toolchain; as was observed, it has a great impact when

compiling kernels for high clock rates. All of the generated kernels had frequencies

that were above 200 MHz, which is a good result for complex FPGA designs. The

work has shown that the same design can take significantly fewer hardware resources.

There is a claim that Altera trades off its sixfold development time reduction with

a logic usage that is up to three times higher [8]. Another benefit of using OpenCL

is the automatic integration of the PCIe communication interface (with which the

developer does not have to bother). On the other hand, the abstraction provided by

the OpenCL framework hides the information that is easily accessible by engineers

using HDLs. The available AOCL reports are not enough to precisely identify the

bottlenecks.

There is a need for works similar to the one performed by Wang et al. that

concerns the FPGA optimization framework [17]. If manufacturers aim to make

FPGA competitive with GPU-based accelerators, such tools must be a part of the

FPGA tool-chains. Obviously, there are applications for FPGA accelerators (as was

shown by Che et al., who presented FPGA overtaking GPU thanks to the development

of optimal HDL code [6]). However, OpenCL FPGA compilers should be able to

make aggressive optimizations in order to deliver high-speed implementations, thus

eliminating the need for the time-consuming HDL code development. Regardless,

AOCL SDK is not such a tool as of yet; however, it is definitely a step towards

efficient high-level synthesis.
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