
Computer Science • 19(4) 2018 https://doi.org/10.7494/csci.2018.19.4.3006

Atul Thakare
Parag Deshpande

AN EFFICIENT APPROACH
FOR VIEW SELECTION
FOR DATA WAREHOUSE
USING TREE MINING
AND EVOLUTIONARY COMPUTATION

Abstract The selection of a proper set of views to materialize plays an important role

in database performance. There are many methods of view selection that use

different techniques and frameworks to select an efficient set of views for ma-

terialization. In this paper, we present a new efficient scalable method for view

selection under the given storage constraints using a tree mining approach and

evolutionary optimization. The tree mining algorithm is designed to determine

the exact frequency of (sub)queries in the historical SQL dataset. The Query

Cost model achieves the objective of maximizing the performance benefits from

the final view set that is derived from the frequent view set given by the tree

mining algorithm. The performance benefit of a query is defined as a function

of query frequency, query creation cost, and query maintenance cost. The expe-

rimental results show that the proposed method is successful in recommending

a solution that is fairly close to an optimal solution.

Keywords database management systems, data warehousing and data mining, query

optimization, graph mining, algorithms for parallel computing, evolutionary

computations, genetic algorithms

Citation Computer Science 19(4) 2018: 431–455

431

https://doi.org/10.7494/csci.2018.19.4.3006
https://orcid.org/0000-0003-3897-5973
https://orcid.org/0000-0003-4051-4666

432 Atul Thakare, Parag Deshpande

1. Introduction

Among all of the query optimization techniques, indexing and view materialization

have been proven to be the most effective ones. A materialized view improves data

access time by pre-computing the intermediate results. The user queries can be pro-

cessed efficiently by using the data stored within the materialized views. Hence, the

materialized view can speed up the analytical query processing in a data warehouse.

However, the creation of materialized views demands additional storage space and

incurs view maintenance overheads; because of this, it is not possible to materialize

all possible views. Hence, it is an important issue in data warehousing systems to se-

lect an appropriate set of materialized views that minimizes the total query response

time and cost of maintaining the selected views under the given storage constraints.

To achieve this goal, views that are closely related to most of the workload queries

need to be materialized [9]. To address this problem, several cost models (solutions)

are proposed in the existing literature, and most of the models use some or all of

the cost metrics out of query execution frequencies, base relationship update fre-

quencies, query access costs, view maintenance costs, and the systems storage space

constraints. The solutions mainly consist of two parts, out of which the first part finds

a set of candidate views and the second defines the final set of views to materialize

(which is essentially a subset of the candidate views). This selection of a final view

set is done under specified resource constraints (storage cost and view maintenance

cost constraints) by using some approximate heuristic algorithms(s).The known algo-

rithms related to the selection of a final view set can be classified into four categories:

deterministic algorithms, randomized algorithms, hybrid algorithms, and constraint

programming. For the first part of constructing a candidate view set, a Directed Acyc-

lic Graph (DAG) of the queries is usually used. This DAG represents the dependence

relationship of the queries and is used to detect common sub-expressions between

different queries. The most commonly used DAGs for materialized view selection are

the AND/OR view graph, Multiple View Processing Plan (MVPP), and data cube

lattice [16]. Some of the view selection methods use identification techniques such

as a syntactical analysis of the workload and query rewriting instead of DAGs. We

have designed a novel tree mining algorithm to detect common sub-queries between

different workload queries and to determine the exact execution frequency of these

sub-queries in the past workload.

2. Our contribution

To predict future queries, we determine frequent subqueries from the past workload,

as these query components will have a high probability of being repeated in the near

future as an independent query and as a part of many complex or nested queries.

Considering this syntactical similarity (link) between past workload frequent query

components and the queries arriving in the near future, we suggests that extracting

such frequent components from the past workload and converting the most profitable

An efficient approach for view selection for data warehouse. . . 433

subset of it to the materialized views will ensure that the future workload will be

better optimized due to the use of views while processing future queries. We define

the similarity and dissimilarity measures among the queries, which enables to form

groups of similar ,i.e., related queries (defined in section 4.1). Each group will have

a set of queries having one or more identical component(s) common amongst them.

Different queries from all the groups (also called as clusters or partitions) are used

to build a set of candidate views. As we cluster the related queries together, most of

the identical or similar query components originating from different complex queries

(which may not be frequent) will be added to the same cluster. To determine the list

of candidate queries with their final frequencies, we designed two phases of frequency

roll-ups.

The phase one frequency roll-ups which is also called as inter-cluster/ phase-1

counting is performed within each cluster. This phase determines the aggregate fre-

quency of each distinct query component within each cluster. For example, If there

are ten queries {Q1, Q2, ...Qn} having a common subquery S, then the number of

executions (frequency) of S will be, E =
∑n

k=1Ek where Ek is the number of exe-

cutions (frequency) of Query Qk. As ten different instances of S will join the same

cluster say P1 through queries {Q1, Q2, ...Qn}, phase-1 counting will assign aggregate

frequency E to first instance of S and will remove all the other identical 9 instances.

This operation is performed on each distinct query component within each cluster

in phase-1 counting. At the end of phase-1 counting, every query component will

be unique within its cluster having aggregate frequency assigned to it. This phase

determines the list of candidate queries along with their aggregate, i.e., intermediate

frequency within a cluster. In other words, frequency rollups during phase-1 counting

remove all of the duplicates of each candidate component within the cluster, leaving

distinct candidate components in it along with the updated number of executions

of each one. This phase also optimizes the process of finding the total number of

executions (final frequency) of each candidate query by reducing the search space.

To determine the final frequency of each candidate query, we propose the use of

phase two frequency roll-ups which is also called as intra-cluster/ phase-2 counting,

which is performed while merging any two partitions (clusters). In this phase, we

recursively merge 2 partitions at a time till all the partitions are merged to form

a single partition. This phase takes care of exceptional cases where candidate com-

ponent of one cluster is also related to candidate component from other cluster(s).

Frequency rollups during phase-2 counting occurs for only those queries from the first

partition, which is having an exact matching (isomorphic) candidate query in the ot-

her partition. In such cases, frequency rollups will also be performed for all of the

candidate queries in the subcomponent hierarchy of the matching queries from both

the partitions (explained in section 6.4.3).

Phase one frequency roll-ups followed by phase two frequency roll-ups gives us

all the candidate components with their final frequencies. During these two phases,

in addition to frequency roll-ups the algorithm also captures the relationship links

434 Atul Thakare, Parag Deshpande

between different candidate components when one candidate query is a subcomponent

of the other candidate query(s). Hence, this process can be seen as iteratively build-

ing lattices of related queries. During this process, the frequency of each candidate

query is rolled-up by adding to its frequency the frequencies of all of its duplicates

and the frequencies of all of its super-queries. This process also involves removing

all of the duplicates of each candidate query. This keeps on reducing the number of

queries under consideration (hence, reducing the time complexity of the process).

As the main contributions of this paper, a new tree mining method is developed

for finding a set of top frequent candidate queries, and a novel query cost model based

on evolutionary computation is introduced, which takes a storage cost, creation cost,

and maintenance cost of queries under consideration for the recommending fairly

optimal final view set.

3. Related work

The problem of finding views to materialize to optimize query performances has tra-

ditionally been studied under the name of view selection. This selection is non-trivial

in nature and is an NP-complete problem. Harinarayan and Ullman [9] were the first

to recognize the problem of materialized view selection for supporting a multidimen-

sional analysis in OLAP. The authors proposed a cost model defined on a lattice of

views and provided a polynomial-time greedy algorithm for view selection that mini-

mizes the query processing cost (subject to the space constraint in the special case of

data cubes).

Gupta [6] further improved the work by providing a solution for materializing

view indexes. Ezeife [3] also considered the same problem but proposed a uniform

approach using a more detailed cost model. Ross and Sudarshan [16] presented heu-

ristics to determine the additional set of views to materialize under a given storage

constraint to reduce the overall maintenance cost and query response time of all of

the views. Yang [19] proposed a heuristic algorithm that utilizes a Multiple View

Processing Plan (MVPP) to obtain an optimal materialized view selection such that

the best combination of good performance and low maintenance cost can be achieved.

The work in [18] considered the queries that include select, project, join, and

aggregation operations. The paper proposed a greedy algorithm to select a set of

materialized views so that the combined query processing and view maintenance cost

is minimized. A genetic algorithm has been used in [10, 20] in conjunction with

the Multiple View Processing Plan (MVPP) framework to solve the view selection

problem. The views have been selected based on a reduction in the combined query

processing and view maintenance cost. Himanshu Gupta and Inderpal Singh Mumick

[8] developed algorithms to select a set of views to materialize in order to minimize

the total query response time under the view maintenance time constraint. Lin and

Kuo [14] proposed a greedy genetic algorithm that selects a set of materialized cubes

from data cubes under the storage space constraints in order to reduce the amount

of query cost as well as the cube maintenance cost.

An efficient approach for view selection for data warehouse. . . 435

Gupta [7] presents a greedy view selection algorithm in AND/OR view graphs,

which describes all possible ways to generate warehouse views and selects the best

query path that can be maximally utilized to optimize the response cost on the wor-

kload queries under the maintenance cost constraints. In [2], the authors proposed

a framework for materialized view selection that exploits a data mining technique

(clustering) in order to determine clusters of similar queries. The paper also proposed

a view merging algorithm that builds a set of candidate views by iteratively build-

ing a lattice of the views. To determine the final view set, a greedy process is used

that considers the cost of accessing data from the views and cost of storing views as

important criteria of the selection process.

The authors of [11] proposed a cost model having well-defined gain metrics and

loss metrics to decide the membership of a view in the view set. For candidate ge-

neration, the data cube is represented as a lattice, and the lattices are expressed in

the form of a vector. The vector is used to search for a dependency of views. In [4],

An Gong proposed a clustering based dynamic materialized view selection algorithm

(CBDMVS). It finds a cluster of SQL queries using a similarity threshold τ ; if a new

querys similarity is below for all of the existing clusters, then a new cluster is formed.

The similarity between queries is measured based on certain parameters like the base

table sets, equivalence connectivity conditions, scope connectivity conditions, and

output column sets. These queries are mined using text mining. CBDMVS dynami-

cally adjusts the materialized view set by replacing views with the lowest gains where

the system lacks storage space for the new query. In essence, it not only improves the

overall query response time but also reduces the computational cost that is spent while

updating the materialized view. Afrati and Chirkova [1] explained how to answer ag-

gregate queries using aggregate views by constructing equivalent rewritings and how

to optimally select aggregate views to materialize for use in those rewritings. Moham-

mad and Vahid [15] discussed the usage of Directed Acyclic Graphs and a data cube

lattice in the candidate generation step and the various heuristic algorithms in the

second step of the view selection. The paper also proposed a novel algorithm based on

the frequent itemset mining technique that aims at minimizing the view creation and

maintenance costs. Hylock and Currim [12] presented a View Selection Problem heu-

ristic model that combines the previous methods and minimizes and bounds the view

maintenance time. In [17], Rajyalakshmi proposed an association rule mining-based

materialized view selection algorithm (ARMMVVM) for improving the performance

of materialized view selection and materialized view maintenance using association

rule mining. It integrates the technique of improving query response time by using

a frequent mining algorithm along with adjustments to the view set. In [5], the au-

thors considered the problem of view selection in Big Data warehousing systems and

defined it as a multi-objective optimization problem for minimizing the total query

processing MapReduce cost and MapReduce cost for maintaining the materialized

views. In [13], the author proposed a swarm optimization-based view selection algo-

rithm to selects the top K views from a multidimensional lattice in order to improve

the performance of the analytical queries.

436 Atul Thakare, Parag Deshpande

4. Proposed work

4.1. Terminologies

View: A view is a derived relationship defined by a query in terms of base relations-

hips and/or other views.

Materialized View: A view is said to be materialized if its query result is persis-

tently stored; otherwise, it is said to be virtual. We refer to a set of selected views to

materialize as a set of materialized views.

Workload: A workload or query workload is a given set of queries {Q =

Q1, Q2, ...Qn}. Based on the query workload set, materialized views can be defi-

ned. Each query in the query workload can be described using its frequency, storage

cost, and update cost. Based on some combination of these parameters, the set of

views to materialize can be defined.

View Selection: Given a database schema and query workload, the objective is to

select an appropriate set of materialized views to improve the performance of a data-

base in processing the workload; i.e., in executing queries in the workload. The ideal

view set can be comprised of queries that are useful in optimizing the performance of

a large number of queries in the workload.

View Maintenance: Whenever a base relationship is changed, the materialized

views built on it have to be updated in order to compute up-to-date query results.

The process of updating a materialized view is known as view maintenance.

Related Candidate Queries: Candidate Queries are said to be related if they

have a common super query; i.e., they are subcomponents of the same query OR they

have a common subquery. For example:

• If query Q4 has Q1 and Q2 as its subqueries, then Q1 and Q2 are related queries.

• If queries Q1 and Q2 have common subquery Q3, then Q1 and Q2 are related

queries.

• If query Q4 has Q1 as its subquery, then Q4 is related to all of the subqueries as

well as the super queries of Q1; similarly, Q1 is related to all of the subqueries

and super queries of Q4.

4.2. Problem formulation

The problem of view selection can be formulated as follows. Given database schema

R = {R1, R2, ...Rr} and query workload Q = {Q1, Q2, ...Qq} defined over R, the

problem is to select an appropriate set of materialized views M = {V1, V2, ...Vm} such

that the query workload is answered with the lowest cost under a limited number of

resources; e.g., storage space and/or view maintenance cost.

4.3. Architecture of proposed work

We have done this experiment on an Oracle database system. We have gathe-

red all of the information related to the historical SQL queries, their executi-

ons plans, and statistics from three data dictionary views; v$sqlarea, v$sql, and

An efficient approach for view selection for data warehouse. . . 437

v$sql plan statistics all [Steps 1 through 3 of Figure 1]. The tree mining algorithm

analyzes the query execution plans to find the set of frequent subqueries (Fsq). The

Query Cost Model takes (Fsq) as an input and gives the final view set (Fv) by using

the proposed genetic algorithm over the parameter storage cost, processing cost, and

update cost of the queries in Fsq (as represented in Figure 1).

1. SQL QUERY
HISTORY

2. QUERY PLAN
GENERATOR

3. SET OF
QUERY PLANS

4. TREE MINING
ALGORITHM

5. FREQUENT
QUERY SET

6. STORAGE
COST

7. EXECUTION
COST 8. UPDATE

COST

9. GENETIC ALGORITHM

10. FINAL QUERY SET
11. MATERIALIZED
VIEWS CREATION

12. SET OF MATERIALIZED VIEWS

13.
DATABASE

Figure 1. Architecture of Proposed Work

5. Algorithms

A Tree Mining Algorithm is used for finding the top K frequent candidate que-

ries/subqueries. The detailed explanation of this algorithm (which is divided into

several small algorithms) is given in Section 6.

Algorithm 1 finds out all of the active components (frequency above threshold)

from the set of query plans. Algorithm 2 takes the active component list (output of

Algorithm 1) as the input and clusters the active components into different groups

based on the relationships between them. The output of Algorithm 2 is the same list

in which each component is assigned a partition number or group number based on

which the active components can be separated into groups.

Algorithm 3 takes the output of Algorithm 2 as an input and actually parti-

tions the active component list based on the partition key column. Before this, it

determines the frequency (i.e., the number of executions of each distinct component

belonging to each partition). The output of Algorithm 3 is the Candidate List, which

contains different candidate components along with their partition keys and the num-

ber of executions within their partitions. The output of Algorithm 3 is the input to

Algorithm 4, which merges the disjoint pair of partitions in parallel and repeats this

process until the table is unpartitioned. Algorithm 4 gives the final list of frequent

components (Candidates) along with their final frequencies.

438 Atul Thakare, Parag Deshpande

5.1. Algorithm 1. Finding all occurrences of all subqueries
having frequent database objects and frequent database operations
from SQL History H

Assumptions and Terminologies:

H: Query Plans for all SQL Queries from SQL History.

Edges of Query Plans having no labels are assigned label L.

F: Threshold Frequency.

Active Vertex: Vertex Label whose frequency is above F.

Active Edge: Edge Label whose frequency is above F.

Active component of a query plan: connected component having all vertices active,

connected by active edges. Each leaf node of an active component should be a subset

of the leaf nodes of the query plan (from which it is derived).

COMPL: Active Component List

Each Component’s Record in COMPL has five fields: COMPID, Component, match-

code, partitionkey, and Freq (Initially set to number of executions of Query plan from

which a component is derived). This information is available in Data Dictionary Views.

Algorithm 1. Finding SubQueries from SQL History

1: Input: Query plans Set H , Threshold F

2:

3: for each query plan tree Qj in H do . Finding active components in H

4: if Qj contains at least one table join and one aggregate function then

5: for each Active Component AC in Qj do . AC represents a subquery in Qj

6: Compute Matchcode M

7: Generate new COMPID

8: Add record {COMPID,AC,M,NULL,NULL} to COMPL.

9: end for

10: end if

11: end for

12: Output: Active Component List COMPL

5.2. Algorithm 2. Assigning partitioning key
for each active component record
in COMPL for clustering-related subqueries in H

Assumptions and Terminologies:

Size of component: number of edges in a component.

Closed component: component having no super-component in COMPL.

Ck : Kth component in COMPL.

Cm : M th component in COMPL.

Ck ⊆ Cm : Component Ck is a subcomponent of Component Cm. In other words,

Query Ck is a Subquery of Query Cm. Subquery means Ck may also be equal to Cm.

PKey: Partition Key

An efficient approach for view selection for data warehouse. . . 439

Algorithm 2. Assigning partitioning key for each component in COMPL

1: Input: COMPL: Component List. Size: number of components in COMPL. (Output

of Algorithm 1)

2: Sort COMPL based on sizes of components in descending order. . Hence, all of the

closed components will be at the beginning of the list.

3: CurrentLast ← 1

4: PKey ← 1

5: for k=1; k ≤ Size; k++ do . Assigning partition key to each component

6: for m=1; m ≤ CurrentLast; m++ do

7: if Ck ⊆ Cm then

8: Ck.partitionkey ← Cm.partitionkey

9: CurrentLast ← CurrentLast + 1

10: Continue outer loop for next value of k

11: end if

12: end for

13: Ck . partitionkey ← PKey++

14: CurrentLast ← CurrentLast + 1

15: end for

16: Output: COMPL list with partition key assigned for each component within it

(4th field of each Component record), number of partitions (Pkey − 1)

5.3. Algorithm 3. Partitioning component list
based on partition key and determining frequency of each distinct
component (called a candidate)
within each partition [Phase-1 frequency counting]

Assumptions and Terminologies:

CANDL: Candidate List. This list has PARTID, CANDID, COMPID, and FREQ

fields, where COMPID of CANDL references COMPID of COMPL.

{Set of distinct components within each partition forms a list of candidates within

that partition}
PKey –1: number of partitions from Algorithm 2. . Last partition number will be

PKey – 1

PSizen: Number of components in nth partition.

TempL: List of deleted components.

SubL: SubList of components.

RLIST: Relationship List storing relationships between different non-identical com-

ponents.

Relationship (a, b): Function that stores relationship between components a and b

in RLIST.

cn-id: candidate id initialized to 1.

newrec: returns record corresponding to new candidate to be inserted to CANDL.

Crn : rth component in nth partition in COMPL.

COMPLn: list of components from nth partition in COMPL.

440 Atul Thakare, Parag Deshpande

Algorithm 3. Defining a Candidate List

1: Input: COMPL: Component list; Size: size of COMPL List; number of partitions:

PKey - 1 output of Algorithm 2

2: Partition the COMPL on partitionkey field. Hence, each partition will contain all occur-

rences (originated from historical queries in H) of related subqueries.

3: for n=1; n ≤ PKey -1; n++ do

4: r = 1

5: Sort the nth partition based on Component sizes.

6: TempL ← {} . Empty List

7: while SubL .end () 6= true do

8: SubL ← COMPLn - {Crn ∪ TempL};
9: for each x in SubL do

10: if Crn ⊂ x then

11: Crn .freq = Crn .freq + x.freq

12: RLIST ← Relationship (Crn , x)

13: end if

14: if Crn == x then

15: Crn .freq = Crn .freq + x.freq;

16: TempL ← {TempL ∪ x}
17: end if

18: end for

19: CANDL ← CANDL ∪ newrec (n, cnid, Crn , Crn .freq)

20: cnid ← cnid + 1

21: r ← SubL.next () . Next undeleted component from SubL

22: end while

23: end for

24: Output: CANDL List

25: Partition the CANDL on PARTID.

5.4. Algorithm 4. Finding final candidate list by merging all partitions of
candidate list [Phase-2 frequency counting]

Assumptions and Terminologies:

FCANDL: Final Candidate List having same structure as CANDL.

X, Y: Partition Identifiers.

TempL: List of deleted components.

n: integer.

Lx: List of candidates of Partition X.

Ly: List of candidates of Partition Y.

Ai: List of direct/indirect children of Candidate i within its partition.

Algorithm 4. Final Unpartitioned Candidate List having Candidates with Final

Frequency

1: Input: CANDL: partitioned Candidate List (output of Algorithm 3) . Merging

partitions of CANDL recursively until list is unpartitioned

An efficient approach for view selection for data warehouse. . . 441

2: for n=2; n ≤ PKey -1; n++ do

3: X ← 1

4: Y ← n

5: TempL ← {} . Empty List

6: for Each z1 ∈ Lx ./ z2 ∈ Ly do . ./: left right outer join

7: if {z1,z2} /∈ TempL ∧ z1 ≡ z2 then

8: z1.freq = z1.freq + z2.freq

9: for each p ∈ Az1 do

10: p.freq = p.freq + z2.freq

11: end for

12: for each q ∈ Az2 do

13: q.freq = q.freq + z1.freq

14: end for

15: Create relationship (Link) of child subtree of z2 to z1.

16: TempL ← {TempL ∪ z2} . Deletes z2
17: else if {z1,z2} /∈ TempL then

18: Add z2 to Partition X.

19: end if

20: end for

21: Update partition table by adding relationships of all candidates, which migra-

tes to Partition X from Partition Y.

22: end for

23: FCANDL ← CANDL

24: Output: Final Candidate List FCANDL containing unpartitioned CANDL List

with final frequency of each candidate component

5.5. Finding relationship between query components
(used by Algorithms 2 and 4)

This procedure compares two query components by comparing string representations

of them. The string representation of a query component (matchcode) is generated

by traversing a tree in an in-order fashion and adding all of the node labels (delimited

by =) in a matchcode.

The matchcode of the query plan in Figure 2 will be as follows:

TABLE ACCESS EMP COMPANY TABLE FULL

= SORT AGGREGATE = TABLE ACCESS EMP COMPANY TABLE FULL

= V IEW VW NSO 1 = HASHJOIN −RIGHTSEMI

= TABLE ACCESS EMPLOY EE TABLE FULL

= SELECT

Consider two query components A and B. Let the matchcode of Query A be

String S1 and the matchcode of Query B be String S2. If S1 is a substring of S2, then

Query A is a subquery of Query B and vice-versa. If S1 and S2 are identical strings,

then Query A and Query B represent the same query. If none of the above conditions

are true, then Queries A and B are not related.

442 Atul Thakare, Parag Deshpande

Figure 2. Query Plan

6. Working of graph mining algorithm

6.1. Terminologies

Closed candidate component (sub-tree): is a frequent substructure that does

not have any frequent super structure.

Related candidates: Frequent components that are related to one another with

a subquery-super query property.

First, our algorithm finds out all of the frequent base components (the vertices

and edges whose frequency in Query History H is above threshold τ). Then, for

candidate generation, it goes through each query plan tree in H and finds out the valid

connected components obtained by connecting all of the frequent base components

in a plan tree. For the validity of a connected component, it is checked that all of

the branches of a connected component are terminating strictly at a leaf level of the

query plan tree from which it is derived. All of the valid components derived from

each query plan tree are stored in the tree database with a unique component ID.

Each component basically represents a frequent SQL subquery that is a full/sub part

of the historical SQL query. If we take any two valid components A and B from tree

database, then the following possibilities exist:

• A ≡ B (Components A and B represent the same query).

• A 6= B ∧ A related B (Candidates A and B represent different queries but are

related).

• A 6= B ∧ A notrelated B (Candidates A and B represent different queries and

are not related).

An efficient approach for view selection for data warehouse. . . 443

6.2. Clustering-related frequent queries (Algorithm 2)

All of the frequent candidate queries that are related will be stored in a single par-

tition. Hence, we will have clusters of frequent candidate queries that have high

commonality between queries within the cluster and much less commonality among

queries across the clusters. Example: Let D1, D2, D3, and D4 be unrelated closed

components in our tree database. Hence, our tree database will be partitioned into

four partitions (say, P1, P2, P3, and P4). Partition P1 contains all of the occur-

rences of D1 and subcomponents of D1. Similarly, Partition P2 contains all of the

occurrences of D2 and subcomponents of D2, and so on.

6.3. Frequency counting of candidate queries (Algorithm 3, Algorithm 4)

The frequency counting of candidate queries involves two steps:

• Determining frequency of distinct candidates within the partition.

• Merging the partition to get the final frequency (i.e., the number of executions)

of the candidate components.

The above process is optimized by the application of the following pruning techniques.

6.4. Pruning techniques

6.4.1. Pruning by partitioning (Algorithm 2)

The advantage of partitioning the candidate list is that it reduces the search space

while performing inter-cluster frequency rollup’s for each distinct candidate compo-

nent in Phase-1 counting. The search will be local to the partition in which candidate

component in present.

6.4.2. Pruning by deletion (Algorithm 3)

In Phase-1 counting when we find two candidates (A and B) to be identical (isomor-

phic; i.e., A = B) within a particular partition, then make A.frequency = A.frequency

+ B.frequency and delete Candidate B from that partition.

6.4.3. Pruning by partition merging (Algorithm 4)

While merging partitions (say, P1 and P2) in Phase-2 counting, if we find

{Candidate A from Partition P1} = {Candidate B from Partition P2},
then do the following things:

• A.frequency = A.frequency + B.frequency.

• For each frequent component Ci in the child hierarchy of A in Partition P1,

Ci.frequency = Ci.frequency + B.frequency.

• For each frequent component Cj in the child hierarchy of B in Partition P2,

Cj .frequency = Cj .frequency + A.frequency.

• Link (update relationship table) child subtree of Candidate B to Candidate A of

Partition P1.

444 Atul Thakare, Parag Deshpande

• Delete Candidate B (and all of its relationships from the relationship table) of

Partition P2.

• After handling all such cases of isomorphic candidates across P1 and P2, add all

remaining candidates from P2 to P1 with no change in their frequency. Update

the relationship table by adding new entries for partition P1. {now, P1 can have

multiple disconnected relationship trees}.

This process reduces the number of tree comparison tests substantially which are

the highly computation-intensive operations. Clustering related query components in

a single partition by finding out the correlations among the different query compo-

nents reduces the search space and speeds up the process of finding a final frequency

count for each candidate component. Figures 3–5 give graphical representations of

a partition merging between Partitions P1 and P2 in which Candidate C3 in Partition

P1 is isomorphic to Candidate C7 of Partition P2.

C1 (08)

C2 (17)
 C3 (12)

C33 (15)

Figure 3. Relationship Tree of

Partition P1

C5 (09)

C6 (15)
 C7 (10)

C44 (17)
C8 (17)

C4 (07)

Figure 4. Relationship Tree of

Partition P2

C5 (09)

C3 (22)
 C6 (15)

C8 (17)

C44 (29)

C4 (07)

C33 (25)

C2 (17)

C1 (08)

Figure 5. Relationship Tree of Partition P1 after merging P2 to P1

An efficient approach for view selection for data warehouse. . . 445

6.5. Advantages of proposed graph mining approach

The advantage of implementing graph mining in a relational database system is that

we can use database optimization techniques like indexing, partitioning, and pipeli-

ning (parallel execution) to enhance the performance of our algorithm. On multipro-

cessor or multi-core systems, database system can carry out the task of finding the

intermediate frequencies of the candidate components in different partitions indepen-

dently & concurrently in different threads of the execution (In Phase-1 counting).

In Phase-2 counting, the merging of disjoint pairs of partitions can also be carried

out concurrently on different processors. This is conceptually similar to the Map-

-Reduce Technique in the Big Data Scenario. This will scale the performance gain

involved in finding frequent components linearly along with the data size. We can

increase the speed up by investing additional computing resources.

Another benefit is that creating an index on Candidate ID (graph indices) will

read the plan of a candidate component quickly into the memory by directly accessing

blocks containing the plan of the candidate component. This is similar to maintaining

a pointer along with a candidate ID that points to the disk blocks containing a can-

didate’s query plan. Unlike many graph mining algorithms, this algorithm does not

require all of the graphs to be in the main memory while counting the total number

of instances of a particular subgraph.

7. Finding final view set using evolutionary computation

7.1. Genetic algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the evo-

lutionary ideas of natural selection and genetics. As such, they represent an intelligent

exploitation of a random search used to solve optimization problems.

Algorithm 5. Generic Genetic Algorithm

1: randomly initialize population (p)

2: determine fitness of population (p)

3: while best individual is not good enough or number of evolutions does not reach its

limiting value do

4: select parents from population (p)

5: perform crossover on parents creating population (p+1)

6: perform mutation of population (p+1)

7: determine fitness of population (p+1)

8: end while

After an initial population is randomly generated, the algorithm evolves through

three operators:

• Selection, which equates to survival of the fittest.

• Crossover, which represents reproduction by crossover between solutions.

• Mutation, which introduces random modifications.

446 Atul Thakare, Parag Deshpande

7.2. Query cost model

The problem of view selection in data warehouses can be reduced to a non-linear con-

strained optimization problem where we have to predefine some storage constraints

(storage threshold) and create an initial population of n solutions within those con-

straints. A tree mining algorithm will give a set of frequent queries S. Each solution

of the initial population is defined by randomly selecting Subset S’ from Set S such

that the summation of the storage cost of all queries in S’ is less than or equal to

the storage threshold. In the tree mining algorithm, we are also finding groups of

related frequent queries (say, total G groups/clusters. where the frequent queries in

each group are related by the subquery-super query property). Each solution has

a set of frequent queries chosen by following the above constraints. Each query in the

solution has the following attributes:

<QueryID, StorageCost, CreationCost,UpdateCost, FitnessValue >

Our optimization process has two objectives:

• Maximize total creation cost.

• Minimize total maintenance (update) cost.

Hence, this is a multiple-objective problem that can be solved by a multiple-

-objective optimization method inspired by evolutionary computations. Here, the

total creation cost (Tc) is a summation of the creation cost of all of the queries within

the solution, and the total update cost (Tu) is a summation of the update cost of all

of the queries within the solution.

Hence, we can say that Tc(S) is nothing but the creation cost of Solution S

(which is desired to be as high as possible) and Tu(S) is nothing but the update cost

of Solution S (which is desired to be as low as possible).

Hence, our two objective functions (i.e., the creation and update costs of Solu-

tion S) are as follows:

• Tc(S) =
∑x

i=1 CreationCost(i) such that Tc(S) should be maximum.

• Tu(S) =
∑x

i=1 UpdateCost(i) such that Tu(S) should be minimum,

where S is a solution having x frequent candidate queries.

The creation and update cost of any query Qi within Solution S can be defined

as follows:

• CreationCost (Qi) =[ProcessingCost (Qi) ∗ ExecutionFrequency (Qi)],

• UpdateCost (Qi) =[UpdateCost (Qi) ∗ UpdateFrequency (Qi)],

where ProcessingCost (Qi) is the average cost of executing query Qi.

ExecutionFrequency (Qi) is the number of executions of query Qi in a week.

UpdateCost (Qi) is the average cost of refreshing the materialized view of que-

ry Qi. This depends on the update cost of the base database objects to which query Qi

refers.

UpdateFrequency (Qi) is the number of times refreshing the materialized view

of query Qi is required in a week. This depends on the update frequency of the

underlying database objects to which query Qi refers. We can get this information

An efficient approach for view selection for data warehouse. . . 447

by querying data dictionary views and audit tables of the database. Ideally, Update-

Frequency (Qi) is the number of times the result stored in the materialized view of

query Qi becomes invalid within a week. Hence, fitness value of query (Qi),

FitnessValue (Qi) = CreationCost (Qi) – UpdateCost (Qi).

Hence, our two objective functions (i.e., creation and update cost of Solution S)

becomes

• Tc(S) =
∑x

i=1 [ProcessingCost (Qi) ∗ ExecutionFrequency (Qi)] such that Tc(S)

should be maximum.

• Tu(S) =
∑x

i=1 [UpdateCost (Qi) ∗ UpdateFrequency (Qi)] such that Tu(S)

should be minimum.

We can combine the above two objective functions in a single objective function

as follows:

FitnessValue (S) = Tc(S) – Tu(S) should be maximum.

7.3. Implementation of query cost model using genetic algorithm

After merging all of the partitions into a single one, we will find a number of lattices

(say, L1, L2, L3, . . .) where each lattice describes the set of queries related to each

other. This description also contains the final frequency of each candidate query in

each lattice.

7.3.1. Database of candidate hierarchy

Let us consider Figure 6, which represents a lattice of the candidate queries. We

can represent the different hierarchies of the candidate queries embedded inside the

lattice as follows. Hence, our Query Cost Model finds all such hierarchies of the related

queries from all of the lattices.

Figure 6. Different hierarchies of candidate queries in lattice of Figure 5

448 Atul Thakare, Parag Deshpande

7.3.2. Creating initial population of solutions

We create an initial population of 100 solutions. We create each solution by randomly

selecting different hierarchies and selecting exactly one query from each hierarchy. If

an identical/same query is already admitted to a solution (picked up from some other

hierarchy), then that hierarchy is completely ignored for completion of that solution.

Each solution observes the following constraint (Rule (1)):

• The total storage cost of a solution should be between 90–100 percent of the avail-

able storage (the available storage is dependent on the free disk space available

for the database system used for performing the experimentation).

• All of the queries in a solution should be distinct. The fitness value of a solution

is the summation of the fitness values of the queries in it.

The mutation and crossover operators also observe the above constraints while

creating new solutions.

7.3.3. Mutation operator

The mutation operator works on the following principle.

Each candidate query within a solution is picked from some hierarchy. In each

hierarchy, the top-level query will be the most complex one; hence, that query will

have the highest creation cost and update cost among all of the queries in it. However,

as the fitness value of a query is a function of the difference between the creation and

update costs of a query, hence any query can be the fittest query among all queries

in a hierarchy.

Considering this, the mutation operator will perform the following steps:

1. Select any one query from a solution.

2. Pretend to replace the selected query with another query from the hierarchy of

the selected query.

3. If the mutated solution is valid according to Rule (1), then compute the fitness

value of the mutated solution and add it to the current population. Exit.

4. Otherwise, repeat Steps (1) through (3).

7.3.4. Crossover operator

The crossover operator will perform the following steps:

1. Select two solutions randomly from the population.

2. Select some queries randomly from both solutions and combine them to form

a new solution.

3. If the new solution is valid according to Rule (1), then compute the fitness value

of the new solution and add it to the current population. Exit.

4. Otherwise, repeat Steps (1) through (3).

An efficient approach for view selection for data warehouse. . . 449

7.3.5. Selection operator

The current population evolves to a new population by means of a selection opera-

tor. The selection operator selects the top 25% solutions from the current population

based on fitness values and copies it to a new population. The remaining 75% of the

population is generated by using mutation and crossover operators.

In brief, the purpose of the crossover operator is to find the correct set of candi-

date hierarchies for the optimal solution, and the purpose of the mutation operator

is to find the fittest candidate query from each candidate hierarchy in that solution.

Hence, each member of the fittest solution (an optimal solution that is the fittest one in

the last population of the evolution process) is ideally the top-most fittest query in its

own candidates hierarchy and one of the top N candidate queries (in terms of fitness)

among all of the hierarchies in the population of solutions.

8. Experimental evaluation and results

The experimentation was performed on an Oracle Database 11g installed on a system

with a 2.3 GHz Intel Core i5 processor and 4GB of main memory on the Mac OS X

platform. In the first phase, we performed the experiment four times on the four

different datasets used in [17]. The final result is the exact gain of the proposed

method we recorded on each dataset by using the Gain Measure described in [15].

A comparison of the gains of the proposed method with the known methods from

[4,15], and [17] is shown in Figure 7.

Figure 7. Comparison of known methods with proposed methods

MVFI – materialized view selection based on frequent itemset mining algorithm.

ARMMVVM – association rule mining for materialized view selection.

CBMVS or CBDMVS – clustering-based dynamic materialization view selection algorithm.

The parallel graph mining algorithm was executed on an Intel Xeon E5-2687W

V4 3.0 GHz 12-core LGA 2011 processor by importing its input (set of query plans)

450 Atul Thakare, Parag Deshpande

from the Oracle database. The implementation of the Query Cost Model (executed on

the Xeon 12-core LGA processor) makes 50 evolutions from the initial population and

selects the solution (recommended view set) that has the highest fitness value from

the last (i.e., 50th) evolution. The recommended view set for each workload is expor-

ted to the Oracle database, which records the database performance of the proposed

method for the given workload. This experimentation was done using the standard

query workload mentioned in [17] as well as real and synthetic datasets. The perfor-

mance on the standard workload is compared to the recently established algorithms

mentioned in [4,15], and [17] using GAIN measure (GM) [15] as a performance crite-

rion. The optimization tests were carried out using the standard query workload on

four different data warehouses of various sizes (from 0.5 GB to 2 GB). The results of

the experimentation are given in Figure 7.

The experimentation results in Figure 7 indicate that there is a large improvement

in proposed method’s GM as compared to that of recent methods for all four sizes of

query workloads.

We have also used synthetic and real-life datasets for the experimentation to test

the applicability of the proposed method on various types of queries. The real data

set is obtained from the Management Information System of the National Institute

of Technology in Nagpur. The workload queries in real-life applications consist of

time-consuming operations such as joins, aggregations, and groupings. We made sure

to have more variations in the datasets in the form of aggregations and joins. The

composition of the data sets is described below (Table 1).

Table 1
Dataset characteristics

SN QL DS N QJ QA QJA

1 QS1 Real-MIS 2087 48 17 29

2 QS2 Synthetic 3086 26 28 35

3 QS3 Synthetic 2809 20 39 32

SN – Serial number

QL – Query load

DS – Data source

N – Number of queries (total number of complex queries in the query workload)

QJ – Percentage of queries involving only joins

QA – Percentage of queries involving only aggregations

QJA – Percentage of queries involving both joins and aggregations

The datasets were cached in the main memory during the algorithm-processing

stage to avoid high data access costs. The experimentation was performed by setting

the frequency threshold to 50% of the total candidate trees (the threshold is taken as

50% with the assumption that around 50% of the total workload will have frequent

An efficient approach for view selection for data warehouse. . . 451

patterns. If more queries are to be optimized, then threshold can be reduced). The

performance is measured using GM. The performances with different query loads are

shown in Figure 8 and Table 2.

Table 2
Comparison of proposed method with existing methods

QL LR View Selection Algorithms

MVFI ARMMVVM CBMVS PROPOSED

QS1 3,560,642 24.34 21.21 15.38 37.85

QS2 4,701,867 33.68 29.24 27.45 42.67

QS3 3,857,673 31.25 28.41 24.37 39.81

Figure 8. Performance Statistics on QS1, QS2, & QS3

From Figure 8, it is interpreted that the GM is considerably increased using the

proposed tree mining algorithm and query cost model as compared to state-of-the-art

algorithms on different query loads.

8.1. Time efficiency with parallel execution

The parallel graph mining algorithm was tested on an Intel Xeon E5-2687W V4

3.0 GHz 12-core LGA 2011 processor. We have three datasets (QS1, QS2, and QS3)

with different complexities (varying percentages of complex queries). The maximum

speeds of up of 7.93, 5.93, and 4.30 were recorded for the QS1, QS2, and QS3 datasets

on 12 cores. The details are described in Table 3. The speed-up and execution times on

different numbers of cores within a range of 1 to 12 are shown in Figures 9 and 10.

The results show that the performance improvement of our algorithm is scalable with

increasing numbers of cores on all the three datasets.

452 Atul Thakare, Parag Deshpande

Table 3
Performance with and without partitioning

SN
Query

load

No. of

partitions

Execution time

(without parallel

execution) [s]

Execution time

(with parallel

execution) [s]

1 QS1 154 391.20 49.49

2 QS2 127 567.23 96.56

3 QS3 111 496.21 112.57

Figure 9. Execution times on three datasets for different numbers of cores

Figure 10. Speed-up on three datasets for different numbers of cores

An efficient approach for view selection for data warehouse. . . 453

9. Conclusion

In this paper, we considered the problem of selecting views to optimize the aggre-

gate queries so that the sum of the query evaluation and view maintenance costs for

workload queries can be minimized. The algorithm proposed in this paper analyzes

the query plans of all of the historical queries and aims at finding frequent queries as

well as frequent query components. The creation of materialized views on frequent

components will result in the optimization of all of the queries having these compo-

nents. The paper also proposes various pruning techniques to effectively reduce the

search space and apply clustering and parallel execution to improve the performance

of a view selection algorithm to combat the huge query load. The experimental results

obtained from an implementation on an Oracle SQL Server showed that the algorithm

is fast and scales to very large numbers of queries.

The proposed method is compared with standard workloads mentioned in the li-

terature, and its performance is compared with recent methods available in the litera-

ture. The experimental evaluation indicates that the proposed method gives a better

performance than all of the recent methods irrespective of query load size. The ex-

perimentation also proves that the algorithm is highly time-efficient on a multicore

architecture system, as the computations are decomposed into many independent

parts that can be executed on different cores. A highest speed of up of 7.9 is recorded

on an Intel Xeon 3.0 GHz LGA processor with 12 cores. The detailed study is done on

real and synthetic data sets to check the performance on various types of workloads.

The experimental evaluation indicates that the performance is improved to a large

extent by the proposed method on all of the examined datasets. The experimental

results also show that the proposed Query Cost Model is successful in finding the

fairly optimal solution on the varieties of workloads used in the experimentation.

References

[1] Afrati F., Chirkova R.: Selecting and using views to compute aggregate queries,

Journal of Computer and System Sciences vol. 77(6), pp. 1079–1107, 2011. http

s://doi.org/10.1016/j.jcss.2010.10.003.

[2] Aouiche K., Jouve P., Darmont J.: Clustering-Based Materialized View Selection

in Data Warehouses. In: Manolopoulos Y., Pokorn J., Sellis T.K. (eds.), Ad-

vances in Databases and Information Systems. 10th East European Conference,

ADBIS 2006, Thessaloniki, Greece, September 3–7, 2006. Proceedings, Lecture

Notes in Computer Science, vol. 4152, Springer, Berlin–Heidelberg, pp. 81–95,

2006. https://doi.org/10.1007/11827252 9.

[3] Ezeife C.I.: A uniform approach for selecting views and indexes in a data ware-

house. In: Proceedings of the 1997 International Database Engineering and Appli-

cations Symposium (Cat. No.97TB100166), Montreal, Quebec, Canada, pp. 151–

160, 1997. https://doi.org/10.1109/IDEAS.1997.625671.

https://doi.org/10.1016/j.jcss.2010.10.003
https://doi.org/10.1016/j.jcss.2010.10.003
https://doi.org/10.1007/11827252_9
https://doi.org/10.1109/IDEAS.1997.625671

454 Atul Thakare, Parag Deshpande

[4] Gong A., Zhao W.: Clustering-Based Dynamic Materialized View Selection Al-

gorithm. In: 2008 Fifth International Conference on Fuzzy Systems and Kno-

wledge Discovery, FSKD’08, Shandong, China, pp. 1333–1348, 2008. https:

//doi.org/10.1109/FSKD.2008.96.

[5] Goswami R., Bhattacharyya D.K., Dutta M.: Materialized view selection

using evolutionary algorithm for speeding up big data query processing,

Journal of Intelligent Information Systems, vol. 49(3), pp. 407–433, 2017.

https://doi.org/10.1007/s10844-017-0455-6.

[6] Gupta H., Selection of views to materialize in a data warehouse. In: Afrati F.,

Kolaitis P. (eds.), Database Theory – ICDT’97. 6th International Conference

Delphi, Greece, January 8–10, 1997 Proceedings, Lecture Notes in Computer

Science, vol. 1186, Springer, Berlin–Heidelberg, pp. 98–112, 1997. https://doi.

org/10.1007/3-540-62222-5 39.

[7] Gupta H., Mumick I.S.: Selection of views to materialize in a data warehouse,

IEEE Transactions on Knowledge and Data Engineering, (17)1, pp. 24–43, 2005.

https://doi.org/10.1109/TKDE.2005.16.

[8] Gupta H., Mumick I.S.: Selection of Views to Materialize Under a Maintenance

Cost Constraint. In: Beeri C., Buneman P. (eds.), Database Theory – ICDT99.

7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceed-

ings, Lecture Notes in Computer Science, vol. 1540, Springer, Berlin–Heidelberg,

pp. 453–470, 1999. https://doi.org/10.1007/3-540-49257-7 28.

[9] Harinarayan V., Rajaraman A., Ullman J.D.: Implementing data cubes effi-

ciently. In: Proceedings of the 1996 ACM SIGMOD international conference on

Management of data, pp. 205–216, 1996. https://doi.org/10.1145/235968.2

33333.

[10] Horng, J-T., Chang Y-J., Liu B-J.: Applying evolutionary algorithms to materi-

alized view selection in a data warehouse, Soft Computing, vol. 7(8), pp. 574–581,

2003. https://doi.org/10.1007/s00500-002-0243-1.

[11] Hung M.-C., Huang M.-L., Yang D.-L., Hsueh N.-L.: Efficient approaches for ma-

terialized views selection in a data warehouse, Information Sciences, vol. 177(6),

pp. 1333–1348, 2007. https://doi.org/10.1016/j.ins.2006.09.007.

[12] Hylock R., Currim F.: A maintenance centric approach to the view selection

problem, Information Systems, vol. 38(7), pp. 971–987, 2013. https://doi.or

g/10.1016/j.is.2013.03.005.

[13] Kumar A., Vijay Kumar T.V.: Improved Quality View Selection for Analyti-

cal Query Performance Enhancement Using Particle Swarm Optimization, In-

ternational Journal of Reliability, Quality and Safety Engineering, vol. 24(6),

p. 1740001, 2017. https://doi.org/10.1142/S0218539317400010.

https://doi.org/10.1109/FSKD.2008.96
https://doi.org/10.1109/FSKD.2008.96
https://doi.org/10.1007/3-540-62222-5_39
https://doi.org/10.1007/3-540-62222-5_39
https://doi.org/10.1109/TKDE.2005.16
https://doi.org/10.1007/3-540-49257-7_28
https://doi.org/10.1145/235968.233333
https://doi.org/10.1145/235968.233333
https://doi.org/10.1007/s00500-002-0243-1
https://doi.org/10.1016/j.ins.2006.09.007
https://doi.org/10.1016/j.is.2013.03.005
https://doi.org/10.1016/j.is.2013.03.005
https://doi.org/10.1142/S0218539317400010

An efficient approach for view selection for data warehouse. . . 455

[14] Lin W.Y., Kuo I.C.: A Genetic Selection Algorithm for OLAP Data Cubes,

Knowledge and Information Systems, vol. 6(1), pp. 83–102, 2004. https://doi.

org/10.1007/s10115-003-0093-x.

[15] Mohammad K.S., Vahid G.: Materialized View Selection for a Data Warehouse

Using Frequent Itemset Mining, Journal of Computers, vol. 11(2), pp. 140–148,

2016. https://doi.org/10.17706/jcp.11.2.140-148.

[16] Ross K.A., Srivastava D., Sudarshan S.: Materialized view maintenance and

integrity constraint checking: trading space for time. In: Proceedings of the 1996

ACM SIGMOD international conference on Management of data, pp. 447–458,

1996. https://doi.org/10.1145/235968.233361.

[17] Vishwanath P.R., Rajyalakshmi, Reddy S.: An Association Rule Mining for Ma-

terialized View Selection and View Maintenance, International Journal of Com-

puter Applications, vol. 109(5), pp. 15–20, 2015. https://doi.org/10.5120/19

184-0670.

[18] Yang J., Karlapalem K., Li Q.: Algorithms for Materialized View Design in Data

Warehousing Environment. In: VLDB’97 Proceedings of the 23rd International

Conference on Very Large Data Bases, Morgan Kaufmann Publishers, San Fran-

cisco, pp. 136–145, 1997.

[19] Yang J., Karlapalem K., Li Q.: A framework for designing materialized views

in data warehousing environment. In: Proceedings of 17th IEEE International

Conference on Distributed Computing Systems, Maryland, USA, 1997. https:

//doi.org/10.1109/ICDCS.1997.603380.

[20] Zhang C., Yang J.: Genetic Algorithm for Materialized View Selection in Data

Warehouse Environments. In: Mohania M., Tjoa A.M. (eds.), DataWarehousing

and Knowledge Discovery. First International Conference, DaWaK’99 Florence,

Italy, August 30 – September 1, 1999 Proceedings, Lecture Notes in Computer

Science, vol. 1676. Springer, Berlin–Heidelberg, pp. 116–125, 1999. https://do

i.org/10.1007/3-540-48298-9 12.

Affiliations

Atul Thakare
Visvesvaraya National Institute of Technology, Computer Science & Engineering Department,
South Ambazari Road, Nagpur (Maharashtra) India 440010, aothakare@gmail.com, ORCID
ID: https://orcid.org/0000-0003-3897-5973

Parag Deshpande
Visvesvaraya National Institute of Technology, Computer Science & Engineering Department,
South Ambazari Road, Nagpur (Maharashtra) India 440010, psdeshpande@cse.vnit.ac.in,
ORCID ID: https://orcid.org/0000-0003-4051-4666

Received: 06.08.2018

Revised: 30.08.2018

Accepted: 12.09.2018

https://doi.org/10.1007/s10115-003-0093-x
https://doi.org/10.1007/s10115-003-0093-x
https://doi.org/10.17706/jcp.11.2.140-148
https://doi.org/10.1145/235968.233361
https://doi.org/10.5120/19184-0670
https://doi.org/10.5120/19184-0670
https://doi.org/10.1109/ICDCS.1997.603380
https://doi.org/10.1109/ICDCS.1997.603380
https://doi.org/10.1007/3-540-48298-9_12
https://doi.org/10.1007/3-540-48298-9_12
https://orcid.org/0000-0003-3897-5973
https://orcid.org/0000-0003-4051-4666

	Introduction
	Our contribution
	Related work
	Proposed work
	Terminologies
	Problem formulation
	Architecture of proposed work

	Algorithms
	Algorithm 1. Finding all occurrences of all subquerieshaving frequent database objects and frequent database operationsfrom SQL History H
	Algorithm 2. Assigning partitioning keyfor each active component recordin COMPL for clustering-related subqueries in H
	Algorithm 3. Partitioning component listbased on partition key and determining frequency of each distinct component (called a candidate)within each partition [Phase-1 frequency counting]
	Algorithm 4. Finding final candidate list by merging all partitions of candidate list [Phase-2 frequency counting]
	Finding relationship between query components(used by Algorithms 2 and 4)

	Working of graph mining algorithm
	Terminologies
	Clustering-related frequent queries (Algorithm 2)
	Frequency counting of candidate queries (Algorithm 3, Algorithm 4)
	Pruning techniques
	Pruning by partitioning (Algorithm 2)
	Pruning by deletion (Algorithm 3)
	Pruning by partition merging (Algorithm 4)

	Advantages of proposed graph mining approach

	Finding final view set using evolutionary computation
	Genetic algorithms
	Query cost model
	Implementation of query cost model using genetic algorithm
	Database of candidate hierarchy
	Creating initial population of solutions
	Mutation operator
	Crossover operator
	Selection operator

	Experimental evaluation and results
	Time efficiency with parallel execution

	Conclusion

