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Abstract Modern, highly concurrent, and large-scale systems require new methods for
design, testing, and monitoring. Their dynamics and scale require real-time
tools that provide a holistic view of the whole system and the ability to show
a more detailed view when needed. Such tools can help identify the causes of
unwanted states, which is hardly possible with a static analysis or metrics-based
approach. In this paper, a new tool for the analysis of distributed systems in
Erlang is presented. It provides the real-time monitoring of system dynamics on
different levels of abstraction. The tool has been used for analyzing a large-scale
urban traffic simulation system running on a cluster of 20 computing nodes.
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1. Introduction

The fast development of Internet-scale applications that have been observed over the
past few years brings new challenges for software engineers regarding issues that are
difficult to solve using traditional methods. Massively concurrent systems executed in
parallel using clusters of computers or cloud environments form new great challenges
in terms of maintainability, robustness, and effectiveness [16]. The complexity and
dynamics caused by parallel execution make it hard to analyze and understand all of
the phenomena and interactions. This can result in the emergence of issues that are
difficult to detect, reproduce, and eliminate.

Existing technologies and tools allow us to build and deploy systems that are able
to handle millions of simultaneous users. However, the technologies and tools lack
methodologies for guaranteeing that the created systems are robust and reliable, so
the development process must consider these problems (cf. e.g., [6]). These missing
methodologies are related to various steps in the system development process, starting
at the design, continuing through the implementation, debugging, and testing, and
ending at the monitoring and maintaining.

Well-recognized software engineering methods from recent decades (like the
object-oriented approach) have developed standards for the analysis design, docu-
mentation, development, and testing of software. They even include design patterns
for solving typical problems that have been common for several different technolo-
gies and programming languages. The existence of the methodologies have allowed
for unification, simplifying the process of development, making the software quality
controllable, and allowing the maintainability of existing systems [38].

However, the above-mentioned methodologies are hardly suitable for modern,
highly-concurrent, large-scale systems. The domain needs new methodologies, which
will probably emerge as a generalization of different approaches, tools, and techno-
logies created now for solving particular problems [14]. One of the visible trends in
the development of modern systems is the decomposition of processing into small
asynchronous units. This allows us to create systems that possess strongly desired
features: acceptance of partial failures and utilization of modern highly parallel har-
dware. This general approach is used by micro-service-based design and actor-based
systems where loosely coupled fine-grained units cooperate, typically using asynchro-
nous communication. Several attempts for defining more general methods of building
such systems have already been proposed; for example, the supervision trees in Er-
lang/OTP [3] or Akka [1], which allow for explicitly defining the structure of the
dependencies between the elements of a system.

The explicit modeling of the static structure is highly insufficient in ensuring the
high quality of the software. A system composed of thousands of different loosely-
coupled elements that operate for long periods of time can reach states that cannot be
captured by static analysis. The domain of distributed system dynamics modeling and
analysis seems to be one of the areas where basic methods have yet to be developed.
In particular, this concerns the area of monitoring and visualizing system behavior
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in order to detect performance problems, locate the cause of any anomalies, or just
gain insight into how the system responds to particular stimuli. Traditional methods
based on monitoring dashboards or the visualization of system traces do not scale
well for massively concurrent systems and fail to provide the required understanding
of how a system behaves. Consequently, new approaches in the area of system testing
and monitoring are emerging, such as those pioneered in Netflix (dubbed Chaos Engi-
neering [4]) and Intuition Engineering [31]. At the heart of these new methods is the
premise that, in order to properly understand the operation of a massively concurrent
system, we need a holistic view of its state available in real-time so that we can ob-
serve system dynamics in particular, how it responds to changing conditions such as
failures. An offline analysis of system monitoring data or the real-time visualization
of individual system parts are no longer sufficient.

In this paper, we present a visualization tool for the analysis of the dynamics of
systems written in Erlang. This tool, called the Erlang Performance Lab (ErlangPL),
allows for the real-time monitoring of a distributed system (application agnostic),
integration of various metrics, and real-time presentation of the collected data using
a set of modern visualization techniques. In its current state, the tool focuses on
measuring the communication intensity between the processes and nodes. It certainly
does not solve all of the problems related to understanding distributed system dyna-
mics; however, we believe that it is an important step towards defining useful methods
in this area.

The presented tool has been tested using a distributed simulation system that was
deployed on a cluster of computers. We have a supercomputer available and ready to
be tested; however, the tool requires an external connection to a web browser, which
is impossible in the supercomputing environment we typically use (the Prometheus
cluster of the Academic Computing Center Cyfronet AGH). Therefore, we had to
limit ourselves to testing a cluster of 20 computers in order to present the tangible
results in this paper.

In this paper, a distributed system monitoring tool is presented, applied to visua-
lization of the events happening in a distributed traffic simulation system. In particu-
lar, efficiency-related issues are visualized, based on a test-bed of 20-computer cluster.
Various conclusions from the experiments are presented in the paper, together with
several new ideas for the further development of the tool that will be implemented in
the future.

2. Monitoring of distributed systems

Performance monitoring and visualization is one of the main methods of gaining in-
sight into the behavior of parallel and distributed systems [19]. Typical visualization
techniques include the presentation of system event traces on Gantt charts, graphs
(showing topology), or more advanced charts such as treemaps. These techniques
become ineffective for large-scale systems, so data reduction techniques (e.g., aggre-
gation or clustering) are applied in order to improve the scalability of the visualiza-



142 Michał Ślaski et al.

tion method. However, such data reduction may easily lead to information loss [22].
Schnorr et al. (2012) proposed an approach based on the hierarchical aggregation of
monitoring data and treemap diagrams to achieve a scalable performance visualiza-
tion of parallel applications consisting of thousands of processes [33]. This approach
is, however, best-suited for visualizing the status of individual processes (but not the
traffic between them).

In-memory computing platforms such as Hazelcast [15], Infinispan [18], or Apa-
che Ignite [2] support advanced distributed computing capabilities. Hazelcast collects
many standard monitoring metrics such as CPU and memory utilization as well as
read/write throughputs for various objects of the system (nodes and data structures).
The metrics can be visualized in real time, typically on time-series plots. Infinispan
and Ignite expose the monitoring metrics through RMX, but no visualization dashbo-
ards are provided by default.

The actor-based systems implemented with frameworks like Akka or Erlang/OTP
have a specific model of computation based on asynchronous messages and lock-
-free concurrency. Consequently, monitoring such systems must be based on specific
actor-centric metrics focusing on actor utilization and communication between the
actors [32]. The existing monitoring tools for Akka include Lightbend monitoring [24]
and Kamon [20]. These tools focus on mailbox metrics (size and message waiting
time) and message-processing time. However, actor utilization or message exchange
metrics are not supported. A set of tools for the operations and maintenance of Erlang
clusters is available in WombatOAM [39] (e.g., visualization of system topology, charts
with various metrics, dashboard with notifications, and alarms).

Intuition Engineering [31], a term coined by Netflix, is an approach wherein
a holistic state of a system is visualized in real-time. So far, Netflix has published
the Vizceral tool [37] that visualizes traffic between system nodes at different levels
of detail (global-, regional-, and service-level). The main idea of this approach is to
first provide a tool enabling one to understand the “correct” system behavior and its
anomalies, and second to quickly locate the potential sources of a problem in case
a failure or performance issues occur. The latter feature is essential for quick problem
diagnosis because, even if the system collects dozens of metrics, it gives no hint as to
where to first look for the problem. Originally designed for Netflix, the approach has
also been considered useful for smaller-scale systems [17].

Percept2 [23] and RefactorErl [35] are tools that approach analysis via the use of
static data. Percept2 allows the user to visualize and profile parallel Erlang applica-
tions. It is based on Erlang’s built-in ability to trace and save events from processes.
Collected traces are analyzed offline, and the results are presented via a web-based
interface. However, it is limited to profiling applications running on a single multicore
machine rather than a cluster of machines (which is our main focus). RefactorErl was
designed to model the relationships between Erlang processes. This tool is capable of
detecting both explicit (e.g., process hierarchy and communication) and hidden rela-
tionships (e.g., via file operations or ETS tables), which allows developers to better
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comprehend the code on which they are working. Unfortunately, RefactorErl is not
able to detect possible bottlenecks or undesired system states, which often prove to
be much harder to handle and have a disastrous impact on the application.

3. Erlang Performance Lab

The ErlangPL tool (http://www.erlang.pl/) aims at supporting software engi-
neers working on systems running on top of a BEAM virtual machine (a.k.a. Er-
lang Runtime System [10]). The ErlangPL project was open-sourced in Febru-
ary of 2017, and its source code is available on the GitHub repository https:
//github.com/erlanglab. It is available as a command line tool, with a graphical
user interface (GUI) rendered in any modern browser. The pre-compiled executable
is compatible with the operating systems on which the BEAM is installed. Despite
having ”Erlang” in its name, it can support systems running on top of the BEAM
virtual machine regardless of the programming language used for implementation
(e.g., Erlang [8], Elixir [7], or LFE [25]).

In order to access the GUI, one needs to open a terminal and start erlangpl from
the command line, providing the name of the node to be inspected. Once started,
ErlangPL tries to connect over the Erlang Distributed protocol to the entire cluster
to which the provided node name belongs. If successfully connected to a cluster, an
HTTP service is started so that one can navigate a web browser through it. The
browser renders a GUI implemented in React.js [30]. The GUI consists of several
tabs, each visualizing a different aspect of the system. We describe views dedicated to
the network traffic between the nodes and message passing between the processes. At
the time of writing, there are also other views available (e.g,. rendering a supervision
tree or displaying a dashboard with metrics and charts). Those other views are similar
to already-existing tools like observer [28] and are not covered in this paper.

3.1. Network traffic visualizations

Traffic visualizations are divided into three levels of detail. The first-level view shows
ingress and egress traffic between the inspected node and the cluster of the connected
nodes. Nodes are represented as circles, and the centrally located one refers to the
inspected node (see Figure 1). In the central circle, there is a counter with the number
of messages processed every five-second period. The counter is updated every five
seconds. To visually represent the traffic, animations of particles flowing from and to
the inspected node are rendered. The direction in which the particles flow indicates
ingress or egress. The number of animated particles depends on the value of the
counter, so the more messages processed, the more particles produced. In the other
circles, there is a percentage value that represents the number of messages processed
by a node divided by the counter from the central circle.

This high-level overview can help us understand whether the processes running
on the nodes send messages to the remote processes and how such traffic is distributed
across the cluster.

http://www.erlang.pl/
https://github.com/erlanglab
https://github.com/erlanglab


144 Michał Ślaski et al.

Clicking on a circle opens the second-level traffic view. The view renders traffic
between each pair of nodes within the cluster. A similar animation technique as the
one described above is used, so it can help understand the traffic patterns. For ex-
ample, a visualization of distributed database Mnesia [26] executing different types of
operations can help understand which operations require more intensive communica-
tion between the nodes and how the traffic is balanced across the cluster [34]. In the
scenarios where Mnesia asynchronously replicates the writes from the node executing
operations to all other nodes, the animations show that the messages are only sent
in one direction. On the other hand, in a visualization for scenarios where Mnesia
executes transactions requiring a two-phase commit, there are a higher number of
messages exchanged between the nodes, and the messages are sent in both directions
(to and from the node on which the transaction was initiated). These differences in
traffic patterns can be easily spotted when observing the animations and comparing
the counters in the circles.

Clicking on any of the nodes in the second level transforms the view to the third
level, in which all of the measurement-related details of that specific node are shown.

Figure 1. First-level cluster traffic view

3.2. Message-passing visualizations

The communication between the processes running on the BEAM is based on message
passing. Each process has an unbound mailbox, and any other process can send it
a message. This can lead to overload conditions when more messages are produced
than consumed. A common technique to identify a potential bottleneck related to
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mailbox overload is to look for processes with a long message queue. Such a technique
can indeed help find overloaded processes, but it does not give a more holistic view
of where the possible sources of such loads are.

Clicking on one of the nodes in the first-level traffic view described in the previous
section opens the second-level view, where the messages passed between the Erlang
ports and processes are visualized as shown in Figure 2. In this view, the circles
represent the ports and processes running on the clicked node, and the animated par-
ticles represent messages. The direction in which the particles flow indicates whether
a process is sending or receiving. This view can suggest which processes or ports are
potential bottlenecks; e.g., if many processes pass messages to a single process or if
one process is a source of messages passed to many other processes.

Figure 2. Second-level message-passing view

3.3. Implementation details

Command line tool erlangpl is implemented as a self-contained escript [13], meaning
that all assets required to render the GUI and all non-standard .beam files required to
execute the program are compressed and appended to the shell script. When executed,
the script extracts its assets and calls the main function. Then, Erlang Distributed is
started by calling the net_kernel:start/1 function, and the node is registered in the
local Erlang Port Mapper Daemon [9] as erlangpl@127.0.0.1. The default node name
can be changed by passing the relevant argument to the script.

After the newly created node connects to the observed cluster, it spawns a remote
process named epl_tracer on each of its nodes. The process is used to gather trace
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events and serve as a proxy for remote function calls. The process is linked to the
parent node, so it is killed as soon as the ErlangPL program is terminated.

The metrics needed to render the traffic visualizations described in Section 3.1
are gathered by polling the observed nodes every five seconds. Each node executes
net_kernel:nodes_info/0, and the results are gathered on the erlangpl node, where
they are processed and made available for the front-end program rendering the GUI.

The metrics needed to render the message visualizations described in Section 3.2
are gathered by tracing all processes with the trace flags of types ‘send’ and ‘receive’
(see Erlang code listing below).
TraceFlags = [send, ’receive’, procs, timestamp],
erlang:trace(all, true, TraceFlags)

For each type of received trace event, a relevant counter is stored in a local
ETS [11] table. Counters are polled every five seconds and processed further on the
ErlangPL node, where they are made available for the GUI.

In systems where the processes communicate intensively with each other, the
above tracer settings can cause many trace events to be generated. As a re-
sult, the overhead related to event processing and counter aggregating can overwhelm
the epl_tracer process, and the counter’s polling can timeout. In future versions of
ErlangPL, this issue can be addressed by implementing the Erlang tracer behavior [12]
as NIFs.

4. Distributed traffic simulation system

The distributed system analyzed in this paper is a microscopic urban traffic simu-
lator that was presented in detail in [36]. This section summarizes only the crucial
aspects that are interesting in the context of the presented tool.

Microscopic traffic simulation is a rapidly developing domain, used in various
problems related to autonomous cars and urban traffic management. It requires high
accuracy that imposes complex and detailed models of traffic as well as large-scale –
a rapid and accurate simulation of whole cities is a desired possibility. These fac-
tors make the problem very computationally demanding; therefore, it is suitable for
execution on highly-parallel hardware. However, the problem of distributing such
a computation on several computing nodes is not straightforward.

The simulation model implemented in the system is an extended version of the
well-known Nagel-Schreckenberg approach [27]. It uses discrete representation of all
model parameters – space, time, and velocity. It introduces several improvements
over the classic model, which make it more realistic in urban traffic modeling:

• multi-lane roads,
• lane change action,
• road crossings with common cells,
• traffic lights or right-of-way rules.
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A visual representation of a fragment of the modeled road system is presented in
Figure 3.
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Figure 3. Visual representation of five crossroads in urban road system model. Central
crossroad communicates with four neighboring crossroads only

Each lane is composed of a given number of cells that represent the possible
locations of the cars. Each cell can be either occupied by one car or free. Each
car is characterized by its current velocity, maximum acceleration, and probability of
turning at a crossroad. The algorithm of updating the simulation state analyzes all
cells and moves all cars forward (if possible) according to their characteristics. The
sequential version of the algorithm is rather simple.

In order to parallelize the computations, the simulated space was split into sub-
spaces covering single crossroads. Each crossroad is updated in parallel in a dedi-
cated process, and the results of the update are sent to the processes responsible
for the neighboring crossroads. The communication between the processes is limited
to the four neighbors only. There is no need for a centralized synchronization of the
computations, which makes the algorithm rather unique.

The time required by each of the processes to update the crossroad may vary
significantly. This depends strongly on the number of cars present in the crossroad.
The computations are synchronized using a simple mechanism of waiting for their
neighbors to finish the previous step. This approach guarantees the correctness of the
simulation without any centralized time control.

The simulation makes it possible to verify the influence of the controlled desyn-
chronization of the computations on scalability. Desynchronization is defined as the
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ability to compute a few further steps of a simulation without the states from
the neighboring crossroads. With simple assumptions, this method also allows for the
correct simulation.

The simulator is implemented in Erlang and designed for execution on a clus-
ter of computers running connected Erlang virtual machines. It was tested on the
Prometheus computer, which is a part of the PL-Grid infrastructure [29]. It offers
2232 computing nodes with 24 physical cores each. The simulation used up to 800
nodes, which is 19,200 cores working simultaneously on a single task. Although the
scalability results are satisfactory (Fig. 4), we cannot claim that we fully understand
the reasons for particular phenomena observed in the results.

Figure 4. Scalability of simulation system running on supercomputer [36]

A very interesting aspect of the method is the distribution of the tasks between
the available computing nodes. Obviously, the cost of communication between dif-
ferent nodes is higher than the cost of sending a message to the same node. Three
methods were tested:
1. random assignment;
2. scatter assignment, where the grid of the crossroads was traversed systematically,

and each crossroad was assigned to the next node in a cyclic list;
3. bulk assignment, where the previous method assigned a fixed number of conse-

cutive crossroads to one node.
The results presented here were collected using the third task assignment method;

the first two methods gave worse results.
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5. Analysis of distributed system dynamics

The presented traffic simulation system was analyzed using the ErlangPL tool in
several different configurations. The results presented in this section show that the
tool is easy to use, does not affect the tested system, and makes the investigation of
various aspects of its behavior possible.

The tests were carried out using a cluster of 20 modern physical computers con-
nected to a fast local area network. Each computing node was equipped with four
physical cores of an Intel i5 CPU. The computer was run under the control of Linux
OS and used Erlang 19.3.

The integration of the ErlangPL with the traffic-simulation systems was straight-
forward. Once the system was started, the ErlangPL tool could be connected to
any of the nodes, and the tracing would start automatically. The first results were
available on the web interface after a few seconds – the interface started to show the
communication intensity between the nodes in real-time.

The first set of tests involved three computing nodes and aimed at verifying the
ability of detecting and presenting the differences in communication intensity between
the computing nodes. A simulation of 20 crossroads was started on 3 nodes only, which
resulted in an uneven assignment of tasks to the nodes. Figure 5 shows the visua-
lization of communication between the nodes with three different task-distribution
methods.

The visualization displays five Erlang virtual machines in the cluster, but only
three of them are involved in the simulation. Two others represent the node used by
the simulation to initialize the tasks and the node of ErlangPL. It is clearly visible
that the intensity of communication between the three nodes taking part in the simu-
lation is high and differs between the task-distribution methods, which explains the
differences in the overall performance. The bulk method requires significantly fewer
messages and gives the best performance; however, it seems that it is still not the
optimal solution. Figure 5 reveals that one pair of nodes exchanges fewer messages
than the other two pairs, which suggests that the tasks are not equally distributed in
the system. This is an identified potential field for improvement.

In order to verify the possibility of visualizing larger numbers of nodes, a set of
tests involving all 20 computers were carried out. The simulation task was far bigger
than before – there were 320 crossroads in the model. ErlangPL managed to analyze
and display the network of connections after a few seconds and fluently presented
the simulation initialization and further processing. Selected frames are presented in
Figure 6. Only the results of the bulk task-distribution method are presented. Visu-
alization of all 20 nodes can be hard to read for an inexperienced user. Therefore,
ErlangPL provides a very simple filtering (presented on the bottom of Figure 6)
that is enabled by mouse movements. This view shows only the selected node and
its communication with the other nodes, which allows us to identify cooperating
nodes and estimate the communication intensity between them. In the case of our
simulation, this intensity turned out to be rather irregular.
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a)

b)

c)

Figure 5. ErlangPL visualization of three nodes running 20 simulation tasks with different
task-distribution methods: a) random; b) scatter; c) bulk
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Figure 6. ErlangPL visualization of 20 nodes running common simulation tasks

Remarkably, there was no overhead in the monitoring system on the simula-
tion performance. The mechanism that collects information about the communi-
cation between nodes is very lightweight, and it had no measurable impact on the
computationally-intensive task.

The visualization of a cluster structure and communication between the nodes
does not solve any issues automatically. However, it provides a significant amount of
information in a way that makes it possible to be analyzed by a human being. The
real-time presentation of the changes in communication intensity and visual represen-
tation makes it possible to draw conclusions about the reasons and effects, which can
lead to identifying the problems in large-scale highly parallel systems.
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The tests revealed a number of possible improvements that might be useful and
could provide further information. This included CPU and memory utilization on the
nodes, lengths of the message queues, or improved node layout creation.

6. Conclusions and further work

Modern, highly-concurrent, large-scale systems require new methodologies for solving
issues caused by their complexity and high dynamics. New methods are needed to
understand the phenomena taking place in such systems. It seems that the problem
can be addressed with an approach based on providing a holistic view of a system to
an expert. The proper real-time visualization of the changing states of a system can
lead to the identification of potential problems.

The presented tool, Erlang Performance Lab, provides a set of visualizations on
different levels of abstractions that can be quickly switched and analyzed in real time.
The tool works almost transparently for the monitored system, and it is very simple
to configure and use. We hope that it will become one of the basic tools used by
distributed system developers.

The performed tests showed several interesting directions for the further deve-
lopment of the created tool. Enriching the existing visualizations with additional
data seems very important. A more-sophisticated analysis of the collected data with
user-defined functions would also be interesting.

The planned future work consists of applying the constructed monitoring tool
for monitoring other simulation systems (e.g., [21]) or metaheuristic computing sy-
stems (e.g., [5]). The visualization provided will help in the diagnosis of technical
communication-related issues, but it will also help in the observation of certain al-
gorithmic features, such as the migration phenomenon in the parallel evolutionary
algorithms as well as the relationship between them (e.g., influence of migration on
the performance of the system).
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