
Kazimierz Michalik
Krzysztof Banaś
Przemysław Płaszewski
Paweł Cybułka

MODULAR FEM FRAMEWORK “ModFEM”

FOR GENERIC

SCIENTIFIC PARALLEL SIMULATIONS

Abstract We present the design for, and implementation of, a flexible and robust parallel

modular finite element (FEM) framework called ModFEM. The design is based

on reusable modules which use narrow and well-defined interfaces to cooperate.

At the top of the architecture, there are problem-dependent modules. Problem-

-dependent modules can be additionally grouped together by “super-modules”.

The structure allows for reusing the sequential code for parallel environments,

and also supports solving multi-physics and multi-scale problems.

Keywords fem, modules, parallelism, grid, framework

Computer Science • 14 (3) 2013 http://dx.doi.org/10.7494/csci.2013.14.3.513

513



1. Introduction

Mesh-based methods, including the finite element method (FEM), support the effec-
tive analysis of complex physical phenomena described by partial differential (PDE)
equations over one-, two-, and three-dimensional domains. There are many cases when
the use of unstructured meshes, with adaptation supported by appropriate error esti-
mators, leads to the most reliable and efficient application of FEM. Besides the fact
that, for three-dimensions, FEM with adaptive meshes can have considerably-smal-
ler computational requirements than FEM with uniform mesh for the same level of
accuracy, there are still problems so complex that they can only be solved within
parallel computer environments. Development of flexible adaptive parallel FEM ap-
plications for distributed memory systems requires us to solve many problems. There
are technologies that support the deployment of programs in such environments, and
libraries addressing those requirements as well as complete FEM applications having
this feature. In recent years, all three categories featured many proposals, articles and
implementations for parallel adaptive FEM development problems.
The accuracy of the FEM solution is implied by the chosen weak formulation,

approximation function space, and spatial (geometrical) discretization. Expression
of the quality of a solution is done in terms of solution error. Error analysis of the
finite element solution can be obtained in a mathematically-rigorous way only for some
linear problems. Most real problems contain different non-linearities, and general error
analysis becomes difficult or even impossible for them. Therefore, the error analyses
have to take into consideration changing spatial and time discretization for hyperbolic
and parabolic problems. It is necessary that error estimation be at least partially
done in an iterative or incremental manner. This leads to further complications of
establishing reliable error estimator techniques.
One of the most successful techniques for decreasing error (improving accura-

cy) of the solution is adaptivity. There are a few main directions of applying ad-
aptivity during FEM computations: h-adaptation, p-adaptation, hp-adaptation, and
r-adaptation. H-adaptation decreases error by increasing local density of degrees of
freedom (DOFs), which are added. P-adaptation increases order of shape functions
within element and, therefore, decreases error within this element. Hp-adaptation is
a mixture of both h- and p-adaptation. R-adaptation decreases error by local impro-
vement of spatial discretization without increasing the number of DOFs. Each kind
of adaptivity brings about different problems and complications; thus, the successful
deployment of adaptive FEM is not trivial. Apart from the different complications,
all adaptive techniques usually share substantial demands for more resources, both in
regards to memory and CPU time. This naturally leads to large-scale parallel com-
putational environments.
Both parallel architectures and algorithms require the problem domain to be

partitioned into set of smaller sub-domains, and the final solution is obtained by the
appropriate combination of computed sub-tasks. Parallel environments can be con-
sidered as parallel environments with shared memory or parallel environments with

514 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka



distributed memory. There are also hybrid architectures supporting shared and di-
stributed memory models at the same time. All three grapple with several problems,
including synchronization, simultaneous memory access, resource allocation, critical
sections, and others. To solve these problems, several standards have been developed.
Within distributed memory parallel environments, message passing concept is the de
facto mandatory standard, and communication libraries provide implementations of
Message Passing Interface (MPI). Implementations for shared memory environments
commonly use OpenMP for handling multi-threading issues.
The developers often choose to fulfill severe demands of parallel environments

using object-oriented programming paradigms. The object-oriented programming
techniques provide the programmer with tools that allow them to reduce the com-
plexity of code by applying concepts like dynamic dispatching, encapsulation, poly-
morphism, inheritance, delegation, self recursion using classes, instances, methods,
abstraction, templates, and others. Since the late 90’s, many articles on applying
OO-techniques were published, and many FEM codes with object oriented architec-
tures were also created. The flexibility of developed codes is often referred in terms of
extending existing codes with new weak formulations, error estimators, approximation
functions, adaptivity techniques, solvers, and pre-conditioners.
One such effort is the FENICS Project [2], which emphasizes component ar-

chitecture with the common goal of enabling an automated solution of differential
equations. The proposed components provide scientific computing tools for working
with computational meshes, finite element variational formulations of ordinary and
partial differential equations, and numerical linear algebra. The authors of the FE-
NICS Project admit that achieving peak performance was not their purpose; but
still, the FENICS Project takes advantage of many available HPC libraries, like
MPI, PETSC, Trilinos, uBlas, UMFPACK, ParMetis, and others.
For the authors of Dune framework and the Dune-fem module [1], the leading

design principle was a one-to-one correspondence between the mathematical objects
within grid-based discretization schemes for stationary and non-stationary partial
differential equations and C++ interface classes in Dune-fem. As they note in [1],
thanks to advanced C++ programming techniques, experiments demonstrate both
the efficiency and the applicability for a very large class of problems, including FEM
PDE solutions.
A similar approach to avoiding computational overhead while still taking advan-

tage of OO-programming is presented in [9]. The Deal.II authors assure us that the
key to achieving this is a proper separation of concepts such as meshes, finite ele-
ment spaces, and degrees of freedom, as well as the possibility to arbitrarily combine
finite element spaces, numerical quadrature, and mapping information. The creators
of Deal.II also find that it is important to use standard programming concepts and
to avoid making frameworks overly general. They even point to the OOFEM [14],
another FEM framework, as a negative example.
The authors of an Interactive Parallel Multigrid FEM Simulator [10] focus their

work on delivering specific FEM-simulated solutions in a real time regime. Accor-

Modular FEM framework “ModFEM” for generic scientific parallel simulations 515



ding to published papers, the key trade-off in the Interactive Parallel Multigrid FEM
Simulator is achieving accuracy at a sufficient speed. The proposed architecture is
based on two main components: the simulation server and the graphical front-end
that communicate through a client/server model. The authors assure us that the gra-
phical front-end client, constituting a graphical user interface, is capable of obtaining
the user input – user forces applied to different parts of the objects – and to display
the current configuration of the deformable objects in real time. UI receives new con-
figuration from the server whenever it is ready to draw a new frame, and it sends
the current position of the user forces to the server. The authors are still working
on the interactive system that will be able to simulate the interaction among multi-
ple deformable objects. As they admit, this task requires “clever schemes of collision
detection/response (CD/CR), which are computationally extensive” [10].

Domain decomposition and further dynamic load balancing were also the sub-
ject of research and articles. The Metis and ParMetis libraries [3] are, among others,
the successful implementations of developed algorithms for partitioning and reparti-
tioning of computational domain. Many FEM codes deploy them instead of their own
implementations.

Incremental error estimators and automatic dynamic adaptivity within parallel
environments cause considerable complication of finite element mesh management
during simulations. Both articles covering those research areas as well as implementa-
tions were provided during the last years, e.g. [5]. Also, solutions for massively-parallel
computations for tens and hundreds of thousands of cores were developed [4].

Rapid progress in hardware was made in recent years, as new computational
platforms and technologies have been presented. This includes the GPGPU area with
CUDA and OpenCL, allowing the use of hundreds of cores located on graphics cards.
Also, hybrid architectures like Cell B.E. or CPUs with Intel Xeon Phi co-processors
are offered as alternative to classic mutli-core processors.

1.1. Current contribution

The current paper contains the description of modular architecture of ModFEM fra-
mework. A description is provided at the abstract level of interface of modules [6]
without going into the implementation details of each module. Modules are develo-
ped to achieve flexibility, including all of the areas mentioned in the introduction. The
flexibility of ModFEM has also a specific aspect that is rarely taken into account in
component and object oriented approaches. The proposed modular architecture takes
into account the technology that lies below the OO-concepts. ModFEM modularity
addresses not only FEM requirements, but is also aware of changing hardware tech-
nologies. The authors’ goal was to create a research FEM framework whose flexibility
goes beyond programming concepts and extends into the area of new computational
architectures [8].

516 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka



1.1.1. ModFEM overview

The name of the framework – ModFEM – stands for two things: first, an abbreviation
of the Modular Finite Element Method, which highlights the main modular principle
used in ModFEM; and second, an abbreviation from the Modifiable Finite Element
Method, which indicates the main functional advantage of the framework.

ModFEM falls into the category of open-source scientific codes and libraries. It is
a computational framework for generating a parallel adaptive finite element modelling
applications. By its modular architecture, the framework allows the introduction of
new mesh algorithms, approximation spaces, adaptation algorithms, or weak formu-
lations.

The Moors’ Law show clearly that computing power grows and will continue
to grow further [16]. For large-scale applications, the dominant role falls to parallel
distributed memory environments [17]. We address this requirement by introducing
parallel overlay modules in ModFEM. The modules are capable of parallelizing sequen-
tial scientific codes without the need of a separate process of developing a distributed
application.

Multi-scale and multi-physics modelling is also supported in ModFEM archi-
tecture. Modules are responsible for modelling a single physics phenomenon. The
super-modules combine two or more problem modules, thus allowing the develop-
ment of a strongly-coupled solution for complicated multi-physics phenomena. The
same principle can be used for multi-scale modelling. Using a super-module, one can
benefit by simulating a complicated problem by passing values directly between diffe-
rent scale levels. The wrapper modules also support interfacing with standalone FEM
codes and applications using methods other than FEM (e.g. cellular automata).

2. Modular structure

The ModFEM framework provides a modular structure, with all interfaces defined
and several sample modules already implemented. These modules are independent
of each other. Each module can be easily exchanged with another module with the
same functionality, as long as it properly implements the module interface.

The whole program is split into several (currently, less then ten) modules (Fig. 1).
Modules interact only through strictly-defined interfaces. The interfaces have also
been created to maintain the similarity to the classic FEM codes formulation:

1. Defining a problem and choosing FEM weak formulation.
2. Selecting appropriate approximation function space.
3. Selecting conforming geometric discretization with mesh type and properties.
4. Adjusting solver and its preconditioner.
5. Thus, you have a well-defined application for a well-defined problem.

All modules are implemented for cross platform usage and all mainstream com-
piler support. The process of application building is provided by cross platform com-

Modular FEM framework “ModFEM” for generic scientific parallel simulations 517



pilation and linking framework. The entire FEM-application logic has been hidden
behind the seven orthogonal interfaces.

Figure 1. Modules diagram.

Problem module. The problem module is the most important module. It contains
a weak formulation of FEM for some preselected problem. All other modules are
used by the problem module. The link between this module and other modules
is not always direct. The problem module defines all procedures associated with
the weak formulation of the problem. Many of them are callback-routines called
from other modules when necessary.

Mesh manipulation module. The mesh module is the most-basic unit. It does not
depend on any other module. It determines some of the most important features
of FEM approximation [12]. This module is responsible for all operations directly
related to the geometric discretization of the computational domain. All mesh
entities are managed by this module. It provides iterators which allow access to
parts of the mesh. The inner logic of this module is also responsible for issues
related to the orientation of the elements, faces, and edges. Mesh adaptation and
de-adaptation routines form a very important part of the module. In addition,
a detailed geometry sub-module is included inside this module. The geometry
sub-module allows for improvement of boundary geometry during h-adaptation.
Finally, mesh module implements procedures for validating a geometric mesh
during input/output operations, and also supports the identification and correct
location of the boundary conditions.

Approximation module. This module implements methods associated with the se-
lected function space. FEM discretization requires determining the space of func-

518 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka



tions used in approximation. Shape functions associated with elements, faces,
edges, and vertices are defined inside this module. Also, the calculation of the
values of shape functions at a given point and their derivatives, integration over
elements, faces, and edges is implemented in this module. The approximation
module also includes a transformation between local and global coordinate sys-
tems.

Solver interface module. The module is responsible for interfacing with external
modules for solving systems of linear equations. However, all of the FEM weak
formulation and problem specific routines (required by the solvers) are delegated
to the appropriate FEM modules. This tiered approach allows for the separation
of problem details and selected solver strategy. Through that, the solver interface
module is generic and independent from the problem being solved.

Parallel mesh overlay. Parallel mesh module is an overlay for any implementation
of the mesh module. The module extends the functionality of the mesh mani-
pulation module. It adds functions responsible for domain decomposition, load
balancing, the transfer mesh data between computational nodes, parallel adap-
tation, inter-sub-domain boundary conditions, and many others. It also expands
the mesh entities identifiers, assigning them an unambiguous owner to provide
unique global identifiers. The module can handle meshes partitioned into sub-
domains with overlaps having arbitrary widths.

Parallel approximation overlay. The parallel approximation module overlay
extends the approximation module. It adds functions responsible for exchan-
ging DOFS data between computational nodes, synchronizing DOFS in overlay
managed by parallel mesh module, computing global (whole domain level) vector
products, and transferring some additional information in the parallel execution
environment.

3. Two levels of parallelism

A generic approach to distributed computing involves two levels of parallelism, which
are exploited in the framework [7]. The first, global level of parallelism with distribu-
ted memory and message passing, is implemented using parallel overlays for mesh and
approximation modules. It handles domain decomposition, load balance, synchroni-
zation of mesh changes, etc. At the second level of parallelism, we focus on a single
computational node with shared memory. Both levels support multiple meshes. At
the global level, the parallel overly module decomposes mesh into sub-meshes
which can be merged, split, or changed. At the computational node level, there can
be distinct meshes for different fields (for multi-physics problems), or several appro-
ximation fields can share the same mesh. This hybrid model is already well-known,
especially in applications using MPI along with OpenMP. The novelty of our appro-
ach is to use general-case interfaces for parallelism. Such an approach allows us to
use different combinations of technologies, e.g., combining MPI with CUDA GPGPU
kernels, switching from OpenMP to OpenCL, or some new emerging technologies.

Modular FEM framework “ModFEM” for generic scientific parallel simulations 519



The usage of the code for the two levels can be further described as follows:

Global level parallel system. This is a distributed memory model covering the
whole computational domain. This level makes usage of pre-built parallel over-
lays. At this level, we focus on domain decomposition and load balancing pro-
blems. The mesh and approximation module parallel overlays are able to handle
many meshes partitioned into sub-meshes, provided by domain decomposition al-
gorithms. Our code also supports global id, load balancing, splitting and merging
meshes, adding, and removing single entities.

Local level a computational node. This is a shared memory model for multi-
threaded execution environment. At the node level, there is the possibility of
handling more than one mesh simultaneously. For example, when working on
problems of fluid-structure interaction, one mesh could be used for fluid simula-
tion and the other for structure. We can also use different approximation fields
on the same geometrical mesh thanks to the distinction between the geometry
and the solution degrees of freedom (managed by a separate approximation mo-
dule). Implementation handles critical situations through a checkpoint-restart
mechanism.

4. FEM capabilities

It should be noted that, in ModFEM, problem parameters are defined in several in-
put files. Input files cover meshes, fields, parameters, materials, boundary conditions,
solver parameters, output format, etc. Some commonly-used file formats are already
supported. The input-output scheme is open for extension. Both text and
binary file formats are supported.

Authors of the ModFEM framework provide at least one working implementation
for each of the seven modules previously described. At this moment, one can choose
from the implemented modules listed below.

4.1. Available modules

Generic convection-diffusion module This is a base generic problem module. It
is designed to be a basis for all convection-diffusion phenomena simulations. It
is also used for testing modules of other types (mesh, approximation, parallel
overlays).

Heat transfer module The provided problem module is capable of solving heat
transfer problems. Apart from allowing the use of almost arbitrary material co-
efficients, it also takes into account phase transitions and different boundary
conditions (including convection and radiation).

Elasticity module The provided problem module is capable of solving elasticity
equations in solid materials. One main characteristic of the module is the ability
to estimate errors and adapt meshes for optimal problem-solving.

520 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka



Incompressible fluid-flow module The provided problem module is capable of so-
lving incompressible fluid flows using Navier-Stokes equations with well establi-
shed SUPG-type stabilization.

Fluid-flow with heat transfer module This problem super-module can be used
for coupled fluid flow – heat transfer problems. For this purpose, two problem
modules – fluid flow and heat transfer – are coupled together. This shows that
interfaces of problem module procedures are specially designed to allow for such
multi-physics coupling.

Fluid-structure interaction module This super-module can be used for stand-
alone fluid flow simulations with moving boundaries as well as for coupled fluid-
flow with fluid-structure interaction. From a variety of methods, the ALE formu-
lation has been implemented to address this requirement.

Prismatic mesh module with h-adaptation This module contains a fast prisma-
tic mesh module with advanced adaptation schemes, including hanging nodes. It
handles many meshes at the same time for coupled problems.

Hybrid tetrahedral/prismatic mesh module with h-adaptation This memo-
ry-efficient prismatic, tetrahedral, and hybrid hierarchical mesh module is imple-
mented with advanced adaptation schemes, including hanging nodes, anisotropic
adaptation, and many others. It handles many meshes at the same time for co-
upled problems.

Tetrahedral mesh module with re-meshing and mesh improvement This
mesh module contains implementation of advanced mesh generation algorithms,
including generating thin prism layers for detailed fluid boundary layers. It is
capable of mesh improvement, mesh r-adaptation, mesh regeneration, mesh
tracking, and mesh movement during computations. It also handles many meshes
at the same time for coupled problems.

Standard linear approximation module with hanging nodes This module
implements standard linear approximation with constraint nodes. It also sup-
ports mesh adaptation, and can handle many scalar and vector fields at the same
time.

Discontinuous Galerkin approximation module This module uses Discontinu-
ous Galerkin approximation (currently it is used for linear convection-diffusion
problems). It supports mesh adaptation and also handles many scalar and vector
fields.

Generic parallel mesh overlay module This generic module is compatible with
all mesh modules implementing interface routines. It supports any sequential
mesh module. This module allows sequential meshes to be effectively used in the
distributed memory environment (e.g. grids).

Generic parallel approximation overlay module This generic module is com-
patible will all approximation modules implementing interface routines. It also
supports any sequential approximation module and allows it to be effectively
utilized in distributed memory environments.

Modular FEM framework “ModFEM” for generic scientific parallel simulations 521



MPI-based parallel communication library This module supplies parallel over-
lays with communication infrastructure. For effective internal communication, it
uses the MPI standard.

Krylow space block iterative solver module This module includes implementa-
tion of Krylow space iterative methods with several preconditioners implemented.

PARDISO solver interface module This module interfaces with the PARDISO
direct solver.

Regardless of the available modules listed, the framework successfully cooperates
with external software. As a result, coupled simulations with solid state materials
have been carried out [13].

5. Examples and results

5.1. Examples

The framework has been tested for a variety of example problems. Since the subject
of the current paper is not to describe particular problem, mesh, or approximation
modules and their characteristics, we do not focus on the obtained results. Rather, we
show results as proof of concept for the idea of creating applications from separately
developed modules.

5.1.1. Incopressible fluid flow

Using the ModFEM framework, the application for solving incompressible fluid flow
was generated. As the main problem module, the Navier-Stokes equations module was
used. Two versions of the application were automatically generated by CMake: first,
using the Intel Compiler in the Linux environment; and second, using the Microsoft
Visual Studio Compiler in the Windows environment. Both were successfully built
with support for the same input and output files. The modules used for the first one
were as follows:

• Incompressible fluid-flow module
• Standard linear approximation module with hanging nodes
• Prismatic mesh module with h-adaptation
• PARDISO solver interface module
The second application used:

• Incompressible fluid-flow module
• Standard linear approximation module with hanging nodes
• Hybrid tetrahedral/prismatic mesh module with h-adaptation
• Krylow space block iterative solver module
Figures 2, 3 and 4 show the application of the two codes for solving classic

benchmark problems of incompressible fluid flow. The next two Figures, 5 and 6,
show results obtained by the code for the simulation of blood flow in artificial heart
chambers within the Polish Artificial Heart project.

522 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka



Figure 2. Lid Driven Cavity.

Figure 3. Backward Facing Step.

5.1.2. Incompressible fluid flow with heat transfer

As a “proof of concept” of super-modules using the ModFEM framework, the appli-
cation for solving incompressible fluid flow with heat transfer was generated. As the
problem modules, the Navier-Stokes equations module and the Heat transfer module
were used in combination. CMake generated Makefiles for the Intel Compiler in the
Linux environment. The selected modules were:

• Fluid-flow with heat transfer super-module.
• Heat transfer module.
• Incompressible fluid-flow module.
• Standard linear approximation module with hanging nodes.
• Hybrid tetrahedral/prismatic mesh module with h-adaptation.
• PARDISO solver interface module.

Modular FEM framework “ModFEM” for generic scientific parallel simulations 523



Figure 4. Von Karman vertex.

Figure 5. Artificial heart chamber blood flow.

Figure 7 shows the results obtained by the application of the code for simple heat-
induced flow in a cube. A more-complex example is shown in Fig. 8, where a welding
pool created during the welding process is simulated by the code.

6. Conclusion and further work

ModFEM framework is created by scientists for scientists. It offers a ready-to-use set
of FEM modules with a robust tool chain to create your own FEM software. Support
for both small workstations and large distributed-memory environments, like grids, is
provided. ModFEM offers a promising and desirable opportunity to reuse and improve

524 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka



Figure 6. Rotation of heart valve during blood flow.

Figure 7. Bottom heating.

existing scientific applications. It strongly supports focusing on an area of interest,
avoiding development of the whole FEM code.

Modular FEM framework “ModFEM” for generic scientific parallel simulations 525



Figure 8. Plasma welding pool.

Still, we are working on improving parallel environment execution, extending the
set of problem modules, and adding new approximation modules. Modules currently
under development are:

• Fluid-structure interaction with heat transfer module [15].
• Elasto-plasticity module.
• Elasto-plasticity with heat transfer module.
• OpenCL shared memory approximation overlay module.
• Discontinuous Petrov-Galerkin approximation module.
• Multi-grid solver module.

The authors believe that the practical application of the idea of code modularity
is quite beneficial for the scientific process, without exception of the field of FEM
modelling, especially including supporting changing technologies for new parallel and
hybrid architectures.

Acknowledgements

This research has been partially supported by the European Regional Development

Fund program no. POIG.02.03.00-00-096/10 as part of the PL-Grid PLUS project

and Polish National Science Centre under grant DEC-2011/01/B/ST6/00674.

526 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka



References

[1] Dedner A., Klöfkorn M. N. M. O.: A general object oriented framework for discre-
tizing nonlinear evolution equations. Proc. of The 1st Kazakh-German Advanced
Research Workshop on Computational Science and High Performance Compu-

ting, 2005.
[2] Anders Logg, Kent-Andre Mardal G. W.: Automated solution of differential
equations by the finite element method. Lecture Notes in Computational Science
and Engineering vol. 84, 2012.

[3] LaSalle D., Karypis G.: Multi-Threaded Graph Partitioning. 27th IEEE Inter-
national Parallel & Distributed Processing Symposium, 2013.

[4] Shephard M. S., Seol S.: Flexible Distributed Mesh Data Structure for Paral-
lel Adaptive Analysis. Advanced Computational Infrastructures for Parallel and
Distributed Adaptive Applications, chapter 19, Wiley 2009.

[5] Oliker L., Biswas R., Gabow H.N.: Parallel tetrahedral mesh adaptation with
dynamic load balancing Parallel Computing, 26: 1583–1608, 1999

[6] Banaś K.: A model for parallel adaptive finite element software. Domain De-
composition Methods in Science and Engineering, Vol. 40 of Lecture Notes in
Computational Science and Engineering, pp. 159–166, 2004.

[7] Banaś K.: A modular design for parallel adaptive finite element computational
kernels. Computational Science – ICCS 2004, 4th International Conference, Kra-
kow, Poland, June 2004, Proc., Part II, vol. 3037 of Lecture Notes in Computer
Science, pp. 155–162, 2004.

[8] Banaś K.: Parallelization of large scale adaptive finite element computations.
Parallel Processing and Applied Mathematics, Proc. of Vth International Confe-
rence, PPAM 2003, Czestochowa, Poland, vol. 3019, pp. 431–438, 2004.

[9] Bangerth W., Hartmann R., Kanschat G.: deal.II – A general purpose object-
-oriented finite element library. ACM Trans. Math. Softw., 33(4): 24/1–24/27,
2007.

[10] Jaein Jeong T. G., Wu X.: An interactive parallel multigrid fem simulator.Medical
Simulation, Vol. 3078 of Lecture Notes in Computational Science, pp. 124–133,
2004.

[11] Banaś K., et al.: Towards using adaptive hybrid meshes in FEM simulations of
flow in artificial heart chambers. Procedia Computer Science; ISSN 1877-0509.
vol. 1, pp. 2037–2045, 2011.

[12] Banaś K., Michalik K.: Design and development of an adaptive mesh manipula-
tion module for detailed FEM simulation of flows. Procedia Computer Science;
ISSN 1877-0509. vol. 1, pp. 2037–2045, 2010.

[13] Kopernik A.M.: Two-scale finite element model of multilayer blood chamber of
polvad-ext. Archives of Civil and Mechanical Engineering / Polish Academy of
Sciences. Wrocław Branch, Wrocław University of Technology; ISSN 1644-9665,
pp. 178–185, 2010.

Modular FEM framework “ModFEM” for generic scientific parallel simulations 527



[14] Patzák B., Rypl D.: Object-oriented, parallel finite element framework with dy-
namic load balancing. Advances in Engineering Software vol. 47, pp. 35–50, 2012.

[15] Cybułka P., et al.: Simulation of droplet motion in welding arcs as a case study
of remeshing. Computer Methods in Materials Science : quarterly / Akademia
Górniczo-Hutnicza ; ISSN 1641-8581, page 381–386, 2011.

[16] Resch M.M.: Sustained Simulation Performance 2012. Proc. of the joint Work-
shop on High Performance Computing on Vector Systems, Stuttgart (HLRS),
and Workshop on Sustained Simulation Performance, Tohoku University. Sprin-
ger Berlin Heidelberg, 2012.

[17] Selim G., Akl M. N.: Parallel Computing. The Future of Parallel Computation.
Springer London, 2009.

Affiliations

Kazimierz Michalik

ACC Cyfronet AGH, ul. Nawojki 11, 30-950 Kraków 61, P.O.Box 386, kamich@agh.edu.pl

Krzysztof Banaś

AGH University of Science and Technology, Krakow, kbanas@pk.edu.pl

Przemysław Płaszewski

AGH University of Science and Technology, Krakow, pplaszew@agh.edu.pl

Paweł Cybułka

AGH University of Science and Technology, Krakow, cybulka@agh.edu.pl

Received: 11.11.2012

Revised: 19.12.2012

Accepted: 26.04.2013

528 Kazimierz Michalik, Krzysztof Banaś, Przemysław Płaszewski, Paweł Cybułka


