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Abstract If several distributed and disparate computer resources exist, many of which

have been created for different and diverse reasons, and several large scale com-

puting challenges also exist with similar diversity in their backgrounds, then one

problem which arises in trying to assemble enough of these resources to address

such challenges is the need to align and accommodate the different motivations

and objectives which may lie behind the existence of both the resources and

the challenges. Software agents are offered as a mainstream technology for

modelling the types of collaborations and relationships needed to do this. As

an initial step towards forming such relationships, agents need a mechanism to

consider social and economic backgrounds. This paper explores addressing so-

cial and economic differences using a combination of textual descriptions known

as social profiles and search engine technology, both of which are integrated into

an agent technology.
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1. Introduction

Assume that several heterogeneous, distributed and disparate computer resources ex-

ist, many of which have been motivated by, and created for different and diverse

reasons, and that several large scale computing challenges also exist with similar di-

versity in their motivations and objectives. The problems arising in trying to assemble

enough of these resources to address such challenges are in the domain of resource

and work allocation.

The different physical and geographically locations, plus distributed control and

ownership of resources increases the difficulties faced. For owners of both work and

resources to begin to address such challenges, relationships and collaborations need to

be formed, i.e. there is a need to align and accommodate the many different motiva-

tions, reasons and objectives which may lie behind the existence of both the available

resources and the challenges which may be addressed by them. Software agents are

offered as a mainstream technology for modelling the types of collaborations and re-

lationships needed for this [27]. However, the social and economic differences found

between the different types of resources and work will influence the establishment of

these collaborations. As an initial step towards forming such relationships, agents

need a mechanism to consider social and economic backgrounds and origins.

This paper explores a solution for addressing social and economic differences

using a combination of textual descriptions known as social profiles and search engine

technology. These developments are integrated into an embryonic and rudimentary

agent technology called ‘Social Grid Agents’ (SGA) [21] which has been developed

in Trinity College Dublin [1]. SGAs were developed to address the diversity and

complexity found in the allocation of Grid computing resources.

The remainder of this paper is laid out as follows. Section 2 discusses some

prior work, some with automated and some with manual selections for addressing

resource allocation problems. In Section 3, the concepts of ‘social and economic’

differences are explored and relevant examples of each are given. Section 4 describes

SGA technology and introduces it both as a use case environment and as the original

stimulus for deploying an implementation of social profiles. A solution for describing

and differentiating between these differences is described in Section 5, also giving

details of a prototype implementation of the solution. Sections 6 and 7 gives details

of simple experiments, conclusions and future work.

2. State of the art

This Section briefly describes some prior research on combinations of agents, matching

and search technology in the area of work and resource allocation for heterogeneous

distributed resources.

Research by Gorodetsky [13] uses matching libraries embedded in P2P agents in

a multiple agent system (MAS) which incorporates searching and matching of other

agents. Services are defined using a key-pair description file and these can be searched
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and queried for service discovery and matching. This work uses pattern matching to

search the expressions used in the matching mechanism but does not incorporate any

other search technology.

The European Grid Infrastructure (EGI) [2] employs a job description language

and a resource broker based on the ClassAd matching tool [22] (discussed later in

Section 4.3) in order to match heterogeneous distributed resources to work. This

approach derives from the EU DataGrid project [3], further refined in the EGEE,

EGEE-II and EGEE-III projects [4].

Montella [20] describes the integration of a statistical language model called La-

tent Semantic Indexing (LSI) [12] with the ClassAd matching tool. LSI is frequently

used in information retrieval and internet search engines. In this work ClassAd and

LSI are used in a two stage process, where initial matches returned by ClassAd are

optimised using a customised LSI algorithm. LSI is a similar search technology to

the solution used here, but Montella’s approach only applies it to terms used in the

matching tool’s expressions but not to any additional text as proposed here.

Hao [15] uses vector space model technology (VSM) [25] to rank the relevance of

web services where large numbers of responses are returned during service discovery.

This work uses textual descriptions of web services. Similarity measurements between

two or more of these are combined with measurements of the level of connectivity

a web services has to others. By doing this, a measure of the relevance and importance

of a given web service is produced.

All of the above examples offer automated matchmaking and similarity evaluation

mechanisms. Evaluation of computer resource allocations using human interpretation

of descriptions and criteria can be seen in how World Community Grid (WCG) [5]

make allocation decisions. WCG aggregates computer resources which have been

volunteered by members of the public and allocates them to suitable projects. Re-

sources are allocated to projects based on meeting criteria such as being not for profit

and where humanitarian benefits may be forthcoming on completion of the work. For

reasons which will be discussed in Section 3.1, computer resources volunteered by indi-

viduals (often home PCs) are generally only donated under largely similar conditions.

The motivations of the project owners seeking volunteered resources are evaluated

by WCG personnel in periodic committee meetings and not by any automated deci-

sion making process [6]. In a similar way, SweGrid (the Swedish Grid Initiative) and

its subsidiary SNAC (Swedish National Allocations Committee) is another example

where ‘human’ committees convene to evaluate and make decisions about resource

allocations under their control [7].

3. Social and economic differences

To illustrate examples of different social and economic outlooks, different types of

resources which may be suitable for addressing large computing challenges are listed

and briefly discussed below.
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1. Commercial enterprises: A commercial enterprise invests capital in computer

resources. The resources may be used internally or rented to external users. It is

likely that the owner’s focus will be on maximising investment return or utility

for their own benefit.

2. Public investments: Governments invest in large computational resources for sci-

entific and academic institutions, doing so for the long-term benefit of society.

The resources are owned and controlled by the institutions. Usage may be re-

stricted to educational and research work but society in general may benefit from

the results achieved.

3. Volunteered resources: In volunteer computing, a member of the public allows

their privately owned computer to be used by a third party project. However,

they may exercise discretion when choosing how their computer will be used.

They may require, for example, that the work aims to bring a humanitarian

benefit or increased scientific knowledge and they may be concerned about who

will benefit from the outcome and how it will be used.

4. Environmental factors: Institutes, groups and corporations who are sensitive to

the impact of their carbon footprint may have a preference for using computer

resources which are powered (to varying degrees) using renewable energy. This

criterion may be critical for both providers and users of commercial and volun-

teered resources [11].

Considering the cost, impact and potential benefits of accessing such computing

resources, owners are likely to have preferences, aspirations and rules which will de-

termine how their resources should be used. Owners of work may also have similar

preferences. The following questions may arise:

1. Why are the resources being provided or why is the work being done? Who

benefits and do they need and deserve those benefits?

2. What are the remuneration and cost expectations? Is the work not-for-profit?

What is the financial status of the owner of the work?

3. What policies and ideological orientations exist which may influence allocations?

Is there a preference for commercial, educational, humanitarian or scientific work?

Matching resources and work based on technical requirements such as memory

requirements, CPU architecture and bandwidth can be done using a Boolean match-

making mechanism such as ClassAd [23] or similar (as briefly discussed in Sections

2 and 4.3). However, matching based on social and economic outlooks and attempt-

ing to capture answers to some of the above questions presents a different challenge.

A new approach is needed to accommodate the larger number of considerations which

need to be dealt with.

3.1. Creating and measuring descriptions

As a solution to the problem of addressing social and economic differences, this re-

search proposes exploiting the fact that subtle or nuanced differences in the aspira-

tions and preferences discussed above can be described much more effectively using
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unstructured passages of text. If the ‘meaning’ of this text (i.e. what the author is

attempting to say or describe) can be modelled and measured in some way, this may

enable the establishment of similarities or differences between the entities described.

One approach to modelling meaning is introduced below.

3.1.1. A model of meaning

In spoken language, the meaning of a word or term is often expressed by offering

other words which are ‘close’ in meaning to it. This proximity metaphor suggests

that meanings have a spatial property, that they occupy a location in some space

occupied by other meanings and nearness in that space can be considered a metaphor

for similarity [24].

Meaning can be linked to proximity in a mathematical sense in a way that can

be measured and quantified. Early research by the American linguist Harris [16] led

to the theory that meaning and distribution of words were closely related, and that

the meaning of words could be indicated by the context in which they frequently

occurred (i.e. words which occur near certain other words frequently mean the same

thing). However, the context of a word may vary in scope from a sentence to an entire

document. Research by Salton [25] created high-dimensional vectors based on statis-

tical information about frequency and contexts of words in documents. This allows

documents to be located geometrically in a high-dimensional vector space known as

the Vector Space Model (VSM). Each document vector is a statistical representation

of word occurrences in that document, and the context for each word is the entire

document.

The motivation for locating document vectors in a geometric space is to be able

to find other ‘similar’ vectors which are located nearby using the cosine angle or cosine

similarity between them (and thereby find documents which have similar words and

meanings). Using cosine similarity between vectors, similarity between documents is

automatically extracted from the distribution of documents in the geometric space. In

practice, the space is searched by creating a new vector using a relatively small number

of words or terms known as a query and then finding other vectors ‘near’ to this. It

should be noted that this approach of measuring similarity between documents only

yields a similarity measurement, and does not offer any form of classification other

than to differentiate it from another document relative to the query.

The ‘similarity’ approach provided by the VSM is widely used in internet search

engines where web pages and documents are retrieved based (among other things)

on occurrences of the words they contain. A typical VSM implementation maps text

documents to individual entries within the space (often known as an index ). Entries in

the VSM or index have a flat structure consisting of one or more fields. Each field can

contain the text for different categories of information. Typical categories are ‘author’,

‘contents’, ‘abstract’ and ‘main body’ (of the article, book, etc.). When searching an

index, specific fields can be targeted with query terms, or an entire document can be

searched, returning results which have that term present in any field.

2013/06/06; 23:58 str. 5/21

Computing resource and work allocations using social profiles 277



3.2. Social profiles

To recap, the overall motivation for defining social profiles suitable for integration

into agents is to address social and economic differences, which in turn will facilitate

establishing relationships and organisations in a way which respects the requirements

of owners of work and resources. This research proposes exploiting the measurement

of similarity between documents which describe entities (in this case consumers and

providers of resources) and to explore if it is a suitable and feasible way to find

similarity between such entities.

For each entity, a collection of text which was compiled either by or about that

entity is created. This description is called a social profile and aims to capture any

aspect of an entity which can be described using text. This in effect allows the

full resources of language to be used as opposed to, for example, a restrictive set of

key-pair values or a questionnaire (see also Section 3.3). Each textual description

document becomes an entry in the VSM index and is a statistical representation of

a social profile there.

3.3. Content and design of a social profile

For the purpose of this research, any text which is relevant to the described entities

will be used as content for social profiles. In the digital age, sources of such text are

plentiful.

By way of discussion, consider the scenario where an e-Commerce company needs

to create descriptions of all its sellers in order to present them to potential buyers. An

example of such a company is eBay, the internet auction site [8]. A potential buyer is

presented with a collection of feedback comments collected from past customers after

previous transactions. Taken in total, this is in effect a description of the seller. It

consists of a short input where the seller describes itself. Appended to that are several

short comments supplied by past customers (this can be called ‘reciprocated’ or third-

party information). In the case of eBay, reciprocated information has a structure

imposed on it in the form of a list of questions and a short Likert scale dialogue

[19] about delivery times and quality of packaging. What is interesting about this

total collection of text is that it (automatically) contains words which describe the

seller. If this were indexed in a VSM, statistical information about occurrences of

‘superlatives’ and other positive terms should differentiate a good seller from one who

frequently has negative feedback written about them (however in the case of the eBay

website, this is not done, instead they are simply presented to the potential buyer in

summary form).

By contrast, another example of a ‘product’ offered to ‘buyers’ (by the film

making industry in this case) is a feature film. The buyers here are people who

wish to go to a cinema to view such a ‘product’ for their entertainment; they also

need a description when deciding on which if any film to view. Film reviews also

constitute a textual description but tend not to have a structure similar to that of

the eBay feedback details discussed above. Reviewers can write whatever they feel is
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appropriate and there are several spectra along which to describe a film (for example

directing, acting, plot, etc.). However, the aggregation of even a number of film

reviews cannot be said to have the same usefulness as an eBay feedback description

as personal tastes (among other things) play such a large part in what is a satisfactory

film viewing experience. Feedback to eBay sellers and film reviews are very different,

one having some structure, while the latter is more likely to be an unstructured and

amorphous passage of text.

The origin of the text is also important; and descriptive text from both the

entity itself and third parties both have a place in a social profile. In the eBay

information discussed above, positive information from a third party is difficult to

fake, and negative reviews are difficult to remove and this adds authenticity to the

description. In a social profile however, information which comes directly from an

entity is also important as they are often best placed to set out what their objectives

are or to provide an overview or summary of their mission.

The question arises: what type of information is relevant when describing com-

puting resources and work and what type of structure should it have? For this re-

search, a broad view is taken, insofar as any text which applies to an entity contributes

to a description of it, therefore could aid a resource allocation decision.

3.4. Structure of social profile

As seen in the eBay example discussed above, judicious use of Likert scales and struc-

tured questions is useful. However, it should be remembered that in that instance,

the reason for compiling a description of a seller is to allow a potential buyer to eval-

uate whether a successful transaction is likely to be completed with that seller or not.

Using that definition, the eBay description may be quite narrow and does not need

describe a seller beyond that criterion.

The structure of a social profile needs to consider a broader set of criteria. It is

not feasible to pose the many questions which could be posed when trying to describe

an entity under headings loosely described as ideological, political, economic and

sociological. For this reason, at least to begin with, the structure of a social profile

must rely mainly on collecting descriptive text. This text may then be indexed under

a relatively small number of categories which are dictated by the origins of the text.

For these reasons, the initial prototype social profile contains three sections.

1. Fixed and incontrovertible information or ‘logical data’, such as the creator’s or

owner’s name, address, type, URI, address or location.

2. The creator or owner’s input, i.e. what it claims to be a true description of itself,

its current and past activities and publications.

3. Third party (reciprocated) information and references, reviews, feedback, replies

in blogs and forums.

The rationale for this structure is that its different parts can be mapped to

separate ‘fields’ in a VSM entry. Data in the first section is indexed with each item

as a separate field but is not statistically analysed for context and frequency. This

2013/06/06; 23:58 str. 7/21

Computing resource and work allocations using social profiles 279



allows each item to be queried and retrieved using Boolean matching. The second

and third Sections consist of large bodies of text and are each indexed in two separate

fields. The text is statistically analysed, each becoming part of the vector for the

social profile. This allows the profile to have a more general form where different

types of data are accommodated.

Although the structure outlined above may suffice for a prototype, extensibility

will also be a required feature of any implementation. In the case of VSM entries or

documents, at a minimum, it will be required that the number of fields be able to be

increased without too much disruption to an agent’s abilities or its environment.

4. A use case: social profiles in SGAs

This section further describes a use case agent technology in which social descriptions

may be deployed. This use case was the original stimulus for this research.

Social Grid Agents (or SGAs) are essentially Java applications, and were origi-

nally implemented as web services in the prototype of Pierantoni in [21]. Each SGA

presents a uniform functional message processor interface which receives, processes

and returns a message. The use of web services makes them continuously running

self-contained entities and allows them to be deployed in distributed locations, using

SOAP messages over HTTP for communication. They react to each message they re-

ceive and can also sense their environment. Unlike agents described in [27, 9], SGAs

do not exhibit reasoning or artificial intelligence attributes and this distinction is

made in [21, p.39]. They can be considered ‘instruments’ which enforce their owners

policies and carry out their wishes when interacting with other agents. These policies

are defined in messages sent to agents and also in the agents’ internal settings.

4.1. SGA architecture

An integral part of an SGA is its hashmap, the basis for their modular architecture.

The binary abilities of the agent are stored in this hashmap and are instantiated

as required when processing a message. Binary abilities, like the agents of which

they are a part, are essentially message processors too. Each ability has the logic or

‘knowledge’ to deal with a particular type of message and can carry out an action in

the environment of the agent, including acting as an interface to underlying services.

In a system of multiple SGAs, relationship with other SGAs (and their nature such

as ownership and direction of control) is also defined by abilities.

4.2. Social and production topologies

When an SGA acts as an interoperability wrapper for an underlying service, such

an agent can be said to ‘produce’ that service, i.e. it is a ‘production agent’. An

agent controlling one or more production agents may also interact socially with other

similar ‘controlling’ agents. Therefore, agents can be said to fall into topologies or

layers which are termed ‘social’ and ‘production’ layers. An agent in the ‘social layer’
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which controls ‘production agents’ can trade and exchange the ‘utility’ of these agents

with other agents in the social layer.

4.3. ClassAd in SGAs

The functional language ClassAd [22] from the Condor project [26] is integral to the

SGA architecture and implementation. Named from an abridgment of ‘Classified

Advertisements’, it was originally developed for describing and matching computer

jobs and resources. Its main features are:

• Extensible key-pair structure of expressions.

• Matching of expressions and ranking of matches.

• Expressions can be text or numeric values, or (most usefully) can be functional

programming statements.

SGAs exploit these three features. ClassAd expressions are used to define all

SGA communication messages for both internal and inter-SGA information flows.

For communication internal to an agent, messages are passed through the agent’s

components and are matched against other ClassAd expressions embedded in the

agent. The outcome of these evaluations determine the behaviour and response of

the agent. The rationale for using a functional language for this is to provide side-

effect-freedom and referential transparency, thereby offering the potential to audit

and prove an evaluation outcome from what may be a number of complicated (and

possibly nested) expressions. This is desirable, especially for SGAs in an economic

oriented market environment.

4.4. The background and motivation for SGA development

The current SGA implementation and its internal matching and evaluation mechanism

(ClassAd) are agnostic to the tasks, actions and values which they handle. In the

prototype development [21], SGAs were deployed in a metagrid environment. These

motivations now also extend to federated clouds and hybrid grid-clouds, and possibly

to any computing environment where resources and work are to be allocated.

Although not yet fully developed, it is envisaged that a multiple agent system (or

MAS) with large numbers of agents (100s or 1000s) populated by SGAs may exist.

This will mean that there will be many different agent creators and owners. Each

owner may own and control one or more agents, with each one having an interest

or stake in the environment. Candidates represented by agents in such an MAS are

entities such as individuals, institutions or enterprises which produce or consume

computing services. In effect, the SGAs become producers and consumers of these

services, co-existing and interacting with other agents as needed.

4.4.1. Other developments in SGAs

Towards the overall motivation behind SGAs, other developments in this agent tech-

nology [18] facilitate the fast creation and deployment of several SGAs within an

MAS. This work allows an MAS of SGAs to be enlarged, reduced and reconfigured,
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all without impacting on other existing agents therein. Serialized binary abilities

encapsulated in an XML file can be transported to SGAs for configuring and enhanc-

ing a new or existing agent. The use of an XML file requires a supporting HTTP

server in the MAS environment and this infrastructure will be further utilised in the

implementation described below.

5. Prototype implementation

In the scenario outlined in Section 4.4, both an SGA, its abilities and its social profile

are created by the agent owner. For this research, all of the different sections of

a social profile will be compiled by the owner. Questions of transparency and trust

which would naturally arise in the creation of profiles by individual and non-trusted

parties are not considered at this stage. These concerns may be addressed at a later

stage, for example, by each agent owner publishing its (perhaps digitally signed) social

profile, along with references to its various sources as well as embedding it within its

agents.

5.1. Lucene as a VSM implementation

Lucene [10] is a JavaTM implementation of a Vector Space Model search engine and is

used in this research. It provides extensive libraries and an API for interacting with

a VSM index.

Central to Lucene’s architecture is the concept of an inverted index. This index

is populated with multiple Lucene documents and this combined data structure has

enough information to model the VSM.

A single Lucene document represents a single (text) entity, be that a book, a web

page or anything which can be considered as an ‘atomic’ unit for indexing and retrieval

by searching. A Lucene document consists of one or more fields. Depending on the

nature of the text that a field holds, it may contain one or several terms. As an

example, for a (digital) book, content like ‘author’ and ‘title’ are usually added to

their respective fields as single terms (i.e. not broken down into smaller terms). This

allows these fields to be queried and matched (similar to the Boolean matching of

values offered by ClassAd). Longer passages such as an abstract or a main body of

text are usually assigned to other fields. Such a text is typically broken down (or

analysed) into the many individual terms which it contains. Figure 1 is a schema

illustration of a simple Lucene document. Overall, the terms in each field and their

frequencies make up the vectors which occupy the different locations in the Lucene

VSM index.

For clarity, the term Lucene document will be used to refer to documents used

in the (Lucene) VSM index.

5.2. Content sources for social profile

For experimental social profiles used in this research, data is largely garnered from

websites and down-loadable press articles which refer to a selection of entities. How-

2013/06/06; 23:58 str. 10/21

282 Peter Lavin, Eamonn Kenny, Brian Coghlan



Figure 1. A Sample Lucene Document Schema.

ever, text for the third party area may also be gleaned from relevant reviews, forums

and discussion groups as these sources contain descriptive words and terms which

apply to the entity.

5.3. XML as a profile container

Section 4.4.1 outlines how separate developments in SGAs use XML files and how this

necessitates a HTTP server in the MAS environment. These factors, when combined

with the human readability and extensibility makes XML a logical choice of container

for the creation of social profiles. Java implementations of XML parsers are ubiquitous

and easily integrated in to the SGA development environment and to SGA abilities. In

the initial implementation, this XML file contains an element for every field required

in the Lucene document. The logic to transfer the content of these elements to the

Lucene document fields as described in the structure outlined in Section 3.4 is dictated

by the logic in the ability which processes the XML file within the agent. A sample

of the structure of this file is shown in Figure 2. Note in this figure that there can be

multiple fields for ‘logical data’ (item 1 in Section 3.4) but only one field each for the

owner’s and third party inputs.

5.3.1. Transport and indexing of the social profile XML file

When a social profile is completed by its creator, it is copied to the HTTP server

within the MAS. A message containing the URL of this XML file is sent to the agent

and used by the agent to fetch its social profile from the HTTP server. The XML is

parsed and each element is added to a Lucene document and subsequently added to

the VSM index within that agent. At this point, an SGA has a single document in its

Lucene index which is in effect a high-dimensional vector representation of a textual

description of its owner.

5.4. Integration of Lucene with SGAs

In order to index the social profile within the agent, each SGA needs to have access

to the core Lucene libraries. A Java archive file (JAR) which is currently packaged

with the agent’s web service archive file provides this. The agent also needs to be

configured with binary abilities which can invoke the API provided by these libraries.
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<social-profile>

<profile>

<documentField>

<fieldName>agentName</fieldName>

<fieldContent>agent_0001</fieldContent>

</documentField>

<documentField>

<fieldName>type</fieldName>

<fieldContent>Academic Institution

</fieldContent>

</documentField>

<documentField>

<fieldName>ownerDescription</fieldName>

<fieldContent>Text of owner’s description is here...

</fieldContent>

</documentField>

<documentField>

<fieldName>thirdParty</fieldName>

<fieldContent>Third party description is here...

</fieldContent>

</documentField>

</profile>

</social-profile>

Figure 2. Structure of Original Social Profile XML File.

In keeping with SGA architecture, one ability is added for each specific task. For

example, initially, each agent requires the ability to fetch, parse and index its own

social profile. Depending on the complexity of the operations which need to be carried

out on the index, multiple binary abilities can be added using the mechanism briefly

described in Section 4.4.

Although Lucene allows an index to be stored in system memory, for long-term

continuous operation the agent also needs access to persistent storage on the hard-

disk of its host machine. The disk of the SGA host machine is accessed when social

profiles are written and read from the index.

5.5. Extensibility of a social profile

For consistency throughout an MAS, it may not be desirable that the overall structure

of the social profile is changed dramatically. However, exploiting more of the potential

and flexibility of the Lucene document and search API may be useful. Examples of

this may be adding location information such as a GPS location of the agent, and an

addition of data fields which may be used to implement directory structures.

In the social profile described in Section 3.4, the structure of the Lucene Docu-

ment which is indexed in an agent is mapped directly from the structure of the XML.

It is also the case that the logic coded into the agent ability used to index this infor-

mation has to match this structure. For the agent and profile creator, this in effect
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means that adding further elements to an XML file requires a change in the logic

available within the agent. In the current SGA architecture, this means that a new

binary ability needs to be introduced (i.e. reconfiguration of the agent). While this

can be done using the mechanism of Section 4.4, it is restrictive and does not lend

itself to the flexibility and extensibility of the social profile structure.

5.5.1. An extensibility solution

The solution developed to overcome this restriction involves being able to define

a schema for a social profile XML file and including it within that same file. A typical

XML schema is not suitable for this as such a schema would still have to be ‘trans-

lated’ to an actual Java binary code to implement the logic needed for the additional

fields. This research implements an encapsulated binary schema, where the creator

of the XML social profile must also prepare a Java binary class, a representation of

which will be added to the social profile. This class contains the required logic needed

to index each individual field as specified by the creator (for example whether fields

are to be analysed or not). During the indexing operation within the agent, this class

is used to add the contents of each XML element to the Lucene Document.

This approach is possible for a number of reasons. A Lucene document has

a non-hierarchical or flat structure. Therefore, an XML file which reflects this will

have a similar flat structure. This means that the elements in the XML file which

contain descriptive information can be parsed and used to create a list. Each item in

that list can simply be used to call a list of corresponding methods in the Java class

(using Java Reflection). As each method is invoked, the contents of the corresponding

element in the social profile XML file is added as a field to the Lucene Document. The

structure of the XML file required for this is shown in Figure 3. Note the addition of

the <profileClass> element, and how all <documentFields> elements are now children

of an <indexableFields> element. The overall sequence for social profile creation, and

its subsequent indexing are outlined below. This sequence of steps which takes place

within an SGA during indexing is further illustrated in Figure 4.

5.5.2. Sequence during profile creation

In the development environment of the agent and social profile creator, the following

takes place:

1. The social profile XML file is compiled as before.

2. A Java class is created (ProfileStructure.java), having a set of methods which

meets the indexing requirements of the created profile.

3. This code is then compiled, whereupon the resulting ProfileStructure.class file

is converted to a Base64 [17] string.

4. This string is added to the social profile XML file (under a separate element to

the social descriptions part).

The names of the methods in the Java binary must match the names of the

elements in the social profile.
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<social-profile>

<profile>

<profileClass>

<base64Code>yv66vgAAADEAnwcAAgEAOgCeRAk=

</base64Code>

</profileClass>

<indexableFields>

<documentField>

<fieldName>agentName</fieldName>

<fieldContent>agent_0001</fieldContent>

</documentField>

...

...

</indexableFields>

</profile>

</social-profile>

Figure 3. Structure of Modified Social Profile XML File.

Figure 4. Sequence for Social Profile Indexing Using an Encapsulated Class.
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5.5.3. Sequence during indexing

Within the agent, the sequence in the ‘indexing ability’ for processing a social profile

using the encapsulated binary schema is as follows:

1. An empty Lucene Document is instantiated (as before).

2. The Base64 string is parsed from the social profile, marshaled to become a Java

object and is instantiated with the empty Lucene Document being passed to the

constructor as an argument.

3. The elements in the social profile which are children of <indexableFields> (con-

taining descriptive information) are then parsed and compiled into a list.

4. Iterating over this list, the corresponding setter methods in the Java class are

called, adding the contents of each <fieldContent> element to the appropriate

fields in the Lucene Document.

5. On completion of this iteration, the agent indexing ability calls a getter method on

the ProfileStructure class which returns the (by now filled) Lucene Document.

At this point, it is then added to the agent’s index.

The result of this development is that the number of fields in a social profile can

now be increased or decreased without making corresponding changes to the indexing

ability in the agent; instead, changes are made to the code of the ProfileStructure

class. The encoded Java class is, in effect, a schema for the social profile and comes

encapsulated within the social profile.

6. Experiments and outcomes

6.1. Social profile similarity measurements

This experiment aims to demonstrate the similarity measurements obtainable from

Lucene in the context of this application.

16 different entities were selected as subjects for this experiment. All were chosen

for their high media profiles, each one being the subject matter of several readily

available articles of digital text. These entities were loosely chosen from four different

categories as follows: (1) Business corporations, (2) Universities, (3) Government (or

government like) agencies or departments, and (4) Charitable/benevolent foundations.

Table 1 presents the names and categories of these.

6.1.1. Methodology

For descriptions of the above entities, 16 text files were created using a combination

text harvested from each entity’s web pages and from related press articles. These

files ranged from 930KB to 30KB in size and were indexed to a Lucene index (outside

of an SGA) using a custom made Java program. The program had two functions, to

insert each one of them into an index as a separate document; and to allow the user to

search and retrieve documents from that index using a query formed from a number

of terms.
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Table 1

Categories and Names of Entities Used.

Category Entity Name

Commercial

Companies and

Corporations

Vodafone

Ryanair

General Electric, USA

Virgin Atlantic

Universities,

Academic

Institutions

Trinity College Dublin, Ireland

Imperial College London, UK

University of California Berkeley, USA

Princeton University, USA

Charities and

Benevolent

Foundations

Bill And Melinda Gates Foundation

Doctors Without Borders

The Carnegie Foundation

The Global Fund

Government or

Similar Departments

and Institutions

US Govt, Department of Commerce

Irish Govt, Department of Agriculture, Food and Marine

Irish Govt, Department of Education Skills

European Commissioner for the Environment

To establish if useful similarity measurements could be obtained by searching,

multiple searches on this index were carried out using terms associated with each cat-

egory. Terms were arbitrarily selected and Table 2 gives, as examples, the terms used

to search for documents from the categories Commercial Companies and Corporations

and Universities, Academic Institutions. These lists of terms (or words) are passed

to the Lucene API and are transformed into the required structure for searching.

Table 2

Terms Queries Used for Searching.

Query Category Terms Used

1 Commercial Companies

and Corporations

corporate profit loss sales assets industry production

goods resources revenue growth executive

2 Universities, Academic

Institutions

degree masters research funding science arts

humanities university graduate campus student

lecturer

6.1.2. Summary of outcome

Table 3 contains an extract from the search results obtained by searching on the index

using the sets of terms detailed in Table 2. Table 4 presents (abridged) results returned
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and the similarity results (or score) for each one. This score indicates how similar

(using cosine similarity) the vector created from the terms was to the documents

returned.

It can be seen that, of the top five results for both searches, four are from the

category related to the query terms used. It can also be seen that results close to the

bottom of the table have similarity scores which are much smaller than those near

the top.

Table 3

Abridged Results from Query Terms 1 in Table 2.

Rank Similarity score Entity name

1 0.129878 General Electric, USA

2 0.128846 Vodafone

3 0.108973 Ryanair

4 0.066199 US Govt Dept of Commerce

5 0.051682 Virgin Atlantic

6 0.045555 Doctors Without Borders

. . . . . . . . .

13 0.011785 Irish Govt, Department of Education Skills

14 0.010598 Imperial College London, UK

15 0.008778 Princeton University, USA

16 0.004298 Trinity College Dublin, Ireland

Table 4

Abridged Results from Query Terms 2 in Table 2.

Rank Similarity score Entity name

1 0.189299 University of California Berkeley, USA

2 0.181311 Princeton University USA

3 0.162844 Trinity College Dublin, Ireland

4 0.135752 The Carnegie Foundation

5 0.060671 Imperial College London, UK

6 0.04841 Bill And Melinda Gates Foundation

. . . . . . . . .

13 0.005751 Vodafone

14 0.004885 European Commissioner for the Environment

15 0.003274 Virgin Atlantic

16 0.000312 Ryanair

6.2. Proof of concept social profile functionality in SGAs

This work demonstrates, as an example, the type of functionality which may be used

in relation to social profiles in SGAs.
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Three ‘proof of concept’ social profiles were selected from the pool of 16 described

in Section 6.1 and were indexed in three different SGAs using the agent ability de-

scribed in Section 5.5.1. Functionality in the form of further abilities relating to

social profiles has also been developed and tested in SGAs to request and carry out

the exchange of these social profiles. These include:

1. The ability to request another agent’s social profile and index it when received.

2. The ability to send an agent’s own profile to another agent (e.g. in response to

a request as in item 1).

3. The ability to send a social profile to another and request it to return ‘similar’

profiles it may have stored in its index.

4. The ability to respond to a request for ‘similar’ profiles (i.e. item 3).

The social profile used by the ability described in item 2 was retrieved from the

agents own index using a simple term query, using the agent’s own name (known to

it) to search its index.

The ability in an agent which responds to the request described in item 3 used

a different procedure to retrieve the ‘similar’ profiles. A Lucene document (a software

object) was serialised and sent from the requesting agent to the receiver. On receiving

this, the other agent used a MoreLikeThis query, a feature included in Lucene. In

summary, this allows Lucene to use an existing document as a query to search for

other ‘similar’ documents in an index. Although only tested here on an index which

contained a small number of entries, the implementation of this ability allows agents’

indexes (containing several social profiles) to be searched for entries which are ‘like’

or ‘similar’ to the profile on which the search query is based.

6.3. ProfileStructure class

For the testing of the extensibility work described in Section 5.5, varying numbers of

XML file elements and corresponding numbers of ProfileStructure class methods were

used.

Java Reflection exception catching was used to ‘gracefully’ catch mis-matches in

the structure of the XML file and the methods coded in the binary class. The largest

binary class tested had 30 methods and occupied 5.8KB on disk. This converted to

a Base64 string of 7.8KB (i.e. a text string of approximately 7800 text characters).

With this and other files tested, conversion from the Java binary format to Base64

carried an (linear) overhead of 35% in file size.

7. Future work and conclusions

The similarity score results outlined in Section 6.1.2 show that query terms, when

judiciously selected, can be used to retrieve social profiles roughly from the categories

that they were originally created in. Whereas this is to be expected from current

search technology, it also shows that the similarity scores from these results may
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be useful as a measurement and as a value useful in work allocation decisions made

within SGAs.

The flexibility of the Lucene Document when combined with the extensibility so-

lution described in Section 5.5 allows for several additional elements and correspond-

ing fields to be added to a social profile. This may allow features to be implemented

within an agent technology which are not directly related to social and economic

descriptions. Examples of these are adding longitude and latitude coordinates for an

agent. These, for example, may be searched using Lucene’s numeric range query type.

Given the capacity of a Lucene document to store Boolean or logical type data,

the social profile format may also be used as an record in a directory service. An

agent providing this service could aim to collect a large number of social profiles and

could also implement a directory protocol, be it hierarchical, relational or other.

In agent technology, a conversation policy is an agreed protocol used between

two agents to carry out a task [14]. For an agent to carry out such a task, each must

have a prerequisite set of abilities. Where social profiles for several agents stored in

the index of a directory agent, indexing the list of abilities available in an agent will

allow those abilities to be searched and retrieved.

7.1. Conclusions

Although similarity measurements between social profile are demonstrated, larger

numbers of these profiles will be needed in order to statistically establish their useful-

ness for establishing measurable differences between the entities described. The MAS

architecture of Section 4.4 enables such practical large-scale experiments.

A prototype implementation has successfully been tested which leads the way to

developing further agent abilities which will allow for the distribution and exchange

of social profiles. The versatility of XML, the Lucene document structure and the use

case agent technology (SGAs) facilitate the integration and amalgamation of these

technologies to an extent that makes further investigation of social profiles feasible.
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