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Abstract In this paper, we analyze two-dimensional grids with point and edge singulari-

ties in order to develop an efficient parallel hypergraph grammar-based multi-

frontal direct solver algorithm. We express these grids by a hypergraph. For

these meshes, we define a sequence of hypergraph grammar productions ex-

pressing the construction of frontal matrices, eliminating fully assembled nodes,

merging the resulting Schur complements, and repeating the process of elim-

ination and merging until a single frontal matrix remains. The dependency

relationship between hypergraph grammar productions is analyzed, and a de-

pendency graph is plotted (which is equivalent to the elimination tree of a multi-

frontal solver algorithm). We utilize a classical multi-frontal solver algorithm;

the hypergraph grammar productions allow us to construct an efficient elimi-

nation tree based on the graph representation of the computational mesh (not

the global matrix itself). The hypergraph grammar productions are assigned

to nodes on a dependency graph, and they are implemented as tasks in the

GALOIS parallel environment and scheduled according to the developed de-

pendency graph over the shared memory parallel machine. We show that our

hypergraph grammar-based solver outperforms the parallel MUMPS solver.
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1. Introduction

The multi-frontal solver [11–13] is the state-of-the-art algorithm for the LU factor-

ization of matrices resulting from adaptive finite element method computations [8].

The input to classical multi-frontal solvers like the MUMPS solver [3–5] is the global

matrix obtained by assembling an element’s frontal matrices. The computational com-

plexity of the multi-frontal solver algorithm depends on the quality of the constructed

elimination tree [18]. In this paper, we show that the parallel multi-frontal solver al-

gorithm can be expressed by hypergraph grammar productions, and the elimination

tree can be expressed by a dependency graph between them. The graph grammar

model has already been utilized for both expressing the adaptive mesh transforma-

tions [26–28,30,31] and the multi-frontal solver algorithm itself [20,32]. However, we

utilized composition graph grammars (CP-graph grammars) [26,27,30,31] in our pre-

vious work; in this paper, we propose the use of the hypergraph grammar [36]. The

hypergraph grammar was originally introduced in [15, 16] and instantiated to model

the mesh transformations in [36].

The CP-graph model allows us to reflect on the history of mesh refinements

within particular elements. This is an advantage in the case of a solver performing

a reutilization of LU factorizations or in the case of adaptation with non-stationary

problems requiring unrefinements. The disadvantage of this approach is an expensive

search for adjacent elements. The hypergraph model does not allow us to remember

the history of the refinements, but the graph representing the finite element mesh

is much smaller than the corresponding CP-graph. The advantage of this approach is

the possibility of planning the global ordering and scheduling algorithms not bounded

to single finite element refinements. For example, it is possible to eliminate level by

level in all elements surrounding the singularity area in the case of point singularity

located in the common vertex of four elements. In the CP-graph manner, the solver

would process the refined elements one by one, from the leaves up to the initial

mesh elements level. The cost of such a level-by-level elimination that is natural for

hypergraph grammars is cheaper than the elimination of refinement levels inside one

element until the initial element level is reached and then repeating the elimination

in the neighboring element in the CP-graph-grammar manner.

In this paper, we utilize the classical version of the multi-frontal solver algorithm

without any modern modifications (like the use of H-matrices, for example [35]). We

employ a hypergraph grammar model to construct an elimination tree, which results

in the good performance of the solver.

Namely, we consider hypergraph models of grids with point and edge singularity.

We define a sequence of hypergraph grammar productions over the hypergraphs rep-

resenting the construction of frontal matrices, eliminating the fully assembled nodes

and merging the remaining Schur complement matrices recursively up to the moment

when there is only one frontal matrix left. We analyze the dependency relationships

between these hypergraph grammar productions, and we plot a dependency graph for

them. The dependency graph is equivalent to the elimination tree, and the operations
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performed by the multi-frontal solver algorithm over the elimination tree are expressed

by hypergraph grammar productions.

The multi-frontal solver expressed by the CP-graph grammar productions de-

scribed in [20] concerns the one-dimensional finite difference method. It doesn’t in-

clude the ordering generation necessary for two- or three-dimensional grids. The

approach presented there can be generalized to two- or three-dimensional model grids

with singularities [14] constructed by performing refinements from a single initial

mesh element. This, however, does not allow for the straightforward processing of

refinements surrounded by several initial mesh elements in a manner that allows the

elements to be processed level by level. The CP-graph, grammar-based, multi-frontal

solver described in [32] concerns the two-dimensional adaptive finite element method.

The CP-graph grammars construct the CP-graph corresponding to the finite element

mesh, remembering the history of the refinement. Each element that was h-refined is

represented in the graph by an interior node and edges connecting with nodes corre-

sponding to the smaller son elements. The CP-graph grammar productions modeling

the solver algorithm must travel the element refinement trees from the leaves up to the

root of the tree. These productions are complex, and it is hard to propose general

productions that are independent of the depth of the refinement trees. In this paper,

we propose a hypergraph grammar that generates graphs without the history of the

refinements; thus, hypergraph grammar productions do not need to travel multiple

levels of the graph – it is possible to process the elements surrounding the singularities

level by level.

Having the solver algorithm expressed by hypergraph grammar productions and

its elimination tree by the dependency graph, we need an efficient scheduler for the

concurrent executions of sets of tasks identified as hypergraph grammar productions.

We implement our hypergraph grammar productions in the GALOIS system [34]. It

automatically schedules the tasks (graph grammar productions) according to DAG

(directed accyclic graph) represented by the dependency graph.

The GALOIS scheduler was used in the solver described in [14]. In this paper,

we utilize the parallel solver over the two- or three-dimensional grids that possess

a structure that is topologically equivalent to a 1D mesh. The GALOIS scheduler

was also used in the solver described in [29]. In this paper, we use the GALOIS

scheduler working on the element partition tree.

In this current paper, we extend these ideas to a hypergraph model of the com-

putational mesh. This has the following advantages:

• The hypergraph is a natural “flat” data structure for storing the refined compu-

tational mesh.

• This allows for the easy construction of operations on finite elements surrounding

the singularities located inside the finite element mesh and performing elimina-

tions of these elements level by level.
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• The expression of the solver algorithm by hypergraph grammar production allows

for the decomposition of the solver algorithm into basic undividable tasks (like

in the task-based programming approach).

• These tasks can then be scheduled into multiple cores of parallel shared-memory

machines.

We compare our hypergraph grammar-based solver using the GALOIS scheduler

with the state-of-the-art MUMPS solver [3–5] on model as well as industrial problems.

For a description of the GALOIS system, we refer to [34]. From the practical

point of view, GALOIS can execute several tasks (threads) concurrently, utilizing

multiple cores on a shared-memory machine in an optimal manner.

2. Expressing solver algorithm by hypergraph grammar productions

Let us focus on the two finite element meshes represented by a hypergraph (see Fig-

ure 1). The vertices of the finite element mesh are represented by hypergraph nodes

with v labels. The edges of the mesh located on the boundary are represented by

hypergraph edges with B labels, while the common edge is represented by hypergraph

edge with a F1 label. Finally, the interiors of the finite elements are represented by

hypergraph hyperedges with I labels.

Figure 1. Hypergraph representation of mesh with two elements

Hypergraphs consist of nodes and so-called hyperedges; a hyperedge is an edge

that can connect two or more nodes – it has a sequence of nodes assigned to it. The

nodes and hyperedges can be labeled with the use of a fixed alphabet. Additionally,

each node and hyperedge can have a set of attributes. Figure 1 presents an exemplary

hypergraph with six nodes labeled as v, one hyperedge labeled as F1, two hyperedges

labeled as I, and six hyperedges labeled as B. In the presented graph, no attributes

are assigned to the nodes nor hyperedges.

For a formal definition of a hypergraph and how it differs from composition

graphs (CP-graphs), for example, we refer to [36].

The hypergraph’s grammar was originally introduced in [15, 16]. The instanti-

ation of the hypergraph model for the representation of the computational mesh as

well as the instantiation of the hypergraph grammar model for mesh generation is
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introduced in [36]. In this paper, the hypergraph grammar is a tool to express the

order of generations, mergings, and eliminations performed by the multi-frontal solver

algorithm over the computational mesh. To simplify the presentation, we prefer to

illustrate the execution of the productions by highlighting the parts of the hypergraph

where these operations are performed. Below, we present the explanation on how we

understand this notation in the sense of the generation and processing of matrices

and assigning them to the nodes in the hypergraph model. The formal definitions of

hypergraphs and hypergraph grammars as well as hypergraph productions describing

the mesh-generation process can be found in [36].

In our simple example, we use the following hypergraph grammar productions

that model the multi-frontal solver algorithm executed over the two finite element

mesh:

• Hypergraph-grammar production (PgenM) generates the frontal matrix associ-

ated to a single element. It is presented in Figure 2. The production labels the

element nodes with indices of the rows of the matrix and assigns the matrix to

the element interior node, meaning it sets the value-off attribute Matrix of the

hyperedge labeled as I into the generated element matrix. The rows and columns

in the matrix are ordered in such a way that the interior edge rows are localized

at the end of the list. The production sets the value of the attribute row of

each node and hyperedge of a graph representing a finite element. The values

of the attribute row of hyperedges and nodes for the first-generated matrix are

set as in Figure 2, where act nr denotes the global variable initialized by 0. After

performing the production, global variable act nr is increased by 9 in this case.

For the next generated matrices (the matrices for the next elements), some of

the nodes or hyperedges can have the value of an attribute row set into a value

greater than −1. For these hyperedges and nodes, the value of the attribute row

remains the same as on the left-hand side of the production for the corresponding

hyperedges and nodes. Additionally, the value of the attribute stat of each hyper-

edge and node is set to “gen” (which means the generation of the corresponding

part of the matrix).

Figure 2. Hypergraph grammar production (PgenM) for generation of element matrix
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• Hypergraph-grammar production (PelimM) eliminates the rows of the element

matrix associated with the interior and boundary nodes. The production is

presented in Figure 3.

Figure 3. Hypergraph grammar production (PelimM) for computing Schur complement of

element matrix (also called static condensation procedure)

The procedure is called the static condensation. It leaves the bottom-right part

of the matrix as the so-called Schur complement sub-matrix. These rows are

associated with the interior edge of the element. The value of the attribute stat

is set to “elim” for the hyperedges or nodes representing the eliminated rows and

Schur for the remaining hyperedges and nodes.

For the finite element represented by the graph in Figure 4, only the hyperedge

and nodes with attribute rows =4,1,7 (respectively) have an attribute stat equal

to Schur because they represent common edge and the common vertex of two

neighboring elements.

Figure 4. Coloring of dependency graph

For simplicity of presentation, we provide exemplary values of the attribute row

of each hyperedge and node in Figure 4. The production remains the same values

of the attribute row set earlier by production (PgenM) and denoted in the left-

hand-side graph of production (PelimM) for the corresponding hyperedges and

nodes of the right-hand side of the production.

• Hypergraph-grammar production (PmergeM) merges the two Schur comple-

ment matrices from the two element matrices after static condensation over the

two adjacent elements. The production is presented in Figure 5. The merging
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follows the association of the rows of the matrices with the nodes of the edge

where the Schur complements are computed.

Figure 5. Hypergraph grammar production (PmergeM) for merging two Schur complement

matrices from two adjacent elements

The production sets the value of the attribute Matrix of the hyperedge labeled as

F1 into the matrix corresponding to the merging of the two Schur complements.

The production also sets the value of the attribute stat of this hyperedge and the

two nodes into the merged.

• Hypergraph-grammar production (PsolveM) factorizes the matrix obtained by

merging the Schur complement matrices over the shared element edge. The pro-

duction is presented in Figure 6. The production sets the value of the attribute

Matrix of the hyperedge labeled as F1 into the factorized matrix corresponding

to the merging of two Schur complements. The production also sets the value of

the attribute stat of this hyperedge and the two nodes into “solved.”
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Figure 6. Hypergraph grammar production (PsolveM) for solving common edge problem

To simplify the presentation, we illustrate the execution of the hypergraph gram-

mar productions by coloring the nodes of the hypergraph. We highlight the nodes

corresponding to the execution of the generation, merging, and elimination produc-

tions.

Considering the simple two-finite-element-mesh example, we can express the

multi-frontal solver algorithm by hypergraph-grammar productions in the following

manner:

• The generation of the frontal matrix associated with the right element is presented

in Figure 7(a). The hyperedges and nodes representing the matrix rows and

columns are dark gray in color.

• The elimination of the fully-assembled nodes is illustrated in Figure 7(b). The

hyperedges and nodes corresponding to eliminated mesh nodes are light gray in

color.

• The generation of the frontal matrix associated with the left element is illustrated

in Figure 7(c). We need to use a third color to denote the nodes affected by the

generation of the second frontal matrix.

• The elimination of the fully-assembled nodes is illustrated in Figure 7(d). The

hyperedges and nodes corresponding to eliminated mesh nodes are light gray in

color.

• The merging of the two frontal matrices is presented in Figure 7(e). The hyper-

edges and nodes corresponding to the rows and columns of the merged matrices

change colors.

• Finally, the solution of the interface problem is presented in the bottom-right

panel of Figure 7(f). The hyperedges and nodes corresponding to the eliminated

mesh nodes are light gray in color.
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a) b)

c) d)

e) f)

Figure 7. Execution of hypergraph grammar productions (PgenM) to the right element

(a), (PelimM) to the right element (b), (PgenM) to the left element (c), (PelimM) to

the left element (d), (Pmerge) for both elements (e) and (Psolve) for both elements (f).

The starting graph is presented in Figure 1

Finally, we can perform a concurrency analysis [9,20]. The application of the con-

crete graph grammar production to a concrete hypergraph can be seen as the so-called

task. Let us denote the application of production (PgenM) to the graph from Figure 1

by (PgemM1 1), the application of production (Pelim) to the graph from Fig-

ure 7a by (PelimM1 2), the application of production (PgenM) to the graph from

Figure 7b by (PgenM1 2), the application of production (Pelim) to the graph

from Figure 7c by (PelimM1 2), the application of production (PmergeM) to

the graph from Figure 7d by (PmergeM1 2), and the application of production

(PsolveM) to the graph from Figur 7e by (PsolveM1 2).

The dependency relationship between these tasks can be represented in the form

of a dependency graph (see Figure 4). The two tasks are “dependent” when the second

one can be started only after the first one is finished. Based on this dependency
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graph, we can set up the partial order where the tasks are grouped into sets of

independent tasks that can be scheduled set by set into a parallel shared memory

machine. This can be obtained from the coloring of the dependency graph shown in

Figure 4. From this figure, we can read that tasks (PgenM1 1) and (PgenM1 2)

can be executed concurrently; when they finish, then we can execute (PelimM1 1)

and (PelimM1 2) in concurrent tasks. Later, we can execute task (PmergeM1 2)

and, finally, task (PsolveM1 2).

3. Analysis of the concurrency for different grids with singularities

3.1. Two-dimensional point singularity

We start with the theoretical analysis of the concurrency for the case of the mesh with

point singularity. The exempary deriviation of the hypergraph grammar productions

representing the multi-frontal solver algorithm for a mesh with a point singularity

are presented in Figure 8. We utilize multiple colors to illustrate the parts of the

hypergraph where the particular tasks are executed. The differing shades of colors

correspond to the nodes and hyperedges of the hypergraph associated with the elim-

inated and Schur complement rows in the corresponding matrices.

(PgenMi j)
i = 1, 3

(layer number)
j = 1, 3

(element number)

(Pelimi j)
i = 1, 3

(layer number)
j = 1, 3

(element number)

(Pmergei 1,2)
i = 1, 3

(layer number)
(Pmerge3 3,4)

(Pelimi 1,2)
i = 1, 3

(layer number)
(Pelim3 3,4)

(Pmergei 1,2,3)
i = 1, 2

(layer number)
(Pmerge3 1,2,3,4)

(Pelimi 1,2,3)
i = 1, 2

(layer number)
(Pelim3 1,2,3,4)

(Pmerge1,2),
followed by
(Pelim1,2)

(Pmerge2,3),
followed by
(Pelim2,3)

Figure 8. Exempary deriviation of hypergraph representing multi-frontal algorithms for

mesh with point singularity
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In Figure 9, we construct the dependency graph by analyzing the dependency

relationships between these tasks. The nodes in the dependency graph represents

the tasks related to the execution of the hypergraph grammar productions on the

different parts of the mesh represented by a hypergraph. There is a one-to-one re-

lationship between the hypergraph grammar production executed on a given part of

the hypergraph and the task in the dependency graph.

We color the dependency graph layer by layer. Particular sets of tasks are ob-

tained by collecting all of the tasks with the same color on the graph. The graph

colors point out the sets of tasks that can be executed concurrently.

Figure 9. Colored dependency graph for point singularity

3.2. Two-dimensional edge singularity

The exemplary derivation of the hypergraph grammar productions that express the

multi-frontal solver algorithm for a mesh with an edge singularity is presented in

Figures 10 and 11.
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(Pgen1 j)
j = 1, 8 (element number)

(Pelim1 j)
j = 1, 8 (element number)

(Pmerge1 j)
j = 1, 4 (patch number)

(Pelim1 j)
j = 1, 4 (patch number)

(Pgen2 j)
j = 1, 8 (element number)

(Pelim2 j)
j = 1, 8 (element number)

(Pmerge2 2j-1)
(Pelim2 2j-1)

j = 1, 4 (patch number)
(Pmerge1,2 j)

j = 1, 4 (patch number)
(Pelim1,2 j)

j = 1, 4 (patch number)

(Pmerge1,2bis j)
j = 1, 2 (patch number)

(Pelim1,2bis j)
j = 1, 2 (patch number)

(Pgen3 j)
j = 1, 4 (element number)

Figure 10. Exempary deriviation of hypergraph representing multi-frontal algorithms for

mesh with edge singularity
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(Pelim3 j)
j = 1, 4 (element number)

(Pmerge3 j)
(Pelim3 j)

j = 1, 2 (patch number)

(Pmerge3bis j)
(Pelim3bis j)

j = 1, 2 (patch number)

(Pmerge3prim) (Pelim3prim)
(Pgen4 j)

j = 1, 2 (element number)

(Pelim4 j)
j = 1, 2 (element number) (Pmerge4) (Pelim4)

Figure 11. Exempary deriviation of hypergraph representing multi-frontal algorithms for

mesh with edge singularity

To simplify the presentation, we illustrate the execution of the hypergraph gram-

mar productions by highlighting the nodes and hyperedges of the graph. Again,

we highlight the hyperedges and nodes to which the hypergraph production will be

applied.

In Figure 12, we construct the dependency graph by analyzing the dependency

relationship between these tasks. The graph is colored to point out the sets of tasks

that can be executed concurrently. After the concurrent processing of both parts

of the mesh (observe the analogous colors in both graphs), we need to merge the
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two resulting frontal matrices and finish the elimination processes by executing hy-

pergraph grammar productions (Pgen4 1), (Pgen4 2), (Pelim4 1), (Pelim4 2),

(Pmerge4), and (Pelim4).

Figure 12. Colored dependency graph for edge singularity for left-hand side of mesh

4. Numerical results

4.1. Model problems

In this section, we present a detailed comparison of the execution time, efficiency,

and speedup for the implementation of our hypergraph grammar solver with GA-

LOIS scheduler [34] for two-dimensional grids with point and edge singularities. The

singularities are located in the center of the domain in order to investigate the gain

associated with the execution of the hypergraph grammar-based solver that eliminates

elements level by level.

We do not provide a PDE here since we assume that we are solving any PDE

that has a singularity at a point or at an edge that requires several refinements. For

elliptic scalar value problems, the sparsity of the resulting discretization matrix is

identical; thus, the processing of the tasks follows the same pattern and has the same

complexity.
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From the comparison presented in Figures 13–16 for the edge singularity, we

can read that our sequential GALOIS solver has a faster execution time than the

sequential MUMPS solver.
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Figure 13. Execution time of GALOIS solver for edge singularity

 0.0001

 0.001

 0.01

 0.1

 1

5
1

1
0

1

1
9

9

3
9

3

7
7

9

1
5

4
9

3
0

8
7

6
1

6
1

1
2

3
0

7

2
4

5
9

7

4
9

1
7

5

9
8

3
2

9

1
9

6
6

3
5

3
9

3
2

4
5

7
8

6
4

6
3

tim
e,

 s

mesh size

1

 0.0001

 0.001

 0.01

 0.1

 1

5
1

1
0

1

1
9

9

3
9

3

7
7

9

1
5

4
9

3
0

8
7

6
1

6
1

1
2

3
0

7

2
4

5
9

7

4
9

1
7

5

9
8

3
2

9

1
9

6
6

3
5

3
9

3
2

4
5

7
8

6
4

6
3

tim
e,

 s

mesh size

1
2

 0.0001

 0.001

 0.01

 0.1

 1

5
1

1
0

1

1
9

9

3
9

3

7
7

9

1
5

4
9

3
0

8
7

6
1

6
1

1
2

3
0

7

2
4

5
9

7

4
9

1
7

5

9
8

3
2

9

1
9

6
6

3
5

3
9

3
2

4
5

7
8

6
4

6
3

tim
e,

 s

mesh size

1
2
4

 0.0001

 0.001

 0.01

 0.1

 1

5
1

1
0

1

1
9

9

3
9

3

7
7

9

1
5

4
9

3
0

8
7

6
1

6
1

1
2

3
0

7

2
4

5
9

7

4
9

1
7

5

9
8

3
2

9

1
9

6
6

3
5

3
9

3
2

4
5

7
8

6
4

6
3

tim
e,

 s

mesh size

1
2
4
8

Figure 14. Execution time of MUMPS solver for edge singularity
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Figure 15. Speedup of GALOIS solver for edge singularity
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Figure 16. Speedup of MUMPS solver for edge singularity

The MUMPS solver utilizes Cholesky factorization (the problem is symmetric

and positive definite), but our solver utilizes LU factorization. Our solver has better
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granularity in the sense that the hypergraph grammar model allows us to naturally

identify multiple independent tasks that can be grouped together and executed con-

currently. These tasks perform a partial LU factorization. These LU factorizations

performed on the small task matrices are slower than the Cholesky factorization per-

formed inside the MUMPS solver on parts of the global matrix. However, our total

execution time is shorter, as we can perform a better concurrent scheduling of more

small tasks resulting from the hypergraph grammar structure.

Our GALOIS solver is a pure C code and has been compiled with gcc-4.8.0.

The MUMPS solver has been compiled with gfortran-4.8.0 and linked to metis-4.0.3,

atlas-3.10.1, LAPACK-3.4.2, and ScaLAPACK-2.0.2. Thus, both solvers have been

compiled in an optimized way. The tests were performed on a single node of an

ATARI Linux cluster with an 8-core Intel(R) Xeon(R) CPU with 2.4 GHz and 16 GB

RAM. However, the MUMPS solver uses MPI as the communication mechanism, but

the GALOIS uses its own mechanism for multi-thread communication.

From the comparison presented in Figures 17–20 for the point singularity, we can

read that the grids for the point singularities are very small and that both solvers

lost their efficiency there. The MUMPS solver is faster in sequential mode; however,

our GALOIS multi-thread solver has a better speedup. This implies that our solver

has better mechanisms to manage the thread scheduling and communication, and its

overhead is smaller than that of MUMPS, which uses MPI as the communication

mechanism over a shared-memory multi-core machine.
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Figure 17. Execution time of GALOIS solver for point singularity
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Figure 18. Execution time of MUMPS solver for point singularity
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Figure 19. Speedup of GALOIS solver for point singularity
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Figure 20. Speedup of MUMPS solver for point singularity

4.2. Quality of ordering resulting
from hypergraph grammar sequential processing of mesh

Another issue is how the sequential hypergraph grammar-based solver performs as

compared to traditional multi-frontal solvers.

In order to investigate this issue, it is necessary to transform the hypergraph

grammar-based processing of the mesh into the ordering for the sequential execution.

The ordering may be obtained by considering the sequence of tasks and not from the

sets of tasks processed in a concurrent manner. Each task corresponding to (Pelim*)

production eliminates some degrees of freedom, and this prescribes the ordering.

The method of how we order the tasks in a sequential manner over an arbitrary

mesh is prescribed by the bisections weighted by an element-size algorithm [1]. It is

worth mentioning that this ordering is possible to obtain with the hypergraph model

but not with the CP-graph model due to the structure of the graphs.

This ordering can then be passed to the sequential MUMPS solver, and the ex-

ecution times and flops can be compared with the traditional ordering algorithms

employed by the MUMPS solver (e.g., nested-dissections [17] or AMD [2]). A com-

parison of the nested-dissection ordering as implemented by the METIS library [17]

and the AMD ordering as used by MUMPS [3–5] with the ordering resulting from

our hypergraph grammar solver is presented in Figures 21 and 22. We compare the

number of floating-point operations performed during the elimination using particular

orderings.
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The data structure and the ordering that allows for a layer-by-layer elimination

of the elements surrounding the singularities results in a lower number of flops.

Figure 21. Comparison of hypergraph grammar ordering, nested-dissections, and AMD

ordering for point singularity

Figure 22. Comparison of hypergraph grammar ordering, nested-dissections, and AMD

ordering for edge singularity

4.3. Propagation of electromagnetic waves in formation layers

In this section, we provide the numerical results of our solver for a real engineering

problem related to simulations of the propagation of electromagnetic waves in the

formation layers.
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Several numerical methods exist for the simulation of forward resistivity measure-

ments (i.e. [6, 7, 10, 19, 24, 33, 37–39]). In this section, the forward problem is solved

by means of the goal-oriented self-adaptive hp Finite Element Method (hp-FEM) de-

veloped in [23, 25]. We employ our solver as a key component of the goal-oriented

strategy. The governing equations are described as follows:

The direct current flow in the continuum 3D conductor is governed by time-

-harmonic Maxwell’s equations with an angular frequency of ω 6= 0
curlH = (σ + iωε)E + Jimp (Ampére’s law)

curlE = −iωµH (Faraday’s law)

div(εE) = χ (Gauss’s law of electricity)

div(µH) = 0 (Gauss’s law of magnetism),

(1)

where H is the magnetic field intensity (magnetizing field), E is the electric field,

Jimp is a prescribed impressed electric current density, χ is the electric free charge

distribution, and ε, µ, and σ stand for the permittivity, permeability, and electrical

conductivity of the considered medium, respectively.

We are looking for solutions to (1) in domain Ω ⊂ R3 being a 3D cylinder

surrounding the borehole (see Fig. 23).
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Figure 23. Three-dimensional geometry of logging instrument in vertical borehole penetrat-

ing three dipping layers. x = (x1, x2, x3) represents Cartesian system of coordinates, and

ζ = (ζ1, ζ2, ζ3) represents new non-orthogonal system of coordinates. New system of coordi-

nates is different in all three sub-domains. Subdomain I corresponds to logging instrument,

Subdomain II to borehole, and Subdomain III to formation. New system of coordinates is

globally continuous (as indicated by parameterization)

Notice that such an Ω is a simply connected bounded domain with a Lipschitz

boundary. On boundary Γ = ∂Ω, we consider homogeneous perfect electric conductor

(PEC) boundary conditions

n×E = 0 on Γ (2)

with n being the outward unit normal vector field.
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We consider the following Hilbert spaces:

H(curl; Ω) =
{
F ∈ L2(Ω;C3) : curlF ∈ L2(Ω;C3)

}
(3)

and

V = H0(curl; Ω) = {F ∈ H(curl; Ω) : n× F = 0 on Γ} . (4)

Both spaces are endowed with an inner product:

(E,F)H(curl;Ω) =

∫
Ω

curlE · curlFdx+

∫
Ω

E · Fdx (5)

where u · v = u1v1 + u2v2 + u3v3 (note that this is not the standard inner product

in C3).

Dividing both sides of Faraday’s law by 1
µ , multiplying them by curlF, integrating

(one term by parts) over domain Ω, and finally applying Ampére’s law, we obtain the

following variational formulation (the so-called E-formulation): find E ∈ V such that∫
Ω

1

µ
curlE · curlFdx−

∫
Ω

(ω2ε− iωσ)E · F = −iω
∫

Ω

Jimp · Fdx (6)

for every test field F ∈ V . We assume that Jimp ∈ L2(Ω;C3), (ω2ε − iωσ), µ 6= 0,

µ ∈ R, ε ∈ R, µ > 0, ε > 0, and σ ∈ L∞(Ω), σ ≥ σ0 > 0 a.e. in Ω.

For the case of deviated wells (below 90 degrees) in a horizontally stratified

layered media, we employ the hp–Fourier Finite Element Method described in [21].

This method performs a non-orthogonal change of coordinates followed by a Fourier

series expansion in the azimuthal direction. Using that technique, we obtain fast

and accurate forward simulations of the 3D resistivity logging measurements in the

deviated wells.

The forward problem is formulated for a 3D-skewed cylinder; therefore, we per-

form a change of variables from Cartesian to the non-orthogonal system of coordinates

(see Figure 23). First, we consider the union of three (possibly rotated) cylindrical

systems of coordinates defined over subdomains I, II, and III (respectively) as illus-

trated in Figure 23. The change of coordinates ζ = (ζ1, ζ2, ζ3) = ψ(x) is globally

continuous and with a positive Jacobian J ; therefore, it is suitable for Finite Element

computations. In addition, we observe that J (as a function of ζ2) can be represented

as a linear combination of functions 1, sin(ζ2), and cos(ζ2) because the change of co-

ordinates is composed of rotations of the cylindrical system of coordinates. It is easy

to see that corresponding metric tensor JTJ (as a function of ζ2) can be represented

in terms of the following five Fourier basis functions: 1, cos(ζ2), sin(ζ2), cos2(ζ2), and

sin2(ζ2). Since the material properties for the geometry described in Figure 23 (de-

viated wells) are constant with respect to new quasi-azimuthal direction ζ2 and the

metric can be represented exactly with only five Fourier modes, we conclude that,

when using a 1D Fourier series expansion in terms of ζ2, the corresponding stiffness

matrix becomes penta-diagonal (as opposed to a dense matrix) with respect to ζ2,

leading to a dramatic reduction of computational complexity. For details, see [21].
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The primal direct problem for the conductive media equation can be summarized

as follows: find electric potential u ∈ H1
0 (Ω) assuming the zero Dirichlet condition on

the whole ∂Ω for the given resistivities of all layers and the borehole subdomain. The

influence of the probe is expressed by the assumed displacement of q = ∇ · Jimp in

the borehole subdomain.

We have connected our solver to the goal-oriented hp adaptive finite element

method code solving the problem of the propagation of electromagnetic waves in

the borehole and the formation layers. The code uses a 2D mesh expanded in the

cylindrical system of coordinates. Thus, the computational mesh is treated like a 2D

mesh with the number of unknowns per mesh nodes corresponding to the number

elements in the azimuthal direction.

The exemplary meshes after rotating the 2D mesh and transforming it back to

the skew cylindrical system are presented in Figures 24–25.

Figure 24. Example of two-dimensional grid generated by goal-oriented hp-adaptive finite

element method code solving
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Figure 25. Example of three-dimensional grid obtained by rotating two-dimensional one

in azimuthal direction

The code operates in two loops. The first loop iterates through positions of

antennas; for each position, the second loop with mesh refinements are executed. We

refer to [21] for more details. In Table 1, we present a comparison of an execution

time of the MUMPS solver and our solver on a grid generated by the goal-oriented

code as well as the total time of the code for all of the positions of the antennas. We

can read a similar scalability of our solver with the MUMPS solver and around a two-

to three-times-faster execution time of our solver. The largest mesh size from a single

antenna solution is equal to 148,257, but the solver is called several times for different

positions of the antennas. We break the computations for 32 cores since the solver

execution time is larger than for 16 cores. This is due to hyperthreading on the Linux

cluster node.

Table 1
Scalability of our solver on problem of propagation of electromagnetic waves

Cores 1 2 4 8 16 32

Hypersolver time [s] – 14.506 8.124 5.209 3.35 4.038

MUMPS time [s] – 27.859 17.457 12.747 10.011 11.015

Total time [s] – 1087 735 555 295 –

5. Conclusions

In this paper, we have analyzed the concurrency of the multi-frontal direct solver

executed over model two-dimensional grids with point and edge singularity.

We defined several hypergraph grammar productions over the hypergraph rep-

resentation of the computational mesh. We analyzed the dependency relationship
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between the so-called tasks (defined as application of the production to the subhyper-

graph of the hypergraph representing the mesh) and constructed dependency graphs

that are the equivalents of elimination trees. The hypergraph grammar productions

were implemented and executed in the GALOIS system. A sequence of numerical

experiments tested the scalability of the resulting multi-thread multi-frontal direct

solver.

We show that our GALOIS-based solver outperforms the MUMPS solver on the

example of edge singularity. This is because MUMPS is not a task-based programming

model solver. The utilization of the graph grammar for the expression of the solver

algorithm allows for a better granularity in the computations, and there are more

independent tasks to be scheduled for concurrent execution. The hypergraph grammar

model allows for a better definition of the computational tasks related to hypergraph

grammar productions. Since the hypergraph represents the computational mesh as

a flat structure, it is easy to process the elements surrounding the singularities layer

by layer. This in turn produces more independent tasks to be scheduled for concurrent

execution.

The hypergraph is just a “flat” data structure allowing for a simple construc-

tion of tasks surrounding the singularities and processing them level by level. The

hypergraph grammar is just a model for expressing the solver algorithm. For more-

-complicated grids, it requires some control algorithm that chooses the parts of the

mesh where the productions will be executed and allow for the selection of sets of tasks

by coloring the dependency graph. For the problem of the propagation of electromag-

netic waves in formation layers, we employ the bisections weighted by an element size

algorithm [1] to identify the tasks. These sets are then scheduled by the GALOIS

using the available cores. Our future work will involve a generalization to three-di-

mensional grids.
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