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Abstract Recently, the lungs have been extensively examined as a route for delivering
drugs (active pharmaceutical ingredients, APIs) into the bloodstream; this
is mainly due to the possibility of the noninvasive administration of macro-
molecules such as proteins and peptides. The absorption mechanisms of chem-
ical compounds in the lungs are still not fully understood, which makes pul-
monary formulation composition development challenging. This manuscript
presents the development of an empirical model capable of predicting the excipi-
ents’ influence on the absorption of drugs in the lungs. Due to the complexity of
the problem and the not-fully-understood mechanisms of absorption, computa-
tional intelligence tools were applied. As a result, a mathematical formula was
established and analyzed. The normalized root-mean-squared error (NRMSE)
and R2 of the model were 4.57%, and 0.83, respectively. The presented ap-
proach is beneficial both practically by developing an in silico predictive model
and theoretically by gaining knowledge of the influence of APIs and excipient
structure on absorption in the lungs.
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1. Introduction

Active pharmaceutical ingredients (APIs) have been delivered through the respira-
tory tract for therapeutic and recreational purposes for at least 4000 years. The
application of medicinal aerosols has evolved from inhaling smoke or steam from the
burnt and boiled parts of plants. Further development led to the development of
efficient delivery systems to treat local respiratory tract diseases [41]. Finally, the
lungs have recently been considered as a noninvasive route to deliver APIs directly
to the bloodstream for macromolecules such as peptides and proteins [2]. The pul-
monary route of administering macromolecular APIs has been extensively examined
for insulin [43], parathyroid hormones [38], calcitonin, thyroid-stimulating hormone,
follicle-stimulating hormone, growth hormone, immunoglobulins, and cyclosporine [1].
The bioavailability of macromolecules administered into the lungs is related to their
large surface area, thin alveolar epithelium, reduced mucociliary clearance, and low
enzymatic activity. However, the complex anatomical structure of respiratory tracts
and still-not-fully-understood mechanisms of chemical compound absorption cause
pulmonary formulation development to be challenging [33]. Deposition in the lungs is
a topic of particle design and delivery system development, whereas drug absorption
is examined by performing tests on animals or cell cultures [10,48].

API absorption from the respiratory tract depends on the dynamic interaction
of several factors, including the dose, used excipients, and physicochemical proper-
ties of the drug (such as molecular weight, lipophilicity, solubility, and charge). Ex-
cipients are a group of inactive chemical compounds which enable obtaining proper
dosage form, guarantee its stability during storage and bioavailability after drug ad-
ministration [20]. The mechanisms of chemical compound absorption in the lungs
include passive diffusion, receptor-mediated transport, and transcytosis [30]. Addi-
tionally, absorption can be modified by drug administration with excipients called
absorption enhancers; however, the mechanisms of permeability enhancement are not
fully understood for the most part [17].

The manuscript presents the development of an empirical model that, when based
on formulation composition and chemical descriptors, is capable of predicting the ex-
cipients’ influence on the absorption of an API in the lungs. The given results include
database construction by encoding the quantitative and qualitative compositions of
the formulations, the selection of critical variables, the builds of predictive models,
and their analysis. The research goals are as follows:

1. Create a database numerically representing a given problem and select critical
variables.

2. Build an empirical model capable of expressing a given problem by applying
different computational tools.

3. Analyze constructed model in a way to search how changes in variables influence
predicted drug bioavailability.
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The following section “Related work” briefly presents recent research in the field
of drug absorption by the lungs after its administration (including laboratory work
and a numerical analysis) as well as the computational tools used in the research topic.
Section 3 (“Methods”) contains a description of the database and computational tools,
including the settings applied in the work. The results of the feature selection and
the best-performing models are presented in Section 4 (“Results”), whereas a final
model analysis with a scientific discussion is included in Section 5 (“Model-based prob-
lem analysis and discussion”). The manuscript ends with the “Conclusions” section,
where we indicate how the presented approach fits in the current trends of applying
AI tools in the pharmaceutical industry, and clinical practice.

2. Related work

The lungs are considered to be a route for the administration of active substances in-
tended to treat diseases locally (e.g., asthma, infections) as well as systemic diseases
(e.g., diabetes). Independent of the goal of an API’s administration to the lungs, its
absorption is critical for patient safety and therapy effectiveness. In the case of locally
acting drugs, the lower absorption results in less-frequent systemic side effects. On
the other side, the high bioavailability of administered drug reduces the total dose and
local side effects like irritation or immune system response. The absorption, distri-
bution, and pharmacodynamic effects of inhaled pharmaceuticals are mainly assessed
using in vivo animal models. The animal can be anesthetized or conscious, whereas
the formulations are delivered by inhalation or insufflation into the lungs with or with-
out surgical intervention. Besides the above, cell-based in vitro models are applied
to study the uptake, transport, and metabolism of drugs from the lungs. Over the
past few decades, cell culture models have received increasing acceptability due to
their cost reduction and fast throughput. Drug absorption is also examined using an
ex vivo lung model [33]. Nowadays, the development and optimization of pulmonary
formulation is still mainly based on the trial-and-error approach. This is mainly due
to the not-fully-understood mechanisms of drug absorption by the lungs as well as
the factors that influence them. So far, a few mechanisms of drug transport from the
lungs have been proposed; i.e., transport through the pores in the membrane, trans-
port through intracellular tight junctions, vesicular transport, active transport, and
drainage to the lymphatics. All of them are grouped as paracellular or transcellular
transport [19]. Apart from this, other factors affecting bioavailability are still being
investigated. For example, Price et al. used an isolated perfused mouse lung (IPML)
model to analyze the impact of P-glycoprotein on the absorption of 18 chemical com-
pounds that were recognized as P-gp substrates. Two types of mice were used in the
in vivo study; i.e., with active P-gp transporter (Mdr1a/1b (+/+)) and with knocked-
out P-gp transporter (Mdr1a/1b (-/-)). The compounds were divided into two groups
based on their affinity to the P-gp. Next, 13 chemical descriptors were calculated,
and an orthogonal partial least squares (oPLS) model was developed to classify the
molecules. The authors concluded that the absorption of polar compounds character-
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ized by low phospholipid membrane affinity and low transmembrane movement was
not affected by P-gp. The classification model (R2 = 0.59), with its possible applica-
tion as a screening tool for new molecules and the possibility of its absorption affected
by P-gp activity, was presented. The predictions of the model were not quantitative,
and its application in terms of binary or ternary formulations was limited [39]. Wang
et al. examined the absorption of four proteins: salmon calcitonin (sCT), insulin
(INS), recombinant hirudin (rHAV2), and the recombinant human growth hormone
(rhGH) through a human cultured alveolar A549 cell monolayer. As a result, the au-
thors proposed that the examined proteins are absorbed by a passive diffusion mech-
anism. The apparent permeability coefficient (Papp) was significantly lower only for
rhGH when compared to the other compounds, which were explained by the rhGH’s
higher molecular weight (MW). A quantitative relationship was not proposed due
to insufficient data [50]. Tronde et al. analyzed the pulmonary absorption of nine
low-molecular-weight drugs (atenolol, budesonide, enalaprilat, enalapril, formoterol,
losartan, metoprolol, propranolol, and terbutaline) and one high-molecular-weight
membrane permeability marker compound (FITC-dextran, MW=10k Da). The ex-
periments were performed using an isolated, perfused, and ventilated rat lung model
(IPL). All of the analyzed compounds were characterized by nine descriptors and the
apparent permeability of Caco-2 cell monolayers. Based on the obtained data, a par-
tial least squares (PLS) model for absorption rate was developed (R2 = 0.78). It was
found that drug absorption was negatively correlated to the molecular polar surface
area and positively correlated to the lipophilicity (cLogD) [49]. Erikson et al. studied
pulmonary permeability and tissue retention for ten drugs using an isolated perfused
rat lung (IPL). The collected data was applied to develop a compartmental in sil-
ico model of pulmonary permeability and tissue retention of the analyzed chemical
compounds. It was established that pulmonary permeability and the intrinsic perme-
ability of Caco-2 cell monolayers is highly correlated (R2 = 0.76). The authors also
examined the possible influence of ethanol to salbutamol and tiotropium absorption.
It was found that using ethanol instead of water as an excipient resulted in a higher
intake of tiotropium but did not affect the salbutamol. A further investigation in such
a direction was not employed [11]. Edwards et al. developed a model to recognize the
influence of the physicochemical properties of APIs on pulmonary absorption. The
experimental data included 98 chemical compounds with molecular weights ranging
from 177 to 842 Da. The absorption was tested using the isolated perfused respir-
ing rat lung, and the chemical structures were encoded by molecular descriptors and
additional in silico ADME related endpoints. The model was developed using an
orthogonal partial least squares regression (oPLS) preceded by a principal component
analysis (PCA). The model was tested on nine additional compounds, resulting in
65% that were correctly categorized [10]. Bäckman et al. presented a comprehensive
review of mechanistic models of the local exposure on inhaled drugs. In summary,
it was pointed out that there is a lack of generally recognized commercially avail-
able computational models incorporating the mechanistic modeling of regional lung
particle deposition and drug disposition processes to simulate free tissue drug con-
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centration. Moreover such a state is most likely related to the lack of proper data,
not-fully-established and reliable bio-relevant methods to examine drug disposition
after inhalation, and the lack of a full understanding of absorption mechanisms [3].

To the best of the authors’ knowledge, there is no available computational model
predicting the influence of excipients on API absorption in the lungs. Due to the
complexity of the analyzed problem, the still-not-fully-understood mechanisms of drug
absorption, and their modification by excipients, an empirical approach was proposed.
A set of computational intelligence techniques including random forest, rule-based
systems, neural networks, and genetic programming (GP) were applied to develop
a predictive model. As a result, a mathematical formula was created with GP methods
providing the opportunity to calculate in silico the effect of the excipient on the API
absorption in the lungs.

3. Methods

The general work procedure consisted of database construction, crucial variable se-
lection, model development, testing, and finally model analysis in order to assess the
input variables’ influence on the output variable. A scheme presenting the major
steps of the work is presented in Figure 1.
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3.1. Data set

The database was constructed based on the experimental data extracted from fourteen
publications [9,16,18,22,25,26,28,29,31,34,36,44,52,53], where the influence of various
excipients on API absorption in the lungs was examined. In brief, the literature data
was arranged in a matrix, where the columns represent the features and the rows
represent the instances of the formulations (Fig. 2).

Figure 2. General structure of database and created models.

Initially, the input vector consisted of six inputs characterizing the formulation
and assay. To diversify the input vector, chemical descriptors characterizing the APIs
and excipients were incorporated in the database. There were 33 and 11 different
excipients and APIs, respectively. The range of the molecular weights for the APIs
was from 354 Da to 19,102 Da, whereas the excipients’ MW differed from 88 Da to
6849 Da. In order to calculate the molecular descriptors, the chemical structures of
the molecules were downloaded from PubChem [21]. The proteins and peptides were
modeled using the Swiss-Model server [5] and downloaded as PDB files prior to usage.
Eventually, Mordred software [32] was used to obtain the chemical descriptors of all
molecules. A Mordred-descriptor calculator was used due to its ease of installation
and usage, high calculation speed, and large number of calculated molecular descrip-
tors. The calculated molecular descriptors of the APIs and excipients were included in
the database, where each molecule was represented by 1826 chemical descriptors. In
summary, the independent variables were grouped into four categories: 1) API chem-
ical descriptors, 2) first excipient chemical descriptors, 3) second excipient chemical
descriptors, 4) experimental conditions, including API dose [µg], Enhancer 1 dose
[µg], Enhancer 2 dose [µg], formulation type (1 = powder, 2 = liquid form), animal
weight [g], and type of effect (1 = pharmacokinetic, 2 = pharmacodynamic). The
enhancement ratio (ER) was a single output variable representing a modification of
an API’s absorption after its administration with an excipient.
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The general formula for ER calculation is given by Equation 1.

ER =
PK/PD1

PK/PD0
, (1)

where ER – enhancement ratio, PK/PD1 – pharmacokinetic or pharmacodynamic
effect with excipient, PK/PD0 – pharmacokinetic or pharmacodynamic effect without
excipient.

When the pharmacokinetic (PK) data was available, the ER was calculated as
a quotient of the area under the plasma drug concentration-time curve (AUC) of
a formulation with an excipient and a control sample without an excipient. In the case
of the pharmacodynamic effect measurement (like blood glucose levels after insulin
administration), the ER was calculated as a quotient of an area above the plasma
glucose level-time curve (AAC) of a formulation with an excipient and a control
sample without an excipient. Therefore, in both cases, the ER is a dimensionless
measure for the enhancer effect of API absorption in the lungs.

Afterwards, the raw database was preprocessed in order to remove inputs with
zero variance and inputs with non-numerical values. In total, the database was com-
posed of 134 records encoded with 4026 independent variables and 1 dependent vari-
able, which was the enhancement ratio (ER). The complete database is attached
as supplementary material to the manuscript (S1). Prior to feature selection, the
database was split into ten pairs of training-testing sets according to the 10-fold
cross-validation scheme (later in the text and tables, this will be noted as 10-cv).

3.2. Feature selection

The aim of the feature selection was to reduce the number of inputs in the database
before the modeling process. The independent variable reduction was performed
in order to simplify the developed models, to find the most important variables,
and to save time and computational resources. In order to efficiently implement
a model selection scheme, a variable selection was done. This limited the complexity
level of the developed models. The feature selection was performed by the fscaret
package [45] for the R environment [8]. The package was chosen due to its vast number
of available models for feature-ranking creation, ease of control, and its good results
from earlier research [45, 46, 51]. At the moment, fscaret includes various feature-
-ranking algorithms, which generate more than 100 models. The results are presented
as a ranking of variables, with a calculated importance value for each variable. The
obtained feature rankings were closely examined, and the cut-off points were set in
the place where variables had a ranking parameter of SUM% (internal measure) of
70, 85, 90, or 95%. Regarding applied methodology (two error functions, RMSE and
MSE) an overall of eight input vectors were selected.

3.3. Model construction and analysis

The modeling was performed in two-steps. First, fast algorithms such as rule-based
(Cubist), multilayer perceptron (monmlp, h2o), and random forest (RF) were applied
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in order to select the best input vector. Next, the genetic programming (GP) was
implemented to obtain the mathematical equations. The search for the optimal model
and its architecture was performed under the criterion of the minimum generalization
error calculated with the 10-cv approach.

The Cubist [24] package is the implementation of rule-based predictive decision
trees proposed by Quinlan [40]. The developed models have linear equations at their
terminate branches; therefore, it is easy to predict the numeric values. Both the
maximum number of rules and maximum number of committees were set at 100. The
extrapolation parameter was also set to 100. No data subsampling was employed.

A Monmlp (monotonic multilayer perceptron) [7] was used to take advantage of
learning without back-propagation. The monotonicity feature was turned off. All
models had two hidden layers, each one numbering from 2 to 20 nodes. The hidden
layer had a hyperbolic tangent (tansig) transfer function, and the output layer had
the linear function applied. Ensemble systems were employed, consisting of ten neural
networks. The epoch was set from 50 to 1000. The “trials” parameter was set to 5 to
avoid getting stuck in the local minima. The deep architectures were also trained.
The term “deep architecture” refers to a neural network composed of multiple hidden
layers with many neurons within each layer. Deep-learning neural networks are used
to solve complex problems by introducing combinations of simpler solutions. There-
fore, these systems can operate in real-world environments [47] and can be useful in
fitting a solution to empirical data. In order to develop deep-learning models, the
h2o package was utilized [23]. The numeric values were standardized by the default
function implemented in the h2o package to have zero mean and unit variance. The
hyperbolic tangent was used as an activation function. Because of the larger struc-
ture of neural networks, the epochs varied from 1000 to 10,000,000. The neural nets
consisted of 2 to 8 hidden layers with 2 to 200 nodes per layer. Overall, more than
2000 architectures of neural networks were trained and tested.

RandomForest (RF) creates an ensemble of decision trees using random inputs.
Package randomForest of the R environment was used [27]. During the model’s de-
velopment, the following parameters were used: the number of randomly selected
variables at each split was between 1 and half the size of a vector (mtry); the maxi-
mum number of nodes was set between 10 and 500 (maxnodes); and the number of
trees was set from 10 to 500 (ntree). For comparison reasons, linear regression models
were also included (noted later in the text as lm).

Genetic programming (GP) allows for the creation of computer programs by
emulating the evolution process observed in nature. Advantages of using GP is the
possibility of developing a predictive model while an analyzed problem is not fully
understood from a mechanistic point of view. Comparing to other computational
tools like neural networks, the architecture of the solution is not specified at the
beginning but is defined in the evolution process. The disadvantage of GP is the long
computational time and power consumption, especially when the space of the variables
is large [14]. GP methods were applied to develop the mathematical models using
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the rgp [13] package of the R environment. Rgp is an example of a tree-based GP
system in which individuals are represented as R expressions that can be directly
evaluated in the R environment. In the computational work, two search-heuristic
optimization algorithms were applied to find the optimal solution to a given problem:
the generational evolutionary multi-objective optimization algorithm (EMOA), and
the archive-based Pareto tournament EMOA, in which both are dependent on three
criteria: the individual’s age, fitness, and complexity. The genetic programming
method was applied to the data sets with reduced numbers of inputs. The size of
the chromosome, which is a representation of the maximum length of the equation,
varied from 10 to 100. The population size was set to 300, and the modeling process
was set to 90 million evolution steps divided into 300 stages.

The computational experiment was designed to develop multiple input single
output (MISO) models, where the single output variable was a relative enhancement
of the PK or PD effect related to adding excipient composition (ER). The models’
performance was evaluated according to a tenfold cross validation by three goodness-
-of-fit measurements: the root-mean-squared error (RMSE – Equation 2), normalized
root-mean-squared error (NRMSE – Equation 3), and coefficient of determination
(R2 – Equation 4). The NRMSE was calculated according to the output variable
range, which was from 0.545 to 21.125.

RMSE =

√∑n
i=1 (predi − obsi)2

n
, (2)

where obsi and predi are the observed and predicted values, respectively, i – the data
record number, and n – the total number of records.

NRMSE =
RMSE

Xmax −Xmin
· 100%, (3)

where RMSE is the error calculated for the model, Xmax – the maximum value of the
observed results, and Xmin – the minimum value of the observed results.

R2 =

∑n
i=1 (predi − obsmean)

2∑n
i=1 (obsi − obsmean)2

, (4)

where R2 is the coefficient of determination, obsi and predi are the observed and
predicted values, respectively, and obsmean – the arithmetic mean of the observed
values.

4. Results

The obtained database combines the results of API absorption in the lungs from both
the pharmacokinetic and pharmacodynamic studies. Due to the nonlinear relation-
ship between the drug concentration in the plasma and the pharmacodynamic effect,
the latter is not linearly linked to the absorption modification by the excipients.
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Therefore, the task to build a model able to predict the absorption ratio from the
data not containing any direct methods of absorption measurement was complicated.
However, we overcame the difficulties and managed to obtain a predictive model with
satisfactory performance.

4.1. Feature selection and model development

According to the feature ranking created by fscaret, eight input vectors with reduced
dimensions were selected. The new vectors contained between 25 and 45 independent
variables. The computational work began with developing the models using a set of
computational methods such as linear regression lm, Cubist, randomForest, monmlp,
and h2o. The results of the models’ performances according to the 10-cv scheme are
presented in Table 1.

Table 1
Performance of models created with different computational methods: PP – database pre-
processed by fscaret package; noPP – database not pre-processed by fscaret package; RMSE
– variable ranking based on root-mean-squared error; MSE – variable ranking based on

mean-squared error

RMSE R2 NRMSE [%] Variables vector
lm 1.62 0.41 7.87 noPP RMSE 35 inputs
Cubist 1.31 0.61 6.37 PP MSE 32 inputs
randomForest 1.44 0.39 6.92 noPP RMSE 35 inputs
monmlp 1.27 0.61 6.16 no PP MSE 45 inputs
h2o 1.26 0.60 6.12 no PP MSE 45 inputs

The linear regression model exhibited the highest error value – NRMSE = 7.87%
and R2 = 0.41. The best models (NRMSE above 6% and R2 = 0.60) were obtained for
the neural networks created with the h2o and monmlp packages. The neural network
model trained by the h2o package was constructed with four hidden layers, where
the first hidden layer contained five neurons, the second contained three neurons, and
last two contained two neurons each. The model was trained for 10,000,000 iterations,
and the hyperbolic tangent was used as an activation function for the hidden layers.
Slightly worse results were obtained by the expert committee created with the mon-
mlp package. The model was composed of 10 neural networks with 2 hidden layers,
which were composed of 28 and 8 neurons, respectively. The model was trained by
processing 50 iterations, whereas the trial parameter was set as 5. The rule-based sys-
tems and random forest models resulted in NRMSE errors equal to 6.37% and 6.92%,
respectively. The model with the lowest NRMSE was created based on the input
vector with 45 independent variables; therefore, it was selected for further computa-
tions with the application of a genetic programming (GP) framework. The 45-input
vector was composed of 15 variables involving API’s molecular descriptors, 26 of the
excipient’s molecular descriptors, 2 the formulation’s quantitative composition, and
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2 assay parameters (the body mass of the animal and the experimental conditions).
A complete description of the variables is presented in Table 2.

Table 2
Input vector with 45 variables selected for further computations with genetic programming

methods. Variables included in the final model (Equation 5) are in bold

Original
input

Input name Input description

328 API AATSC6c centered Moreau-Broto autocorrelation of lag 6
weighted by Gasteiger charge

329 API AATSC7c centered Moreau-Broto autocorrelation of lag 7
weighted by Gasteiger charge

406 API AATSC4p averaged Moreau-Broto autocorrelation of lag 4
weighted by polarizability

437 API MATS6d Moran coefficient of lag 6 weighted by sigma
electrons

442 API MATS4s Moran coefficient of lag 4 weighted by intrinsic state
469 API MATS3se Moran coefficient of lag 3 weighted by Sanderson EN
755 API WPSA2 surface weighted charged partial positive surface area

(version 2)
781 API Xch-7dv 7-ordered Chi chain-weighted by valence elec-

trons
833 API Mse mean of constitutional weighted by Sanderson EN
850 API DetourIndex detour index
977 API BIC4 4-ordered bonding information content
1025 API Mor24 3D-MoRSE (distance = 24)
1217 API MOMI.X moment of inertia (axis = X)
1218 API MOMI.Y moment of inertia (axis = Y)
1335 API WPath Wiener index
1476 Excipient AATS2d averaged Moreau-Broto autocorrelation of lag 2

weighted by sigma electrons
1558 Excipient ATSC4c centered Moreau-Broto autocorrelation of lag 4

weighted by gasteiger charge
1562 Excipient ATSC8c centered Moreau-Broto autocorrelation of lag 8

weighted by gasteiger charge
1576 Excipient ATSC4d centered Moreau-Broto autocorrelation of lag 4

weighted by sigma electrons
1579 Excipient ATSC7d centered Moreau-Broto autocorrelation of lag 7

weighted by sigma electrons
1593 Excipient ATSC3Z centered Moreau-Broto autocorrelation of lag 3

weighted by atomic number
1602 Excipient ATSC3m centered Moreau-Broto autocorrelation of lag 3

weighted by mass
1616 Excipient ATSC8v centered Moreau-Broto autocorrelation of lag 8

weighted by vdw volume
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Table 2 (cont.)
Input vector with 45 variables selected for further computations with genetic programming

methods. Variables included in the final model (Equation 5) are in bold
Original
input

Input name Input description

1619 Excipient ATSC2se centered Moreau-Broto autocorrelation of lag 2
weighted by Sanderson EN

1639 Excipient ATSC4are centered Moreau-Broto autocorrelation of lag 4
weighted by Allred-Rocow EN

1666 Excipient AATSC4c averaged and centered Moreau-Broto autocorrelation
of lag 4 weighted by Gasteiger charge

1716 Excipient AATSC6v averaged and centered Moreau-Broto autocorrelation
of lag 4 weighted by vdw volume

1765 Excipient MATS1dv Moran coefficient of lag 1 weighted by valence elec-
trons

1816 Excipient
MATS3pe

Moran coefficient of lag 3 weighted by Pauling
EN

1817 Excipient MATS4pe Moran coefficient of lag 4 weighted by Pauling EN
2272 Excipient ETA ep-

silon 3
ETA epsilon (type: 3)

2350 Excipient Mor09 3D-MoRSE (distance = 9)
2351 Excipient Mor10 3D-MoRSE (distance = 10)
2447 Excipient Mor10se 3D-MoRSE weighted by Sanderson EN (dis-

tance = 10)
2448 Excipient Mor11se 3D-MoRSE weighted by Sanderson EN (distance =

11)
2469 Excipient Mor32se 3D-MoRSE weighted by Sanderson EN (distance =

32)
2475 Excipient Mor06p 3D-MoRSE weighted by polarizability (distance = 6)
2489 Excipient Mor20p 3D-MoRSE weighted by polarizability (distance =

20)
2641 Excipient JGI6 6-ordered mean topological charge
2642 Excipient JGI7 7-ordered mean topological charge
2644 Excipient JGI9 9-ordered mean topological charge
4021 API dose [µg] The dose of API in µg
4022 Excipient 1 dose [µg] dose of enhancer in µg
4025 Animal weight [g] Body mass of animal on which absorption tests were

performed
4026 Enhancement measure-

ment
Type of effect: 1 = pharmacokinetic; 2 = pharmaco-
dynamic

4027 Enhancement rate Output

Genetic programming computations with the rgp package were performed using
symbolicRegression() function and two evolution algorithms: the generational evolu-
tionary multi-objective optimization algorithm, and the archive-based Pareto tour-
nament multi-objective optimization algorithm. The model with the lowest NRMSE
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is presented as a mathematical formula in Equation 5. It was developed using the
Pareto tournament evolutionary algorithm, where the maximum chromosome size was
set to 40. The population size was established as 300, and the model was evaluated
after every 300,000 evolution steps, whereas the total number of steps was 45,000,000.
The NRMSE of the model was 4.57%, and the R2 was 0.83, which is a 25% improve-
ment when compared to the best-obtained neural network.

ER =
√
X11 · e2X41·eX8+2X11·X8+e

1
2
X4
√

C1·X41 ·
√
X41 ·X43 + eC2·|X29|·X34 (5)

where C1–C2 are constants, X4 – API MATS6d, X8 – API Xch-7dv, X11 – API BIC4,
X29 – Excipient MAT3pe, X34 – Excipient Mor10se, X41 – Excipient JGI9, X43 –
Enhancer dose [µg], ER – Enhancement ratio.

The GP model for ER prediction requires seven input variables among which
three are API descriptors, three are excipient descriptors and one indicates the en-
hancer amount in the formulation. To summarize, an additional reduction of the
features was done by discarding 38 variables of the previously selected 45-input vec-
tor as a result of the models’ evolution. The ER values observed and predicted by
the model are presented in Figure 3.

Figure 3. Predicted and observed values for GP model presented in Equation 5

The model presented in Equation 5 was also implemented in a simple computer
application written in Python; it can be directly applied to calculate the excipients’
influence on API absorption. The tool is available free of charge at the SourceForge
website [37].



112 Adam Pacławski, Jakub Szlęk, Aleksander Mendyk

5. Model-based problem analysis and discussion

The best-performing model presented in Equation 5 was analyzed to discover the
relationships between the variables in the analyzed problem. The influence of the
input factors on the predicted ER values was analyzed visually on three-dimensional
plots. It seems that, from the seven inputs included in Equation 5, the most significant
are the enhancer’s dose, the excipient’s 9-ordered mean topological charge (Excipient’s
JGI9), the 7-ordered Chi chain-weighted by valence electrons (API Xch-7dv), and
the Moran coefficient of lag 3 weighted by Pauling EN (Excipient’s MATS3pe). The
relationship among the excipient dose, chemical descriptors, and enhancement rates
of absorption are presented in Figures 4–6. Of the plethora of possible combinations,
we selected the most significant ones. A 3D plot is given for the relationship among
the enhancer’s dose, excipient’s 9-ordered mean topological charges (JGI9), and ER
values calculated according to Equation 5 (Fig. 4).

Figure 4. Analysis of influence excipient dose and excipient 9-ordered mean topological
charge (JGI9) on enhancement rate predicted by GP model

It can be observed that an increase in the excipient dose generally leads to
a marked increase in the ER value. Therefore, the excipient dose has a strong positive
impact on the enhancement ratio. At the same time, the positive trend is not as strong
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when the enhancer molecule has values of the JGI9 descriptor that are below 0.005.
Therefore, the highest increase in the ER is observed for JGI9 descriptors above 0.005
and the enhancer dose above 5000 µg. Such an analysis can lead to the assumption
that both the enhancer dose and the topological charge of the excipient (JGI9) can
modify the absorption of APIs in the lungs. These findings are in accordance with
the work of Li et al. [26], where they studied the influence of the excipient’s molecule
charge on the liposomes’ ability to promote pulmonary protein absorption. Moreover,
toxicological studies indicated that the charge of excipients like stearylamine and
dicetylphosphate might cause a visible disruption of pulmonary epithelial cells [17].
Furthermore, there is evidence of the relationship among the inhibition of malonyl-
CoA decarboxylase activity, the p2x7 receptor, and the topological charge index of
the chemical compounds [4, 42]. Galvez’s topological charge indices (including JGI9)
were also present in the models predicting the Caco2 cell permeability of the chemical
compounds [15]. Figure 5 presents a relationship between the enhancers’ dose and
the APIs’ 7-ordered Chi chain-weighted by valence electrons on the enhancement rate
calculated according to the GP model (Equation 5).

Figure 5. Analysis of influence excipient dose and 7-ordered Chi chain-weighted by valence
electrons on enhancement rate predicted by GP model

It can be clearly observed that the absorption enhancement of APIs that have low
values of Xch-7dv is not as high as for APIs with Xch-7dv values above 3. An example
of such an API is insulin (Xch-7d = 0.34). When Exubera R© (the first inhaled insulin)
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was marketed in 2006, it was believed that insulin absorption primarily involves a pas-
sive diffusion across the alveolar epithelium through extracellular tight junctions [12].
However, the mechanisms of its absorption in the lungs has been questioned recently,
providing evidence for transcellular pathways involved in insulin transport across the
alveolar epithelial monolayers [48]. Therefore, an in-depth analysis of API molecules
may be useful to reveal unknown transportation pathways.

Our findings seem to be in accordance with other research as well. For example,
Morita et al. examined the influence of EDTA, salicylate, glycocholate, and caprate
on FD4 and FD10 lung absorption [31]. The authors claimed that the absorption
of labeled dextrans (FDs) with molecular weights of 4 kDa and 10 kDa (Xch-7dv
from 1.9 to 4.2) is highly altered by increasing of the enhancer’s dose. They postu-
lated that the observed changes of absorption are related to tight junction structure
modifications, causing an increase in paracellular transport. A few years later, Hus-
sain et al. classified EDTA and salicylates as tight junction modifiers that act by
removing membrane-bound calcium and increasing epithelium permeability [17].

Figure 6. Analysis of influence excipient dose and Moran coefficient of lag 3 weighted by
Pauling EN on enhancement rate predicted by GP model

It was found that rhG-CSF’s (Xch-7dv = 1.94) absorption in the lungs increases
when co-administered with polyethylene glycol (PEG) [17]. Moreover, Okmura et al.
reported that EDTA and salicylate did not increase insulin (Xch-7d = 0.34) absorption
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after lung administration, which can suggest another mechanism of its absorption [35].
EDTA was also ineffective in modifying calcitonin (Xch-7dv = 0.25) absorption in the
lungs, suggesting something other than paracellular transport [53].

Figure 6 presents the influence of the enhancer dose and Moran coefficient of
lag 3 weighted by Pauling EN (MATS3pe) on the enhancement rate (according to
Equation 5). It can be observed that, for negative values of an excipient’s MATS3pe,
the ER is strongly correlated to the excipient’s dose. However, higher ER values are
observed for APIs with positive values of MATS3pe.

6. Conclusions

The enhanced and controlled bioavailability of molecules in the lungs plays a crucial
role in delivering safe and efficient therapy. Moreover, research on increasing absorp-
tion to reduce variability in bioavailability and total patient exposure to APIs and
excipients is an ongoing process [48]. However, the development of quality pulmonary
formulation regarding particle deposition in the lungs and API absorption is still
based on a trial-and-error approach. In this study, an empirical model predicting the
influence of absorption enhancers on API bioavailability in the lungs was developed.
Starting from a literature review and then encoding chemical compound structures
by molecular descriptors, a database was created. Moreover, a feature selection and
the construction of predictive models led to a mathematical formula obtained with
GP methods. The developed model was analyzed and compared to the empirical
results from other research [4, 15, 17, 26, 31, 35, 42, 48, 53]. The presented approach
is consistent with recent trends in pharmaceutical technology reflected in regulatory
agency guidelines for the industry, which place an emphasis on better understanding
the features influencing the final product quality. There is also an acceptance of the
FDA for using purely empirical tools as support for medical staff in diagnostics, an
example of which is an approved artificial neural network-based diagnostic application
– Arterys [6].

The unique approach employed in our work is based on the relative character of
the output variable representing the change of two distinct classes of effects: phar-
macokinetic and pharmacodynamic. These effects are usually not combined without
a PK/PD modeling approach, which integrates both components in the form of differ-
ential equations. However, without the results from both components (PK and PD)
for a single formulation, it is impossible to establish a classical model. The use of
computational intelligence tools allowed us to overcome the necessity of establishing
the PK/PD relationship prior to the modeling of drug absorption in the lungs.
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