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UNSUPERVISED LABELING OF DATA
FOR SUPERVISED LEARNING
AND ITS APPLICATION
TO MEDICAL CLAIMS PREDICTION

Abstract The task identifying changes and irregularities in medical insurance claim pay-

ments is a difficult process of which the traditional practice involves querying

historical claims databases and flagging potential claims as normal or abnor-

mal. Because what is considered as normal payment is usually unknown and

may change over time, abnormal payments often pass undetected; only to be

discovered when the payment period has passed.

This paper presents the problem of on-line unsupervised learning from data

streams when the distribution that generates the data changes or drifts over

time. Automated algorithms for detecting drifting concepts in a probability

distribution of the data are presented. The idea behind the presented drift

detection methods is to transform the distribution of the data within a sliding

window into a more convenient distribution. Then, a test statistics p-value at

a given significance level can be used to infer the drift rate, adjust the window

size and decide on the status of the drift. The detected concepts drifts are

used to label the data, for subsequent learning of classification models by a

supervised learner. The algorithms were tested on several synthetic and real

medical claims data sets.
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1. Introduction

Labeled examples are the most common form of data for concept learning. Given

a set of such examples, concept learning algorithms are able to create classification

models that can be used in decision support systems. However, most databases do

not always have labeled examples. Assigning labels to examples in data is a labor-

intensive, expensive and error-prone task; especially when it is performed manually

and access to domain experts are limited. This difficulty increases with the amount

and complexity of data to be labeled.

This problem can be further complicated when the assignment of labels changes

over time. This situation, known as concept drift, occurs when the same example

receives different labels at two different times. This situation is not uncommon, for

example what is considered to be a normal payment for a provided service at a given

time may not be normal after a few years when prices have risen.

The problem considered in this paper is how to automatically label data that can

be later used for concept learning. Specifically, it considers labels to be normal, indi-

cating that some values are within specified ranges (that may change overtime), and

abnormal, indicating that the values are outside the specified ranges. The presented

unsupervised approach is capable of handling univariate or multivariate data streams

with concept drift.

The presented work is part of a larger project, briefly outlined in Section 2, whose

goal is to create a decision support system capable of predicting payments for medical

claims. The system is designed to predict if a specific medical claim will be paid a

normal or abnormal amount, and what the abnormal amount is. The core of the

system consists of a classifier constructed using a concept learning method applied

to a training dataset with historical claims. The dataset, however, did not include

normal/abnormal labels, only amounts that were received for specific claims. The

method presented in this paper was used to assign the labels.

2. Medical claims payment prediction

Healthcare providers seek reimbursement for the services they provide. Claims are

prepared and submitted to payers. While in the majority of cases the claims receive

accurate payment, sometimes claims are not paid in full or not paid at all. The

latter may be due to improper claim preparation by the provider, improper claim

processing by the payer, miss-interpretation of a contract agreement, or deliberate

fraudulent actions. An important task is to predict when a claim will be paid or

not prior to submission. Moreover, it is crucial to present management with patterns

describing situations in which the inappropriate processing occurs, in order to improve

claim preparation processes and therefore reduce denials. Thus, the benefits of the

presented method are two-fold (1) denied or underpaid claims can be predicted in

advance allowing providers to modify them to increase chances of receiving correct
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payment, and (2) the process of providing and documenting services, as well as claims

preparation can be changed in order to reduce errors.

In order to achieve the above tasks, a machine learning-based decision support

system has been designed. The system works in two main phases: model construc-

tion from historical data, and payment prediction and model update phase. These

two phases are depicted in Figure 1. The model construction phase consists of the

following steps:

1. Historical data retrieval from billing systems.

2. Historical data labeling (the main focus of this paper).

3. Classification model construction.

4. Regression model construction.

5. Model testing.

Expert Knowledge

Unsupervised Data 
labeling

Data 
Preprocessor Training

Data
Validation 

Data

Learning 
Algorithms

Classification 
Model

Regression 
Model

Predictions

      Phase I                    Phase II

Figure 1. Model phases.

The work presented in this paper is part of the Phase I in Figure 1. Unsupervised

learning techniques coupled with prior knowledge from domain experts are used to

generate labels for data characterized by drifting distributions. The generated training

data is then used in the second, supervised, phase for the learning of classification

and regression methods. Because the distribution changes over time and there is

little or no knowledge about the time or change points, batch learning algorithms are

incapable of learning the data since they require all examples to be available in one

batch before learning can commence.

The focus of Phase I, therefore, is to design efficient on-line unsupervised learning

algorithms for the detection of changes in the distribution of data streams that may

be contaminated with noise and ultimately labeling examples. Because of the focus

of this paper, other details of the larger project concerning the complete process of

predicting medical claim payments are out of scope. The broader project has been

previously reported by Wojtusiak et al. [16, 17]
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3. Related work

The standard approach for detecting changes in medical insurance claim payments

consist of expert knowledge if available and ad-hoc querying of claims database and

manually flagging potential claims as abnormal. The non-availability of automated

methods for detecting changes is one of the major challenges for most healthcare

providers.

In the statistical literature, a considerable amount of work has been done on the

detection problem i.e the so-called change-point problem and various approaches have

been proposed for its solution. These approaches usually involve detecting changes

in a parameter such as the mean or variance under various distributional assump-

tions. One of the earliest and most popular works on the change-point problem

included those of Page [9] and Hinkley [4]. Page computes a Cumulative Sum statis-

tic (CUSUM) for a data stream to test if a change in the parameter has occurred.

The cumulative sums Sn for the first n’th observations are recorded and an action is

taken to rectify a possible change in the parameter when Sn − min
0≤i<n

Si ≥ h i.e the

sample path rises a height h above its previous minimum value. This very simple but

effective algorithm has one obvious drawback: some prior knowledge will be required

to select an optimal value for the height h. In Hinkley’s method, estimates and in-

ference about the change-point is obtained through a likelihood ratio test statistic.

Other methods that have equally been investigated include, Bayesian techniques [12],

wavelet footprints [11], nonparametric regression [7], least square regression trees [1],

and Fisher information methods [5]. A review of these and other popular techniques

can be found in [10, 2, 8].

These methods are designed to study swift changes in the underlying distribution.

They are unable to cope with gradual or more complex changes. Further, they are

non-learning methods; a learning algorithm is required to adapt pre-learned changes

(or concepts) to environmental changes. Environmental factors may result in swift,

gradual or complex changes such that samples previously representing a given concept

can later represent a different concept. An algorithm capable of recognizing and

adapting to such changes is therefore required. One learning approach capable of

dealing with gradual concept changes is described in [3]. The approach consists of

using an unsupervised incremental learning algorithm to learn the gradual concept

drift initially learned by a supervised learner. This learning approach is however

limited to gradual concept drifts and requires a supervised learner to initialize the

algorithm.

This paper presents a statistical and machine learning technique to accurately

and automatically detect changes in unlabeled data streams with concept drift us-

ing a novel unsupervised approach that works well for uni-variate and multivariate

data. The learned knowledge is then used to label the data stream for subsequent

classification algorithms.
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4. Problem statement

The aim of data labeling is to assign labels or tags to data points on the basis of values

of its features i.e data points with similar patterns are assigned the same labels. Thus

the goal of a machine learning data labeling algorithm is to build a representations

of the input patterns that can be used for decision making, predicting future inputs,

communicating the inputs to another machine, etc.

A typical unsupervised machine learning algorithm is given a sequence of unla-

beled inputs x1, x2, . . . , xt, . . . where xt ∈ X is the input pattern at time t and X is

the feature space. An unsupervised classifier can be defined as a mapping

ψ : xt 7→ θ (1)

assigning xt a unique label θ drawn from a finite set of say K mutually exclusive labels

Θ = {θ1, θ2, . . . θK} based on some similarity measure. For data known to be of two

possible classes, θ can be say “normal” or ”abnormal”. The unsupervised classifier

receives no loss or reward in assigning xt a specific label. Note that this is different

from a supervised classifier in which case ψ is a function that receives in addition to

the input, a corresponding output pattern and a loss or reward may be incurred for

an incorrect or correct classification.

In changing environments, a different problem description has to be dealt with.

The description of the labels or target concepts changes over time. This type of

drifting distribution with the presence of a changing target concept is known as concept

drift. The underlying distribution which generates the data may change gradually over

time or suddenly at some unknown point. Hence, the unsupervised classifier ψ for

learning concept drift depends on the order in which the data stream arrives. Given

a stream of input data points x1, x2, . . . , xt, . . . with a possible concept drift at some

unknown point, the unsupervised classifier must be able to learn stable concepts as

in conventional concept learning and adapt when it meets a new concept. Thus, in

general a label is assigned to a new input xt+1 ∈ Xt+1 as:

ψt : xt+1 7→
{
θold if xt+1 ≡ xold : a previously learned concept

θnew a new concept
(2)

where xt+1 ≡ xold means xt+1 has similar characteristics to some previously learned

points xold labeled as θold. In other words, when a new data point xt becomes

available, and if it represents a new concept, then a new classifier ψt is generated

by updating the previously learned classifier ψt−1. Otherwise the old classifier is

maintained. Only the parameters of the newly learned distribution need to be stored.

The major problem then is how to design the classifier ψt to track and analyze concept

changes in the streaming data.

One basic approach to track concept changes in streaming data is presented in

Algorithm 1. The algorithm starts by initializing the first concept with the first input

data point. Each incoming data point is checked if it is in the proximity of the previous
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observed data. All samples in proximity of the current learned concept are considered

as belonging to that concept. Samples not in proximity to the current concept are

checked for proximity to a possible new concept by evaluating the proximity to the

mean or median of future data points within a window of size k. Samples not in

proximity to any concept are considered as noise.

One obvious drawback of this algorithm (henceforth referred to as Basic) is that

it is very sensitive to noise. It is not hard to see that Basic will perform well on

noiseless data with step-like or sudden drifts, but worse in the presence of noise. The

proximity measure ε will have to be adjusted for some data points and on each new

data set to be able to capture changing concepts. Setting an optimal value for this

parameter becomes a difficult task. As with Basic, many concept drift algorithms

can handle sudden changes well but perform poorly with gradual changes. Most

real streaming data are characterized by sudden and gradual changes, this therefore

highlights the importance of examining both types of changes. Another drawback of

Basic that will be discoursed in the next section, is the use of a single window.

Algorithm 1: Basic Unsupervised Concept Drift Learning: Basic.

Input : Training data set X , window width k, distance threshold between

samples ε

1 t← 1

2 P1 ← X [t] // first data point initialized to first concept

3 repeat

4 P2 ← X [t]; // new sample to learn new concepts

5 if
‚‚‚P1 − P2

‚‚‚ < ε then

6 Add P2 to concept represented by P1 ;

7 else

8 Compute M the mean/median of the next k feature points;

9 if
‚‚‚M − P2

‚‚‚ < ε then

10 P2 marks the start of a new concept ;

11 P1 ← P2 ; // update P1 towards P2

12 else

13 P2 represent noise; // replace with M

14 end

15 end

16 t← t+ 1

17 until t > samplesize;

5. Proposed approach

Most proposed strategies to handle concept drift are based on the usage of one or more

sliding windows [6, 14]. In this approach, a window is maintained that keeps only the

most recent data points and older data points are dropped according to how relevant
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they are in detecting new concepts. The use of a single window of fixed length for

tracking concept drift is very common, however, as addressed in [6] this approach has

three major drawbacks. First, it is difficult to determine the optimal window size. No

single window size can deal with all types of concept drifts; larger windows perform

better on data streams with a slow drift while smaller windows are better suited for

rapid drift. The standard solution to this problem is to make the window dynamic, so

that the size can be adjusted manually or automatically to better track the concept

drift. When the drift rate is rapid, the size of the window can be reduced by removing

some points from the window and when the rate is slow the size is increased by adding

more points. Determining the concept drift rate is therefore important in adjusting

the window size. The drift rate simply represents the probability that two successive

data points disagree on the concept they represent i.e if xt represents the concept θ1

and xt+1 represents the concept θ2, then the drift rate is the probability Pr(θ1 6= θ2).

The second drawback of using a single window (dynamic or fixed) is that a

single window cannot optimally handle a continuous change i.e. if the change occurs

gradually over a certain time frame.

Finally, concept drift algorithms based on a single window can also suffer from

the inability to learn multiple concepts simultaneously. Since a drift can occur at

any time frame within the window, multiple drift points can occur within the same

window and not all of them can be optimally learned with a single window regardless

if they occur gradually or suddenly.

The proposed method in this study uses three different sliding windows. Data

points in the first two windows are used to update known concepts or build new

concepts. The third window serves as a control window i.e. it is used to reconfirm

potential drifts in the concept, thus serving as a control for noise in the data. The

algorithm uses a test statistic whose p-value at a specified significant level serves as an

indicator for potential concept drifts. The p-value can also be used to infer the drift

rate and adjust the window size. Another advantage of using this statistic is that, it

can also be used to track gradual and sudden concept drifts. Precisely, for each new

data point, a test is performed to verify the null hypothesis H0 of no concept change

at a given level of significance α. If a drift occurs, the null hypothesis is rejected

in favor of the alternative Ha. However, before rejecting H0, another test is carried

out on points in the third window (these are points after the proposed concept drift)

to reconfirm the rejection of H0. A sudden concept change will be reflected by a

very small p-value (such as far smaller than 0.05) and hence a very high drift rate,

while a gradual change will be seen by a not so small p-value, but small enough to be

significant. Thus, the confidence bound for the p-value provides a range for the best

guess to the true theoretical p-value of the test.

5.1. Learning concept drift

Assume a stream of unlabeled data points x1, x2, . . . , xt, . . . are observed. Given a

window width k, the algorithm starts by assigning the first k data points (first window)
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to the first concept θ1. The second window comprises all but one data point from the

previous window and one new data point from the incoming stream i.e if at time step t

a new data point xt is observed, then the previous window contains the k data points

xt−k, . . . , xt−1 and the current window contains xt−k+1, . . . , xt. The data points in

all windows are transformed into the distributions P1 and P2 by taking the mutual

distances of all points in the windows. Thus, P1 and P2 consist of k(k+1)
2 points. This

means that, a window containing only k = 10 points gives a new distribution of size 55

which is sufficient to carry out most statistical tests. By construction, the similarity

of xt with respect to its k-earliest neighbors is determined by the similarity of the

distributions P1 and P2. For the concept learning to be meaningful, it must provide

an estimate of the significance of the detected differences. This can be archived by

determining whether the two distributions P1 and P2 are the same or not i.e by testing

the hypothesis

H0 : P1 = P2 versus Ha : P1 6= P2 (3)

The statistical significance of the test as expressed by the p-value is the prob-

ability of obtaining a test statistic at least as extreme as the one actually observed

assuming the null hypothesis is true. If the p-value is less than the significance level

(the significance level α is set by the user and usually equal to 0.001, 0.01, 0.05, or

0.1) tested, then the null hypothesis H0 is rejected in favor of the alternative Ha.

There are two basic types of hypothesis testing: parametric and non-parametric

test. Hypothesis tests are parametric when the chosen test statistics are assumed to

follow some specific distribution (such as normal) with a set of parameters. Non-

parametric tests, on the other hand, do not make any (or minimal ) assumption on

the distribution of the test statistics. They are referred to as distribution free tests.

The non-parametric approach is pursued in this study.

5.1.1. Permutation test

In order to perform the hypothesis test, the probability distribution of the chosen

test statistic under the null hypothesis needs to be known. However, the distribution

of a particular test statistic cannot be computed without some assumption on the

data generating process. Non-parametric techniques do not require such distribu-

tional assumptions. Permutation tests have become the standard tool for assessing

the statistical significance of a hypothesis test without making any distributional as-

sumption of the underlying test statistics unlike in the case of parametric test such

as the student t-test.

Let {Xi1, . . . , Xini , i = 1, 2} be two random samples from a population with

distribution functions Pi, i = 1, 2 respectively. Consider the problem of testing the

hypothesis given in equation 3 without any assumption on the particular form of P1

and P2. In this setting, the problem can be reduced to testing if the two populations

differ in location or scale by an unknown amount ϑ. Then the test becomes

H0 : ϑ = 0 versus Ha : ϑ 6= 0 (4)
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The steps for a two sample permutation test, is as follows:

1. Choose a test statistic T , such as the sample mean or median when testing for dif-

ference in location or the deviance when testing for variability in the observations

from the two samples.

2. Select an acceptable significance level α ∈ (0, 1).

3. Let X∗ be the set of (n1+n2)! points obtained from X = (Xij , j = 1, · · · , ni, i =

1, 2) and M be an integer.

(a) Repeat M times (m = 1, . . .M)

i. Sample Xm permutations from X∗.
ii. Compute the test statistic value for this permutation: tm = T (Xm).

(b) Construct the empirical cumulative distribution of the test statistic

P̂ (t) =
1

M

M∑

m=1

I(tm ≤ t)

where I(.) is the indicator function.

(c) Compute the value of the statistic for the observe distribution t0 = T (X)

and its corresponding p-value p under the empirical distribution.

(d) If p < α reject the null hypotheses in favor of the alternative.

The null hypothesis assumes that the two distributions are indistinguishable and

exchangeable with respect to the chosen statistic, so all the data points generated

through permutations are equally likely to be observed under the null hypothesis.

Thus, the permutation test is an exact test only if the assumption of exchangeability

of data points under the null hypotheses holds. The distributions P1 and P2 as

constructed above satisfies the assumption of the null hypothesis.

The p-value of the observed statistic computed from the empirical distribution

is an exact p-value and its simply the fraction of the permutation values of the test

statistic that are at least as extreme as the observed statistic t0 (derived from the

non-permuted data)

p =

M∑
m=1

I(tm ≥ t0)

M
(5)

Note that the p-value above corresponds to a right-tail test. A two-tail test can be

obtained by simply replacing tm and t0 by their absolute values. A confidence bound

for p can be obtained as follows; let N be the number of permutation values of the

test statistics that exceeds the observed statistic, i.e

N =

M∑

m=1

I(tm ≥ t0) =⇒ N = Mp (6)

Thus, N follows a binomial distribution. If Mp > 5 and M(1 − p) > 5 then by

the central limit theorem the normal distribution can be used to approximate the
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sampling distribution of p̄ = N
M ; the fraction of the number of permutation values

that exceeds the observed statistics i.e

p̄ ∼ N
(
p, p(1− p)/M

)
(7)

a normal distribution with mean p and standard deviation
√
p(1− p)/M . A known

confidence bound for the p-value for a gradual or sudden concept drift can be used to

determine the nature of feature changing concepts.

5.1.2. Learning new concepts

A new concept is learned by the application of the permutation test to determine

if the data points from the two sliding windows represent different concepts. Three

different sliding window algorithms are proposed. The first algorithm OneFixed has

one window W1 fixed and the second window W2 moves and detects new concepts.

When a possible new concept is detected, a third window W3 is setup to confirm

the change. The second algorithm TwoMoving has both W1 and W2 moving and

is designed to eliminated some of the limitations of OneFixed (to be discoursed).

Finally, the third algorithm SynTwoMoving is similar to the second but replaces

the points in W3 with artificially generated points.

The first two algorithms are described in this Section while the third is described

in Section 5.2.
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Figure 2. Sudden and Gradual Concept Drift.

A. OneFixed algorithm

Algorithm 2 presents the pseudocode of the OneFixed algorithm. The first window

W1 is held fixed with its points representing a learned concept. The second windowW2

moves along by adding any new data point xt that comes in while the first point xt−k
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is discarded. The distribution of points in the two windows P1 and P2 is constructed

as described in Section 5.1, and the permutation test is performed to test for a change

in the concept. Using the difference in medians as test statistics generally produce

robust tests than a difference in means. However, for the experiments performed in

this study, the difference in mean was found to perform better than the median. This

can be explained by the fact that the distribution P2 near or at a concept drift is highly

asymmetrical and heavily right-tailed. The median is not as strongly influenced by the

skewness a distribution as the mean, thus the mean quickly captures this difference.

Figure 2(a) illustrates sudden concept drift where for example at time t2 the concept

θ1 is suddenly replaced by a new concept θ2. The skewness of P1 and P2 is displayed

in Figure 3. P1 is the distribution of points to the left of the concept drift at t2 while

P2 is the distribution of those same points including the drift point. The plots clearly

shows the heavily right tailed P2 while P1 is only slightly right tailed.
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Figure 3. Local kernel density estimates of P1 and P2 at a concept drift.

Given a significance level α, the p-value p and its 100(1−α)% confidence interval

for equal means between P1 and P2 is computed by application of the permutation

test. If p < α then point xt is declared a possible concept drift or outlier. If more

points are available after xt, then these points can be used to determine the true

nature of xt. When this is the case, a third window W3 called the verification window

is constructed for points to the right of xt. A new window width k3 can be chosen

for W3. The distribution P3 of points in W3 is similarly constructed as for P1 and

P2. A second test is carried out to distinguish between P1 and P3 and a new p-value

p1 computed. Note that the influence of the potential drift point xt is excluded from

this second test by not involving P2 in the test. The outcome of the second test

categorizes two different states for xt:

1. if p1 > α then xt is declared an outlier,

2. if p1 ≤ α then xt is declared a concept drift. A second level of significance can

be selected for this second test.
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The above verification test has one major drawback. Since the distributions are

obtained by taking the mutual distances between points in each window, it is possible

for P1 and P3 to represent quite different concepts, but the test shows no significant

difference. This is particularly true for sudden concept drifts. This problem can be

resolved by creating two new distribution for points in the verification window: P3

the distances of all points in this window including the proposed drift point xt and

P4 excluding it. The test is now between P3 and P4 and interpreted as follows:

1. if p1 > α then xt is declared a concept drift,

2. if p1 ≤ α then xt is declared an outlier.

After xt has been tested and confirmed, the old concept represented by W1 is

stored in memory along with some parameters of its representative distribution P1.

Then, P1 is updated to P3 and the next test starts at the point xt+k3+1. Thus, the

new W2 now contains the second point of W3 up to xt+k3+1.

The OneFixed algorithm as described has one major limitation: its performance

quickly deteriorates in the presence of complex concept drift such as gradual drifts

and on data contaminated by noise. Figure 2(b) shows an illustration of a data set

with gradual concept drift. At the transition phase between old and new concept,

data points with mixed concepts are present with a variable drift rate that declines

gradually. Since one window is always held fixed, the variability of its constituent

points stay constant, and so it may fail to detect the gradual change. Therefore, the

performance of the algorithm drops drastically at each learning phase transition.

One possible approach to address this problem is to update the fixed window to

the current window once the p-value of the test is outside a predefined range. This

range can be determined by a prior computation of the confidence interval of the

p-value for a gradual change. However, a similar problem is encountered here as in

the case of determining the optimal proximity measure for the Basic algorithm.

B. TwoMoving algorithm

The TwoMoving algorithm is designed to overcome some of the limitations of the

OneFixed algorithm. Instead of holding one window fixed, both widows are allowed

to move simultaneously. Thus, in the presence of a gradual change in concept, the

algorithm will remain relatively stable and capture the change. At any given time

step t, the first window W1 always contains the points {xt−k, . . . , xt−1} while the

second W2 contains {xt−k+1, . . . , xt}. Thus, W2 contains all but the first point of W1,

while W1 does not contain the last point of W2.

The testing procedure is the same as for OneFixed. However, if outliers or

multiple drifts are present in the verification window, the testing procedure may fail

or produce unpredictable results. The next section describes the third sliding window

technique which significantly improves the performance of the TwoMoving algorithm

in handling outliers.
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Algorithm 2: OneFixed.

Input : Training data set X , window width k, significance level α

1 t← 1;

2 P1 ←
∥∥∥X [1 : k]

∥∥∥ ; // first window initialized to first concept

3 repeat

4 P2 ←
∥∥∥X [t : k + t]

∥∥∥; // distribution used to learn new concepts

5 test1 ← PermutationTest(P1, P2) ;

6 if test1 < α then

7 T ← k + t; // possible new concept starts here

8 P3 ←
∥∥∥X [T : k + T ]

∥∥∥; // start a possible new concept

9 P2 ←
∥∥∥X [T + 1 : k + T ]

∥∥∥;

10 test2 ←PermutationTest(P1, P2) ;

11 if test2 ≥ α then

12 X [T ] represents start of a new concept;

13 P1 ← P3 Update the learned concept ;

14 t← T + k + 1 ;

15 else

16 X [T ] represent noise or the look ahead window contain noise.

Replace point with mean/median ;

17 t← t+ 1 ;

18 end

19 else

20 t← t+ 1 ;

21 end

22 until t > samplesize;

5.2. Handling noisy data

In many data analysis tasks, outliers are often considered as errors or noise, however,

they may carry important information. This is particularly true for the real medical

claims data studied in this paper. Denied or underpaid claims occurred as outlaying

observations. An important task of the healthcare provider is to be able to predict

when these aberrant cases may occur and if possible their values. Thus, it is not

only important to detect when a change in payment occurs but also when an unusual

payment is made.

Detecting changes in concepts when the data is corrupted by noise is an important

problem in concept drift learning that is not often investigated. Most concept drift

algorithms will perform optimal on noise free data sets, but in the presence of noise it is

quite common for some algorithms to overreact to the noise, erroneously interpreting

them as a concept drift. On the other hand, some algorithms may be too robust to
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noise and fail to detect or react too slowly to actual changes [13] in the data. Thus, a

good concept drift learning algorithm should be able to accurately detect the various

types of drifts and to distinguish them from noise.

The OneFixed and TwoMoving algorithms as presented in Section 5.1.2 can

accurately detect outlaying observations if they occur before a drifting concept. How-

ever, if outliers are present immediately after a drift, then these algorithms may fail

to detect a drift in concept. Moreover, they will perform quite poorly on very noisy

data. A straightforward approach to improve their performance is to run them on

a filtered data set. The disadvantage of doing so lies in the fact that most outlier

detection algorithms are not designed to detect concept drifts, so may flag out some

observations representing a change in concept as outliers. An alternative approach

that was implemented for OneFixed and TwoMoving is to only check for outlay-

ing observations in the verification window W3. For instance, data points in W3 that

deviate significantly from the mean or median are flagged as outliers before the test

is performed. The effectiveness of this approach depends greatly on the size of verifi-

cation window k3 and the outlier detection method. A large window size may detect

all outliers but run the risk of flagging out extra drifts that may have been included.

Small sizes may fail to detect any outlier.

A third approach that completely eliminates almost all of the problems described

above, leading to a remarkable improvement in the performance of the TwoMoving

algorithm is described in Algorithm 3. This algorithm which will be called SynT-

woMoving simply replaces the distribution of points in the verification window by

a synthetic distribution. For example, the points in W3 can be replaced by random

variates from a normal distribution with mean and standard deviation equal to the

median and median absolute deviation of W3 respectively. This synthetic distribution

completely eliminates any potential outliers and accurately reflects the true distribu-

tion of these points. So any test performed with reference to this distribution is free

of any aberrant observations. The permutation test proceeds as before, where now

P3 is the distances of all points in the synthetic distribution including the potential

drift point xt, while P4 is simply the distances of all points in the synthetic distribu-

tion. Optionally, after the test has confirmed a change in concept, each point in the

verification can be checked against the synthetic distribution using the permutation

test for outliers. That is, a new distribution P5 can be created by taking the distance

of each point in the original W3 to all points in the synthetic distribution and tested

against P4. This extra check is important so as to flag out outliers that could interfere

with subsequent tests. This additional check also has the advantage of revealing the

possible presence of multiple drifts within the window.

6. Experiments

This section evaluates the proposed algorithms presented in this study using syn-

thetic as well as real-world data. The performance of the algorithms will be com-

pared against the CUSUM [9] detection method in terms of the number of “change-
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Algorithm 3: SynTwoMoving.

Input : Training data set X , window width k, significance level α

1 t← 1;

2 repeat

3 P1 ←
‚‚‚X [t : (k + t)]

‚‚‚ ;

4 P2 ←
‚‚‚X [(t+ 1) : (k + t+ 1)]

‚‚‚;

5 p1 ← PermutationTest(P1, P2) ;

6 if p1 < α then
7 T ← k + t+ 1 ; // potential drift or outlier

8 y ← X [(T + 1) : (T + k)] ; // points in verification window

9 MED ← Median(y) ;

10 MAD ← Median Absolute Deviation(y) ;

// generate synthetic distribution

11 x←Normal(size = k, µ = MED, σ = MAD);

12 P3 ←
‚‚‚x ∪ X [T ]

‚‚‚ ; // include potential drift or outlier

13 P4 ←
‚‚‚x‚‚‚;

14 p2 ←PermutationTest(P3, P4) ;

15 if p2 < α then
// point is outlier, replace with median

16 X [T ]←MED ;

17 t← t+ 1 ; // move to next point

18 else
// point marks start of a new concept

19 t← T + 1 ;

// might be more outliers in verification window

20 for i← T + 1 to T + k do

21 P5 ←
‚‚‚x ∪ X [i]

‚‚‚ ;

22 p3 ←PermutationTest(P4, P5) ;

23 if p3 < α then
// point is outlier, replace with median

24 X [i]←MED ;

25 else
// point might be a new concept

// in verification window

26 t← i;

27 Break;

28 end

29 end

30 end

31 else
// point is normal

32 t← t+ 1 ;

33 end

34 until t > samplesize;
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points” detected under conditions of noisy and non-noisy data streams with or without

change-points. A Monte Carlo simulation was carried out for the CUSUM method on

synthetic data sets with different percentages of noise and change-points to determine

the optimal value of h to be used in all the experiments.

6.1. Performance measure

The precision, recall and F1 score measures where used to assess the performance of all

algorithms in detecting drifts and outlaying observations. The precision is defined as

the number of correctly detected concept drifts/outliers divided by the total number

of detected concept drifts/outliers i.e

Precision =
#{correctly detected}

#{detected} (8)

The precision is simply the probability that a detected concept drift/outlier is actually

a concept drift/outlier. Recall, on the other hand, is the probability that the drift

algorithm detects a true concept drift/outlier, i.e it is the number of correctly detected

concept drifts/outliers divided by the total number of true concept drifts/outliers i.e

Recall =
#{correctly detected}

#{true concept drifts/outliers} (9)

F1 score is a weighted average of the precision and recall rates, where a high

value of the F1 score ensures that the precision and recall rates are reasonably high.

The harmonic mean of the precision and recall was used to compute the F1 score:

F1 =
2× Precision× Recall

Precision + Recall
(10)

6.2. Synthetic data

To explore the advantage of the proposed algorithms, numerous experiments were

conducted on a series of synthetic data sets. Five types of data sets were generated

and for each type 100 different copies each of sample size 500 were produced containing

a random number of drift points. Specifically, each data may contain up to 10 drift

points. Noisy data sets contain between 5% and 20% noise. The complete description

of the five data sets is as follows:

1. D0: The first synthetic data contains no drift. For a relatively small percentage

of noise, the expectation is for all algorithms to perform close to optimal.

2. D1: The second data set is noiseless and contains a random number of step-like

concept drifts.

3. D2: Contains a random number of step-like concept drifts with noise.

4. D3: Contains a random number of gradual and step-like concept drifts and noise

free.

5. D4: Contains a random number of gradual and step-like concept drifts with noise.
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The real medical insurance claim data used in this study is characterized by

sudden and gradual changes in payments at unknown times within a specific con-

tract period. Underpaid or denied payments are the abnormal payments and were

considered as noise. Thus, most of the analysis will be based on the data set D4.

Concept drift detection was conducted on these data sets with a fixed window

width of k = 20 and a significance level α ∈ [0.001, 0.05]. Table 1 shows that the

SynTwoMoving algorithm outperforms all other algorithms on almost all data sets

in detecting the various types of concept drift. As expected, on noise free data sets

with step-like drifts, the Basic and CUSUM algorithms perform best and poor under

more complex drift type data sets.

Table 1

Comparing drift detection for Basic, OneFixed, TwoMoving, SynTwoMoving and

CUSUM for 100 copies of data.

Data Performance Algorithm

Basic OneFixed TwoMoving SynTwoMoving CUSUM

D0 with
20% noise

No of
Drifts 4 10 3 0 15
Detected

D1

Precision 1.0 0.66 1.0 1.0 0.99
Recall 1.0 0.89 1.0 0.93 1.0
Fscore 1.0 0.74 1.0 0.96 0.99

D2

Precision 0.30 0.21 0.65 0.95 0.34
Recall 0.30 0.55 1.0 0.94 0.99
Fscore 0.30 0.29 0.77 0.94 0.48

D3

Precision 0.12 0.63 1.0 0.98 0.38
Recall 0.12 0.92 1.0 0.99 0.86
Fscore 0.12 0.74 1.0 0.99 0.51

D4

Precision 0.03 0.27 0.78 0.99 0.31
Recall 0.03 0.58 0.86 0.97 0.81
Fscore 0.03 0.36 0.82 0.97 0.43

Figures 4 and 5 show the various performance measures of the algorithms plotted

against the number of random true drifts points in the fifth data set D4, i.e a noisy

data set with gradual and step-like concept drifts. The number of drift points has no

apparent impact on the performance of the SynTwoMoving algorithm.

The detection of outlaying observations is an important factor prior to any mod-

eling and analysis. It is therefore required for a concept drift algorithm to have high

discriminative power, distinguishing changing concepts from outliers. This is very

important especially when there is a cost associated with a false positive. Table 2

shows the performance of the algorithms in detecting outlaying observations. No re-

sults for CUSUM is shown because the algorithm was not designed to detect outliers.
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Figure 4. SynTwoMoving and TwoMoving performance measures of the algorithms depend-

ing on the number of random true drift points in the fifth data set D4.

Once more the superior performances of the SynTwoMoving and TwoMoving

algorithms can be clearly seen.

Table 2

Comparing outlier detection for Basic, OneFixed, TwoMoving and SynTwoMoving for

100 copies of data.

Data Performance Algorithm

Basic OneFixed TwoMoving SynTwoMoving

D2

Precision 0.47 0.76 0.85 0.94
Recall 1.00 0.72 0.72 0.97
Fscore 0.59 0.73 0.77 0.95

D3

Precision 0.0 0.69 0.84 0.67
Recall 0.0 0.93 0.97 0.96
Fscore 0.0 0.78 0.90 0.78

D4

Precision 0.37 0.81 0.86 0.92
Recall 0.82 0.71 0.70 0.99
Fscore 0.48 0.74 0.75 0.96

For a fixed number of concept drifts, it is interesting to investigate the perfor-

mance of the algorithms for different levels of noise in the data. Figures 6 and 7 show

how the performance of the algorithms varies with the percentage of outliers in data

set D4 with 5 random concept drifts (sudden and/gradual). The SynTwoMoving

remains very accurate up to a percentage outlier level of 25%. Notice how the per-

formance of OneFixed drops rapidly on noisy data sets with gradual concept drift.
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(c) CUSUM

Figure 5. OneFixed, Basic and CUSUM performance measures of the algorithms depending

on the number of random true drift points in the fifth data set D4.

Finally, the performance of the algorithms was evaluated with respect to different

sample sizes. Because the SynTwoMoving algorithm shows superior performance

over all the others, only its results will be given. A sequence of D4 data sets of sample

sizes ranging from 50 to 2000 each having 5 random concept drifts and 15% outliers

was generated and the performance of the algorithms evaluated on each set.

Figure 8 shows that the performance of SynTwoMoving remains relatively

constant as the sample size increases.
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Figure 6. The performance of the algorithms depending on the percentage of outliers in data

set D4 for SynTwoMoving and TwoMoving performance measures.
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Figure 7. The performance of the algorithms depending on the percentage of outliers in data

set D4 for OneFixed and Basic performance measures.
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6.3. Real data

The performance of the algorithms was also evaluated using real medical insurance

claims data sets obtained from two hospitals in the INOVA Health System of Northern

Virginia. The data consists of claims payments for obstetric patients based on a

specific Diagnosis Related Groups (DRG) code for the years 2008 and 2009. This data

was previously used in [16] where a simple off-line labeling approach was introduced

to label the data for subsequent classification by the AQ21 machine learning system

[15]. Since this is a real data set, the location of concept drifts and outliers are

unknown, thus it is not possible to provide the same performance measures as in the

synthetic case. However, based on the experiments performed in [16] and some domain

expert knowledge, information about changes in payments and percentage of outliers

in the data sets have been converted into rules that indicate normal and abnormal

payments. Calling the data sets from the two hospitals H1 and H2 respectively, an

analysis of the data sets indicated that both contained two concept drifts occurring

approximately in the month of June of each year. Data set H1 contained 3045 records

with approximately 2.5% outliers while H2 contained 748 records with about 4.5%

outliers.

The SynTwoMoving and TwoMoving algorithms were used to study concept

drifts on both data sets. The number of concepts drifts and percentage outliers de-

tected by both algorithms are given in Table 3. Based on domain experts (i.e the

health care providers) knowledge about the possible times insurance claims payments

change and the percentage outliers in the data, it can be seen that the SynTwoM-

oving results matches very closely to this prior knowledge.

2013/06/08; 09:08 str. 21/24

Unsupervised labeling of data for supervised learning . . . 211



Table 3

Performance of SynTwoMoving and TwoMoving on real medical insurance claims.

Data Performance
Algorithm

SynTwoMoving TwoMoving Expert

H1
# of drifts 2 (06-29-08 and 06-30-09) 3 (06-29-08, 08-16-08 and 06-30-09) 2

% outliers 2.3% 2.2% 2.5%

H2
# of drifts 2 (06-29-08 and 06-29-09) 4 2

% outliers 4.3% 3.9% 4.5%

7. Conclusion

This paper introduces unsupervised learning algorithms for labeling noisy data

streams characterized by drifting concepts. Three presented unsupervised on-line

learning algorithms (SynTwoMoving, TwoMoving and OneFixed) were devel-

oped based on the permutation test statistics.

Experiments on synthetic and real datasets showed that the SynTwoMoving

and TwoMoving algorithms are well capable of coping with sudden and gradual

concept drifts. Moreover, the SynTwoMoving algorithm dramatically outperforms

the other algorithms with respect to accuracy, stability and robustness to the number

of concept drifts and outliers in the data.

While the methods have been developed for the specific application in medical

claims processing before concept learning, it is as well applicable to other domains

in which there is a need for unsupervised labeling of data streams for the purpose of

supervised learning, anomaly detection etc.

Future extensions of the methods are possible in several potential directions in-

cluding: the use of adaptive window sizes, using different hypothesis and test statis-

tics, optimizing the methods’ parameters to archive the desired false positive and

true positive rates required by different applications. In terms of the larger project

concerning medical claims payment prediction, the method can be converted into a

real-time processing system and integrated with billing systems.
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