
Marcin Worecki
Rafa l Wcis lo

GPU ENHANCED SIMULATION OF
ANGIOGENESIS

Abstract In the paper we present the use of graphic processor units to accelerate the most

time-consuming stages of a simulation of angiogenesis and tumor growth. By

the use of advanced CUDA mechanisms such as shared memory, textures and

atomic operations, we managed to speed up the CUDA kernels by a factor of

57x. However, in our simulation we used the GPU as a co-processor and data

from CPU was copied back and forth in each phase. It decreased the speedup

of rewritten stages by 40%. We showed that the performance of the entire

simulation can be improved by a factor of 10 up to 20.

Keywords gpu, angiogenesis, tumor

2012/03/12; 22:44 str. 1/14

Computer Science • 13 (1) 2012 http://dx.doi.org/10.7494/csci.2012.13.1.35

35



1. Introduction

Angiogenesis is a biological process of new blood vessel growth. It is an important

natural process accompanying wound healing and tissue reproduction. It is the funda-

mental process in many diseases including cancer, skin diseases, age-related blindness,

diabetic ulcers, and cardiovascular diseases. A good understanding of angiogenesis

can help develop new medical treatments [4]. There are many models and simula-

tions of angiogenesis. For example, M. Aubert et al. [2] have presented angiogenesis

modeling based on a set of nonlinear partial differential equations (PDEs). Abbas

Shirinifard et al. [7] have used multi-cell Glazier-Graner-Hogeweg model (GGH, also

known as the Cellular Potts Model) to simulate 3D solid tumor growth and angiogen-

esis. In our simulations, we used complex automata approach (CxA), which combines

the cellular automata modeling (CA) with off-grid particle dynamics coupled by con-

tinuum reaction-diffusion equations. However, to simulate spatio-temporal scales in

order to enable the observation of tumor development in all growth phases (avascular,

angiogenic and metastasis), more computational power is required.

The computational power of GPUs has been increased dramatically and currently

it exceeds CPUs by orders of magnitude. The development of GPU computational

environments, like CUDA, enables this power to be harnessed in scientific applications.

Particle simulations have been successfully implemented on GPUs. In [5], the

authors presented a GPU implementation of all-pairs n-body simulation of gravita-

tional forces. Their simulation runs more than 50 times faster than a tuned serial

implementation and 250 times faster than a portable C implementation. J. A. van

Meel et al. [8] and Joshua A. Anderson et al. [1] have implemented molecular dy-

namics simulations on GPU and obtained a speedup greater than 40. These works

motivated us for speeding up our CxA modeling.

The rest of the paper presents algorithms used in our implementation and a com-

parison of different approaches.

2. CPU implementation

We started with a working and optimized CPU implementation. The simulation

combines particle dynamics with cellular automata. There are two kinds of objects:

Spherical cells — represented as coordinates and radius.

Tubes — represented as coordinates of both ends and radii in both ends. Chains of

connected tubes form blood vessels.

Both have plenty of properties i.e. standard particle attributes such as position,

velocity and force as well as parameters related to the tissue they are made of. There

are nearly twenty parameters defining tissue including density, growth speed, and

oxygen consumption.

Cell life-cycle is represented by the following states:

New — initial state.

2012/03/12; 22:44 str. 2/14

36 Marcin Worecki, Rafał Wcisło



Mature — a New cell becomes Mature when it reaches a certain age. A cell in this

state can divide itself into two daughter cells (in a New state).

Hypoxia — New and Mature cell move to this state when oxygen shortage occurs.

Cells in Hypoxia produce TAF (Tumor Angiogenesis Factor) which stimulates

the growth of new blood vessels.

Dead — Cells die because of aging or oxygen shortage.

The exchange of oxygen and TAF is modeled by reaction-diffusion equations.

(a) 2D (b) 3D

Figure 1. Types of objects used in our simulation

Computation of short-range interactions like forces and concentration exchange

employs cell list algorithm. Simulation space is divided into cells with an edge length

greater than a cut-off radius. In order not to mislead the part of the tissue and the

part of the simulation space, in the rest of the document we will refer to the latter

as “box”. Figure 1a shows types and relationships of objects used in the simulation,

detailed description of the simulation method is presented in [9].

2.1. Simulation phases

Our simulation consists of the following phases:

• Object interactions (computation of pressure, concentrations and forces):

– Cell-cell

– Tube-cell

– Tube-tube

• Cells growth and life cycle

• Tubes growth

• Blood flow

• Rearranging cells

• Cell-barrier forces

2012/03/12; 22:44 str. 3/14

GPU enhanced simulation of angiogenesis 37



Profiling of the existing CPU implementation has shown that 95% of the total

execution time is spent in only two simulation phases: cell-cell and tube-cell interac-

tions. Those two stages have been rewritten to utilize the potential of GPUs. The

following sections provide details on their CPU versions.

2.1.1. Cell-cell interactions

In this stage, we calculate interactions between cells including: force, pressure and

diffusion of oxygen and TAF.

Algorithm 1: Cell-cell interactions CPU version

1 foreach box1 in boxes

2 foreach cells[i] and cells[j], i < j in box1

3 if cells[i] and cells[j] interact

4 force = calc_force;

5 cells[i].force += force

6 cells[j].force -= force

7 calculate concentrations for both cells

8 calculate pressure for both cells

9 end

10 end

11 foreach box2 in 13 adjacent boxes of box1

12 foreach cells[i] in box1

13 foreach cells[j] in box2

14 if cells[i] and cells[j] interact

15 force = calc_force;

16 cells[i].force += force

17 cells[j].force -= force

18 calculate concentrations for both cells

19 calculate pressure for both cells

20 end

21 end

22 end

23 end

24 end

On line #1 we iterate over all boxes. For each box, we calculate interactions

between all particles within the given box. On line #3 we check whether cells interact

i.e. if a distance between them is less than a given cut-off radius. Then on lines #11-

23 we take care of neighboring boxes. In 3D there are 26 adjacent boxes. As our CPU

implementation employs Newton’s third law, we need to handle only 13 of them.

For the sake of conciseness, implementations of force, concentrations and pressure

calculations were omitted.

2.1.2. Cell-tube interactions

In this phase, we deal with two kinds of objects: cells and tubes. The CPU version

of this routine calculates cell-tube and tube-cell interactions in a single run.

2012/03/12; 22:44 str. 4/14

38 Marcin Worecki, Rafał Wcisło



Algorithm 2: Cell-tube interactions CPU version

1 foreach tubeChain in tubeChains

2 tube = first tube in tubeChain

3 while tube

4 foreach adjacent box of tube

5 foreach cell in box

6 if cell and tube interact

7 force = calc_force;

8 cell.force += force

9 tube.force -= force

10 calculate concentrations cell -tube and tube -cell

11 calculate pressure cell -tube and tube -cell

12 end

13 end

14 end

15 tube = tube.next

16 end

17 end

tubeChain on line #1 is a linked-list of tubes. On line #4 we iterate through

all boxes adjacent to the tube. As we mentioned earlier, tubes are represented as

coordinates of both ends. Tube length can exceed the cut-off radius significantly. In

order to find all cells the tube can interact with, we need to check all boxes in between

and next to both ends. Note that on lines #8-11 both tube and cell are updated.

3. GPU implementation

Our GPU implementation was written using NVIDIA CUDA technology. As the

existing CPU code was written in C++, it was fairly simple to integrate it with the

C-like CUDA kernels. In the next sections, we describe the most important details of

the GPU implementation.

3.1. New data model for GPU algorithms

Because structures used by the CPU algorithm are tightly coupled with a visualization

code, GPU code uses its own data model. In order to make memory reads coalesce, we

changed an array of objects to a separate array for each property and flattered nested

structures. Streaming multiprocessor (SM) schedules threads in groups called warps.

Coalesced memory access occurs when all threads in a half warp access continuous

memory locations. In that case, SM can issue one memory transaction handling

multiple threads. A separate GPU model also allowed us to use build-in CUDA types

(int4, float4) supported by texture memory. Before each phase the CPU model is

converted to the new GPU representation and copied to GPU global memory.

2012/03/12; 22:44 str. 5/14

GPU enhanced simulation of angiogenesis 39



3.2. Cell-cell interactions

In the CPU implementation, this phase takes around 54% of the total execution time,

so it was the first candidate to be rewritten.

Algorithm 3: Cell-cell interactions on GPU (first approach)

1 index = blockId*BLOCK_SIZE+threadId

2 if index < num_of_cells

3 box1 = computeBoxId(pos[index ])

4 foreach box2 in 27 adjacent boxes of box1 // 26 + box1

5 foreach cell2 in box2

6 if cells[index] and cell2 interact

7 force = calc_force;

8 cells[index ]. force += force

9 calculate concentrations

10 calculate pressure

11 end

12 end

13 end

14 end

In the GPU implementation, we used a fine-grained approach. Algorithm 3

presents the code executed by a single thread. Each thread is responsible for calcu-

lation of interactions of a single cell. On line #2 we check whether the thread index

is not greater than the number of cells (it can happen when the num-of-cells is not

a multiple of BLOCK-SIZE).

On line #4 we assume that every box is adjacent to itself. As the reader can

see on line #8, we resigned from Newton’s third law. Thus the interaction between

a pair of cells is computed twice (when we calculate interactions between cell A and

B, only A is updated).

The first reason for this is that we wanted to avoid synchronization. Atomic

floating-point operations are available only on devices of compute capability 2.x, which

we did not utilize. The second reason is that employing Newton’s third law would

introduce scattered memory accesses that perform poorly on GPU.

The first approach shown in Alg. 3 resulted in a speedup of about 6x, which has

shown that it does need further improvements.

3.3. Neighbor list generation

Performance analysis of the cell-cell interactions kernel revealed that the main reason

for poor performance is the low occupancy. Our algorithm is memory bound. One

approach to coping with memory latency is to run more threads per multiprocessor.

GTX 295 is able to schedule up to 1024 threads per single streaming multiprocessor

(SM). Because our kernel requires 38 registers per thread, SM can schedule only 384

threads to fit the number of registers it contains.

In order to decrease the register usage, our huge cell-cell interactions kernel has

been broken down into two separate stages:

2012/03/12; 22:44 str. 6/14

40 Marcin Worecki, Rafał Wcisło



• Neighbor list generation

• Calculations of interactions between cells

3.4. Use of shared memory

Neighbor list generation can be improved using shared memory. Shared memory is

visible to all threads of a block. It is almost as fast as registers (when some conditions

are met). It can be used as a cache of global memory. We used the method presented

in [1].

Algorithm 4: NeighborList with shared memory

1 index = blockId*BLOCK_SIZE+threadId

2 if index < num_of_cells

3 box1 = computeBoxId(pos[index ])

4 else

5 box1 = computeBoxId(pos[blockId*BLOCK_SIZE ]) // first cell in the block

6 foreach box2 in 27 adjacent boxes of box1

7 synchronize ()

8 index2 = box2*BLOCK_SIZE + threadId;

9 shared[threadId] = attributes[index2]

10 synchronize ()

11 if index < num_of_cells

12 foreach cell2 in box2

13 if cells[index] and cell2 interact

14 Neighbors[index] += cell2

15 end

16 end

17 end

18 end

Algorithm 4 requires the block size to be equal to the maximum number of cells

in a box. On lines #2-5 we assign the id of the current box to the variable box1.

In order to calculate the box Id, we use either the position of the cell at index or

position of the first cell in the block. On line #6, we iterate over all adjacent boxes.

First, we make sure that all threads reached line #7 by invoking synchronize(). Each

thread loads the position and radius of one of the neighboring cells and stores them

in shared memory. On line #10, we wait until all of the shared memory locations are

populated. When we reach line #12, each thread can iterate through properties of

all cells in a neighboring box using values loaded into shared memory. Figure 2 shows

a single thread block handling one of the neighboring boxes.

3.5. Use of texture memory

In order to compute cell interactions each thread needs to load properties of all neigh-

boring cells. Those reads are not coalesced and perform poorly on the GPU. Different

threads read the same cells multiple times. Fortunately, those accesses are read-only

and can be enhanced by cached texture memory. The improvement achieved by the

use of texture memory is presented in Figure 3.

2012/03/12; 22:44 str. 7/14

GPU enhanced simulation of angiogenesis 41



Figure 2. Graphical representation of Algorithm 4 for the block size of length 4. Dashed

square represents a thread block handling one neighboring box

Figure 3. Improvement achieved by the use of texture memory

3.6. Cell-tube interactions

In the serial CPU implementation it was easy to take advantage of Newton’s third

law and compute cell-tube and tube-cell interactions at once.

However, a parallel implementation would require extensive synchronization to

do so. In order to avoid synchronization, this phase has been broken down into two

steps:

• tube-cell interactions,

• cell-tube interactions.

The most time-consuming part is searching for objects that interact. Fortunately,

devices of compute capability greater than 1.1 support atomic integer operations. By

use of an atomicInc function (atomic incrementation), we can create a list of neigh-

boring tubes for each cell when we calculate tube-cell interactions. Having a ready

2012/03/12; 22:44 str. 8/14

42 Marcin Worecki, Rafał Wcisło



to use list of neighboring tubes, we can calculate cell-tube interactions in a negligible

time.

As we mentioned before, GPU kernels use their own dedicated model different

from the CPU one. In both tube-cell and cell-tube stages we do not need to know

what tubes chain a particular tube belongs to. Because of that, we use just an array

of tubes.

Both algorithms 5 and 6 present the code executed by a single thread.

Algorithm 5: GPU version of tube-cell interactions

1 i = blockId*BLOCK_SIZE+threadId

2 if i < num_of_tubes

3 tube = tubes[i]

4 foreach adjacent box of tube

5 foreach cell[j] in box

6 if cells[j] and tube interact

7 count = atomicInc(neighborCount[j])

8 neighbors[j, count] += i

9 force = calc_force;

10 tube.force -= force

11 calculate_concentrations(tubes[i], cells[j])

12 calculate_pressure(tubes[i], cells[j])

13 // update only tubes[i]

14 end

15 end

16 end

17 end

Each thread is responsible for the calculation of interactions between a single tube

and all cells in its neighborhood. The variable ‘neighborCount’ stores the number of

neighbors of a particular tube. It is initialized with zeros before this routine is called.

The variable ‘neighbors’ is a 2D array containing a list of tubes interacting with a cell

at the index ‘j’.

Algorithm 6: GPU version of cell-tube interactions

1 i = blockId*BLOCK_SIZE+threadId

2 if i < num_of_cells

3 for j=0 to neighborCount[i]

4 tubeIdx = neighbors[j]

5 force = calc_force(tubes[tubeIdx], cells[i]);

6 cells[i].force += force

7 calculate_concentrations(cells[i], tubes[tubeIdx ]);

8 calculate_pressure(cells[i], tubes[tubeIdx ]);

9 // update only cells[i]

10 end

11 end

Algorithm 6 uses variables ‘neighborCount’ and ‘neighbors’ prepared in Alg. 5.

Each thread calculates interactions between a single cell and tubes stored in the

variable ‘neighbors’.

2012/03/12; 22:44 str. 9/14

GPU enhanced simulation of angiogenesis 43



3.7. Use of Page-Locked Host Memory

In each time step, in both phases data need to be converted to the new model and

copied back and forth between the GPU and RAM. Memory handling takes up to

40% of cell-cell interactions stage.

The overhead introduced by the memory copying can be mitigated by use of page-

locked host memory(pinned memory). CUDA runtime handles pinned memory more

efficiently and allows concurrent copying and kernel execution [6]. Use of page-locked

host memory resulted in 5% improvement of the execution time of both phases.

4. Results

All tests were conducted on the same machine. We used Intel Xeon E5540 at 2.53GHz

CPU and Nvidia GeForce GTX 295 (containing 240 CUDA cores). Machine runs Red

Hat Enterprise Linux Server release 6.0. CUDA version was 3.2.16.

For the comparison of neighborsList kernels, texture memory, and speedups of

cell-cell interactions we used randomly generated inputs with no tubes. In order to

prevent cells from hypoxia and death, oxygen consumption was set to zero.

Figure 4. Comparison of neighbors-list kernels execution time (the less the better)

In Figure 5 we can see that “neighbor list” approach outperforms the all-in-

one-kernel algorithm. Figure 4 shows that the use of shared memory has brought

significant improvement of neighbor list generation.

Speedups of the cell-cell interactions phase is presented in Figure 6. Our CUDA

kernel is around 57 times faster than its CPU counterpart. The memory copying and

data conversion decrease speedup of the whole phase to 30x. Speedup of the entire

simulation fluctuates around 20x.

The overhead of the memory handling is substantial. It accounts for 40% of the

execution time of both phases. The share of the model conversion and data-transfer

in the execution time of cell-cell interactions stage is shown in Figure 7.

2012/03/12; 22:44 str. 10/14

44 Marcin Worecki, Rafał Wcisło



Figure 5. Comparison of approach with neighbors-list and no-neighbor-list

Figure 6. Speedups of cell-cell interactions

Performance tests of tube-cell interactions have been performed on randomly

generated input with an extremely large number of tubes. Figure 8 shows speedups

of the tube-cell interactions phase. The overall speedup decreases with an increasing

number of tubes. There are a few reasons for that. First, the more tubes, the longer

it takes to load the input data. The second reason is tube-tube interactions phase.

Normally, blood vessels are sparse and hardly ever interact with each other. In our

extreme case, tubes are so dense that their interactions considerably affect overall

performance. When the number of tubes reaches 9996, tube-tube interactions take

29% of the total execution time.

2012/03/12; 22:44 str. 11/14

GPU enhanced simulation of angiogenesis 45



Figure 7. The contribution of the model conversion and data-transfer to the execution time

of cell-cell interactions stage

Figure 8. Speedups of tube-cell interactions

5. Conclusions

In this paper, we have shown that GPUs can be used to accelerate the modeling of

a complex biological process. As shown in section 3.2, the simple (naive) GPU version

of cell-cell interactions runs 6 times faster than its CPU counterpart. By use of ad-

vanced CUDA mechanisms such as shared memory, textures, atomic operations, and

tailoring algorithms to GPUs, we managed to increase the speedup of our CUDA ker-

nel up to 57x. The entire simulation runs 10-20 times faster than the single threaded

CPU version.

The speedup obtained is quite satisfactory, taking into account the complexity

of the system modeled. However, there are still implementation problems that can be

solved better. The overhead introduced by the memory moving can be totally elimi-

2012/03/12; 22:44 str. 12/14

46 Marcin Worecki, Rafał Wcisło



nated by implementing the entire simulation on GPU. Some stages may work slower

than on CPU, but the overall performance will be improved significantly. Rewriting

everything to CUDA would also enable us to make the visualization more efficient

(objects could be rendered directly from the GPU memory [3]). Another possible

improvement is to perform calculations iteratively on subsets of cells. In the cur-

rent solution, the number of objects modeled is limited by the amount of the GPU

memory, which is normally less than the amount of installed RAM. We could also

take advantage of multiple GPUs. A lot of contemporary GPUs are made in the SLI

technology. Unfortunately, CUDA is not able to distribute data across all graphic

cards automatically. It needs to be done explicitly by a programmer.

The modeling system can be used in the future as a framework for a virtual

laboratory and problem solving environment for educational purposes and finally for

in silico experiments, which can play the role of angiogenesis assays in the planning

of a cancer treatments.

Acknowledgements

This research is financed by the Polish Ministry of Higher Education and Science,

project N519 579338 and partially by AGH grant No. 11.11.120.865.

References

[1] Anderson J. A., Lorenz C. D., Travesset A.: General purpose molecular dynamics

simulations fully implemented on graphics processing units. Journal of Computa-

tional Physics February, 2008.

[2] Aubert M., Chaplain M. A., McDougall S. R., Devlin A., Mitchell C. A.: A Contin-

uum Mathematical Model of the Developing MurineRetinal Vasculature. Bulletin

of Mathematical Biology, 2011.

[3] Green S.: Particle Simulation using CUDA. NVIDIA, 2010.

[4] Li W., Hutnik M., Smith R., Li V.: Understanding angiogenesis. [online], 2011.

http://www.angio.org/ua.php

[5] Nguyen H.: GPU Gems 3. Addison-Wesley Professional, 2007. Chapter 31, Fast

N-Body Simulation with CUDA.

[6] NVIDIA.: CUDA C Programming Guide. NVIDIA, 2010.

[7] Shirinifard A., Gens J. S., Zaitlen B. L., Popawski N. J., Swat M., Glazier J. A.:.

3D Multi-Cell Simulation of Tumor Growth and Angiogenesis. Public Library of

Science, 2009.

[8] van Meel J. A., Arnold A., Frenkel D., Zwart S .F. P., Belleman R. G.: Harvesting

graphics power for MD simulations. Molecular Simulation, 34: 3, pp. 259–266,

2008.

[9] Wcis lo R., Dzwinel W., Yuen D. A., Dudek, A. Z.: A 3-D model of tumor progres-

sion based on complex automata driven by particle dynamics. Journal of Molecular

Modeling, 2009.

2012/03/12; 22:44 str. 13/14

GPU enhanced simulation of angiogenesis 47



Affiliations

Marcin Worecki
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland, wor18@wp.pl

Rafa l Wcis lo
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland, wcislo@agh.edu.pl

Received: 9.12.2011

Revised: 9.01.2012

Accepted: 30.01.2012

2012/03/12; 22:44 str. 14/14

48 Marcin Worecki, Rafał Wcisło


