
Computer Science • 19(2) 2018 https://doi.org/10.7494/csci.2018.19.2.2746

Wojciech Jarmulski
Alicja Wieczorkowska
Mariusz Trzaska
Michał Ciszek
Leszek Paczek

MACHINE LEARNING MODELS
FOR PREDICTING PATIENTS SURVIVAL
AFTER LIVER TRANSPLANTATION

Abstract In our work, we have built models predicting whether a patient will lose an
organ after a liver transplant within a specified time horizon. We have used
the observations of bilirubin and creatinine in the whole first year after the
transplantation to derive predictors, capturing not only their static value but
also their variability. Our models indeed have a predictive power that proves
the value of incorporating variability of biochemical measurements, and it is the
first contribution of our paper. As the second contribution we have identified
that full-complexity models such as random forests and gradient boosting lack
sufficient interpretability despite having the best predictive power, which is
important in medicine. We have found that generalized additive models (GAM)
provide the desired interpretability, and their predictive power is closer to the
predictions of full-complexity models than to the predictions of simple linear
models.
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1. Introduction

The liver is a complex organ with multiple functions in the human body; for this
reason, the quantitative measurement of its state is not straightforward. In contrast to
the kidneys (whose function can be assessed indirectly by one parameter – creatinine
serum concentration), assessment of the functioning of the liver is more complex and
requires the measurement of different parameters [22]:

• excretory function – measured by bilirubin,
• secretory function – measured by albumin and INR (international normalized
ratio of prothrombin times),

• detoxification – measured by ammonium.
The various liver functions make determining its state difficult. Additionally, liver
damage measured by transaminase can also be accounted for.

The Model for End-Stage Liver Disease (MELD) is the most popular indicator
for determining liver condition. It uses bilirubin, creatinine, and INR as presented in
the following formula:

MELD = 3.78 · ln(bilirubin) + 9.57 · ln(creatinine) + 11.2 · ln(INR) + 6.43

In this equation, bilirubin is related to the serum concentration of bilirubin (measured
in mg/dL), and creatinine is related to the serum concentration of creatinine (measu-
red in mg/dL). MELD was originally devised as a tool for determining the need for
liver transplantation. Today, it has more general application in liver diseases, including
assessment of a patient’s health after liver transplantation. MELD has some predicti-
ve power regarding a patients survival after liver transplantation; however, it is often
noted that a more precise and fit-for-purpose indicator or model is needed [6, 17,26].

We propose to observe the changes of biochemical measurements over time (ra-
ther than just base the prediction on a single static measurement) and apply various
machine-learning techniques to build models for our problem. The models cover lo-
gistic regression, generalized additive models, random forests, and gradient-boosting
models. We compared them not only from the perspective of the prediction results but
also their interpretability and applicability in medicine. By the interpretability of the
models, we mean that users can understand the contribution of individual predictors
in the model; i.e., we want models that can quantify the impact of each predictor. We
aim to choose the best model for the defined problem by taking into consideration
these criteria.

The contribution of this paper is the application and comparison of various
machine-learning techniques used to build models on the observed changes of bio-
chemical measurements over time. Our other contribution is verifying the usefulness
of biochemical measurements during the period of the first year after liver transplan-
tation on the prediction of a patient’s survival within a selected time horizon. The
chosen biochemical measurements are bilirubin and creatinine (due to their presence
in MELD). INR was skipped due to insufficient measurements in the available data.
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Unlike MELD, where the parameters represent a single measurement at a specific
point in time, inputs to our models capture the variability of bilirubin and creatinine
during the period of a whole year.

Machine-learning applications in medicine are part of a dynamically growing
field of research [13, 20]. Random forests and their variations [15, 21] and gradient
boosting models [24] are both popular methods in medial classification and survi-
val problems. Generalized additive models have also already been applied in medical
problems – in [25], they were used to determine heart transplant survival, and in [3],
GAMs were chosen for predicting pneumonia risk and also for their interpretability.
There have been many analyses on the prediction of survival after liver transplan-
tation [10,18,23], but to the best of our knowledge, none of them have focused on
biochemical measurement variability over a period of time after liver transplantation.

The rest of the paper is structured as follows. Section 2 describes the medical
dataset as well as the performed data cleaning and preparation operations. Section 3
defines the problem and presents the performed analysis and applied machine-learning
methods. In Section 4, we present the results and discuss their interpretation. We
conclude in Section 5.

2. Dataset

In this section, we present the analyzed medical dataset, performed data cleaning,
and subsequent data preparation for our analysis.

2.1. Dataset description

The dataset for this particular analysis was provided by the Department of Immunolo-
gy, Transplantology, and Internal Diseases at the Medical University of Warsaw. The
data consists of observations (including visits to doctors) of patients who underwent
liver transplantation. The observations range from 1994 through the end of 2015. Sin-
ce 2009, most of the information (e.g., biochemical measurements) is in digital form
by default; hence, the data is growing continuously with the information from current
visits being added. However, the data prior to 2009 had to be input manually; thus, it
is less represented in the data set. Additionally, it is subject to human errors created
during input.

The raw input data contains information on 1095 patients with a total of 48,772
observations. Each observation is assigned to a point in time and may contain infor-
mation about the values of biochemical measurements (in particular, bilirubin and
creatinine). The first and most visible characteristic about the available time series
is their sparseness and uneven distribution over time. Additionally, the distribution
varies between particular biochemical measurements for a given patient; e.g., one
sample patient may have only three measurements of bilirubin and more than ten
measurements of creatinine.
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Moreover, there is noise in the data, which can be divided into the following two
groups:

• human errors being the result of manual data input,
• measurement errors from biochemical laboratories; e.g., in the bilirubin data,
peaks appear that are measurements not from the patient’s body but from a gall
container.

The result of the noise in the measurements has been illustrated for a sample patient
in Figure 1.
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Figure 1. Bilirubine measurements for a sample patient with erroneous measurement

2.2. Data cleaning

The following data-cleaning steps have been performed in preparation for the analysis:
1. Removal of observations that do not contain any measurements – neither for

bilirubin nor creatinine.
2. Removal of observations that did not occur within the first year after transplan-

tation – the analysis is focused on measurements during that period only. In
this research, we focus on medium- and long-term survival (since it is relatively
uncommon in the literature and the majority of the existing research covers
short-term survival) [6, 10,17,18,26].

3. Removal of extreme values of bilirubin and creatinine; i.e., erroneous measure-
ments (see Dataset description subsection). The thresholds for the extreme values
were chosen based on the domain knowledge.



Machine learning models for predicting patients survival after liver transplantation 227

4. Exclusion of patients whose last observation ended less than one year after trans-
plantation.

5. Exclusion of patients for whom there is no information if they lost their trans-
plant within the analyzed time horizon; i.e., lost to follow-up. This research is
focused on the application of classification methods on the survival problem; thus,
patients with unknown outcomes had to be excluded from the analysis.

6. Exclusion of patients who had fewer than three observations of both bilirubin
and creatinine in the first year after liver transplantation. The analysis is fo-
cused on measurement behavior, and the derivation of some of the parameters
(see Data Preparation subsection) would not be possible with fewer than three
measurements.

2.2.1. Bias

Steps 1 and 2 are standard data-cleaning operations that remove observations not
needed for modeling the problem and, thus, do not introduce any bias to the results.
Extreme values in the data are assumed to be distributed randomly, as there is no
indication of any systematic errors at the source. Therefore, Step 3 likely does not
bring any bias. The exclusion of patients in Step 4 is in line with the experiment
design; although it might bring bias to the overall class of survival prediction, our
focus is on the subset of patients who survived at least one year. Patients are lost to
follow-up in our data almost exclusively due to changing their medical units, which can
be caused by random events such as changing one’s place of residence. Therefore, we
assume that no bias was introduced in Step 5. Finally, the data contains patients who
have very few observations. This is related to the missing information for patients
who were operated on during the early years of the data period. Exclusion of these
patients in Step 6 does not bring any significant bias, as it can be assumed that
the characteristics of the problem did not change throughout the years within the
analyzed period.

2.3. Data preparation

Measurements of bilirubin and creatinine during the first year after a patient’s liver
transplantation have been captured in the following parameters (Figure 2 presents
sample bilirubin and creatinine inputs to derive them):

• minimum, maximum, last value,
• mean, standard deviation, variance,
• skewness and kurtosis,
• amplitude (difference between max and min),
• change (difference between last and first value) expressed as nominal (absolute)
value and as percentage,

• percentage of observations above and below norm,
• alpha – slope of regression line,
• average volatility and average daily volatility.
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Figure 2. Bilirubin (a, b) and creatinine (c, d) observations from sample patients. Black
solid lines represent measurement values in first year after liver transplantation. Blue da-
shed lines represent regression line, and gray shades – standard error. Vertical dotted lines
represent maximum norm values for bilirubin and creatinine and minimum norm value for

creatinine (there is no minimum norm for bilirubin)
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In order to verify the linear dependencies between the derived parameters, a corre-
lation matrix has been calculated where each value is Pearson’s correlation coefficient
between a pair of variables. Figure 3 is a visualization of these matrices separately for
the bilirubin and creatinine parameters for the three-year survival time horizon.
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Figure 3. Correlations between derived parameters for bilirubin (a) and creatinine (b)
in three-year survival horizon

As can be seen, the dependent variable for a patient’s survival is not linearly
correlated with any of the parameters (the last row in the matrices). Additionally,
before each analysis, those parameters correlated more than 70% are removed using
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an automated procedure that removes the most correlated parameters until the desired
level is reached. This operation is needed, as some methods (e.g., logistic regression
or generalized additive models) do not provide reliable interpretations of the results
for data with correlated variables [14].

3. Analysis

Predicting whether a patient will lose an organ1 during a specified time horizon can
be seen as a classification problem. Patients who lost their organs before the specified
time period are assigned to Class “1”; otherwise, they belong to Class “0”. The analyzed
survival time horizon values have been set to three, five, seven, and ten years. These
values are most often used in the medical literature [6, 17,26].

The analysis was performed in the R programming language in Version 3.2.2. All
of the techniques and methods described in this section were based on the dedicated
packages for that language available via the R package repository – CRAN2.

3.1. Class imbalance

Table 1 presents the total number of patients and the number of patients assigned to
Class “1” for different survival time horizons.

Table 1
Observations and their class distribution for different time horizons. Class “1” represents

patients who lost their organ within specified time horizon.

Survival time
horizon

Number of
observations

Number of Class
“1” observations

Percentage of Class
“1” observations

Three years 655 49 7.5%
Five years 467 72 15.4%
Seven years 348 86 24.7%
Ten years 204 93 45.6%

It may be observed that, with longer time horizons, the number of patients de-
creases due to a lack of information at a given point in time about some patient’s
survival in the longer period. For example, a patient who was five and a half years
after transplantation at the end of the analyzed period (the end of 2015) would be
included in the three- and five-year survival horizon analyses yet excluded from the
seven- and ten-year analyses, respectively. Moreover, with the shorter survival time
horizon, there is smaller percentage of Class “1” patients in their total number and
larger imbalance between the number of patients in the two classes. This is related
to the fact that, during longer periods, more patients would die due to other reasons
than losing their livers.

1The loss of a liver results in a patient’s death in the majority of cases; however, in some cases,
it leads to the retransplantation of an organ.

2https://cran.r-project.org/
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Class imbalance may hamper the performance of some classifiers [14]. There
are various approaches to dealing with this issue – simple undersampling and over-
sampling techniques [11] and more-complex techniques involving combined over- and
under-sampling with synthetic sample generation like SMOTE (Synthetic Minority
Over-sampling Technique) [4] and ROSE (Random OverSampling Examples) [19].
For this research, ROSE was chosen as a method of choice (R package ROSE ) due to
its simplicity of use and best results achieved. Interestingly, among all of the classi-
fiers tested, the method dealing with class imbalance improved the predictive power
of only logistic regression.

3.2. Methods

This subsection describes the methods we have chosen to apply to our dataset to
build the classification models for the specified survival problem. We have started
with the simplest but most interpretable logistic regression, which assumes linearity
and no interactions between the predictors. The generalized additive models include
non-linear predictor dependencies while maintaining high interpretability. Finally, we
review two types of full-complexity models: random forests and gradient boosting,
which model both the non-linearity and interactions between the predictors but are
the least interpretable. This comparison is presented in Table 2.

Table 2
Comparison of interpretability and accuracy of different complexity models [16]

(+++ means highest level, + lowest)

Model Form
Interpret-
ability

Accuracy

Generalized linear model g(y) = β0+β1x1+ ...+βnxn +++ +
Generalized additive model g(y) = f1(x1) + ...+ fn(xn) ++ ++
Full-complexity model y = f(x1, ..., xn) + +++

Logistic regression is a special case of a generalized linear model (GLM) [11]. GLMs
have the following form:

g(y) = β0 + β1x1 + ...+ βnxn (1)

where y is a dependent variable, xi represent the predictors, and βi are the
coefficients. Function g(y) is the link function; its form depends on the model
application. If the link function is identify (g(y) = y), then equation 1 describes
the linear regression model. For the binary classification model, the link function
is logit function g(y) = log( y1−y ), and equation 1 becomes the logistic regression
that we use throughout the analysis. Logistic regression is the simplest of the me-
thods used in our analysis as well as the most interpretable. It assumes the linear
impact of single predictors on the link function of the dependent variable, which
is measured by the values of coefficients βi.
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Generalized additive models (GAM) [12] are the extension for generalized line-
ar models and have the following form:

g(y) = f1(x1) + ...+ fn(xn) (2)

where fi are called shape functions and are assumed to be smooth and non-linear.
This allows a single predictor to have a non-linear impact on the dependent va-
riable. Shape functions are usually based on splines and can take different varia-
tions: cubic regression splines, B-splines, P-splines, thin-plate regression splines,
and others [27]. In our analysis, we used cubic regression splines due to their uni-
versality and good performance. Cubic regression splines are the shape function
for each predictor x in the following form: s(x) = α0+α1x+α2x2+α3x3, where
αi are the parameters calculated during the spline-fitting process. We used R
package mgcv with the default settings.

Random forests belong to the full-complexity models and have the following form:

y = f(x1, ..., xn).

Full complexity models are usually more accurate than simpler models because
they model both non-linearity and interaction; however, they are so complex that
it is very hard to interpret them [16]. Random forests [2] are ensembles of de-
cision trees. The method builds a large collection of decorrelated decision trees
and then averages their outputs in regression problems or takes the majority vote
in classification problems. This allows us to reduce the variance of an estimated
prediction of the underlying decision trees. We chose random forests (R package
randomForest) as a representative full-complexity model because they often de-
monstrate better performance than other standard classifiers, are easy to tune,
and are robust to overfitting; for these reasons, they are often recommended as
a universal machine-learning method [7]. We used the default number of variables
randomly sampled as candidates at each tree split equal to the square root of the
number of predictors and built the classifiers with 1000 trees.

Gradient boosting is another technique for full-complexity models and, similar to
random forests, creates ensembles of weak learners typically decision trees. Unlike
random forests (which use the bagging technique to create ensembles), gradient-
boosting models are based on boosting method [8, 9] and often lead to better
accuracy than with random forests. Their disadvantage is that they are more
difficult to train than random forests, as the model itself has more parameters
that must be tuned; namely, shrinkage (learning rate), tree size, the number
of trees, and the subsampling rate (the subset of predictors used when building
a single tree). Nevertheless, a gradient-boosting model is one of the most powerful
machine-learning techniques; its variations are used in the winning solutions of
many data science competitions [5]. For the analysis, we used R package gbm
with a default shrinkage of 0.001 and 1000 trees in the final classifier.
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4. Results and discussion

To measure how well a particular model performed at predicting whether a patient
lost an organ during the survival time horizon, we evaluated the ability of classifiers to
properly assign test patients to either Class “1” or “0”. For each classifier, we took the
probabilities obtained by the tested patients and measured the area under the receiver
operating characteristic curve (i.e., AUC-ROC). The ROC curve graphically displays
the trade-off between sensitivity and specificity (Fig. 4) and is useful in assigning the
best cut-offs for clinical use [1]. AUC represents the overall accuracy of a classifier
and provides a useful parameter for comparing performance between models. AUC is
computed by integrating the ROC curve and is lower bounded by 0.5. AUC can be
interpreted as the probability of a model properly assigning a patient to Class “1” when
choosing from one randomly sampled patient in Class “1” ’ and one from Class “0”.
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Figure 4. ROC curve (black line) with AUC of 0.7421 for random forest model for three-year
survival time horizon. Dashed line represents baseline ROC curve

The test results have been obtained using 3-fold cross validation repeated 20 times
for each method and each time horizon. This allowed us to obtain reliable AUC values
represented by their mean and standard deviation. This also introduced correction for
overfitting. The results for all of the machine-learning methods are reported in Table 3
and compared side by side in Figure 5.

In line with expectations, the best results on average were achieved by the full-
complexity models, while logistic regression gave the weakest results. Interestingly, the
GAM results are closer on average to the full-complexity models than to the linear
models. On average, there was no significant difference (t-test with p < 0.05) between
the random forests and the gradient boosting models; however, on most survival time
horizons, random forests gave slightly better results.
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Table 3
AUC for survival prediction across time horizons for tested machine-learning methods

and MELD

Survival time
horizon

Logistic
regression GAM Random

forest
Gradient
boosting MELD

Three years 0.6175368 0.6643713 0.6877293 0.6697647 0.578869

Five years 0.6135029 0.6744619 0.6155737 0.6455466 0.5796932

Seven years 0.6649711 0.6682012 0.7213799 0.7078518 0.5911405

Ten years 0.6659613 0.6818575 0.7335804 0.7270159 0.5769097

Average 0.6404930 0.6722230 0.6895658 0.6875448 0.5816531
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Figure 5. Classifier AUC results with standard deviation (error bars on top of each bar) for
variousmethods across different survival horizons: 3-year (a); 5-year (b); 7-year (c); 10-year (d).
On each subfigure, bars represent machine-learning methods (starting from left): logistic
regression (green); GAM (orange); random forest (blue); and gradient boosting (purple)

Although our research is focused on a comparison of the modeling methods, we
have also provided a comparison of our models with MELD (Tab. 3). MELD is signi-
ficantly worse than all of the models irrespective of the method used. This validates
our approach to incorporate variability into our models. In the GAM models, it is
also possible to examine the shape functions and explicitly examine the direct impact
of each predictor on the outcome probability. Figure 6 presents significant (i.e., non-
zero) shape functions for the final GAM model, predicting the probability of a patient
losing an organ during the five-year time horizon.
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a) b)

c) d)

e) f)

g) h)

Figure 6. Visualization of impact on output classifier probability of selected predictors. Gray
shades represent confidence bands, and ticks on horizontal axis represent observations. Impact
above 0 means that probability of patient being assigned to Class “1” is increased, while impact
below 0 decreases this probability. Impact is equivalent to odds ratio in logistic regression [11]
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While some shape functions (e.g., Fig. 6b and 6h) in most of their domains could
be substituted with linear functions without significant losses, other predictions (e.g.,
Fig. 6c and 6e) have a clearly non-linear impact on the output, and logistic regression
would not be able to capture such complex dependencies. For instance, when the last
value of creatinine (Fig. 6a) is below 1.0, it decreases the probability of a patient losing
an organ. For values above 1.0, the risk of losing an organ increases proportionally
with the value. Finally, for very high values of creatinine (above 25), the risk stops
increasing remaining at the same (although high) level.

From a medical perspective, we have proven that, using the observations of biliru-
bin and creatinine during the first year, it is possible to model whether a patient will
lose an organ during a specified time horizon, with AUC reaching a value of 0.73 in
the best-case scenario. This result could be further improved by adding observations
from other biochemical measurements; however, it proves that predictors derived from
variability measurements of bilirubin and creatinine already have predictive power in
our problem. Interestingly, there is a better predictability for longer survival time
horizons than for shorter periods (AUC within a range of 0.72–0.73 for seven- and
ten-year time horizons vs. AUC of 0.67–0.68 for three- and five-year time horizons).
This could be explained by the fact that serious consequences occur during shorter
time horizons after liver transplantation; thus, it is easier to predict whether patient
would lose an organ within a longer period.

Finally, we have not only provided results of the models’ predictive power but also
the impact of each predictor in the GAM models in an easily interpretable graphical
form. Based on this, medical doctors can understand how predictions are made and,
in some cases, discard particular parameters if they have been wrongly set up. In
medical applications, it might be worth sacrificing some predictive power for gaining
the possibility of interpreting a parameter’s impact on the output. This is provided
by the GAMs.

Our study has a few limitations. First, we concentrated only on patients who sur-
vived at least one year after liver transplantation. Second, to derive the variability
predictors for the first year after liver transplantation, we had to exclude patients who
had very few observations during this period (fewer than three), which limits the appli-
cability of our models. Finally, we have proven the predictive power of the variability
predictors but did not compare them against models with other predictor selections.

Our aim for future research is to improve the GAM results while maintaining their
interpretability, which would make them even more competitive as a machine-learning
method. Having proven that variability predictors can build successful predictive mo-
dels, we plan to compare the standard approach where only static measurements are
used for modeling against models using additional variability predictors.

5. Conclusion

In this work, we have built models predicting whether a patient will lose an organ
after liver transplantation within a specified time horizon. Inspired by MELD (the
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most popular indicator for determining liver condition), we have used the observa-
tions of bilirubin and creatinine. Unlike MELD, our predictors are derived from the
observations during the whole first year after transplantation, trying to capture not
only the static value but also variability. These predictors indeed have a predictive
power, which proves the value of incorporating biochemical measurement variability
in models (which is the first contribution of our paper). We hypothesize that the
accuracy could be increased by adding other biochemical measurements.

As a result of the analysis, we have found that full-complexity models such as
random forests and gradient boosting lack sufficient interpretability despite having the
best predictive power (which is important in medicine). Our contribution is the finding
that generalized additive models provide the desired interpretability, and their results
in prediction are relatively closer to full-complexity models than simple linear models
are. This property of GAMs makes them well-suited models in medical applications
where, apart from predictive power, interpretability is also important.
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