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Abstract A metaheuristic proposed by us recently, Ant Colony Optimization (ACO) hy-

bridized with socio-cognitive inspirations, turned out to generate interesting

results when compared to classic ACO. Even though it does not always find

better solutions to the considered problems, it usually finds sub-optimal soluti-

ons. Moreover, instead of a trial-and-error approach to configure the parame-

ters of the ant species in the population, the actual structure of the population

emerges from a predefined species-to-species ant migration strategies in our

approach. Experimental results of our approach are compared to classic ACO

and selected socio-cognitive versions of this algorithm.
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1. Introduction

We recently proposed a socio-cognitive computing paradigm [5] that incorporates some

socio-psychological mechanisms – in particular, mechanisms of taking the perspective

of and inspiration from another agent – into classic ACO systems. We have conducted

a number of experiments with the application of this socio-cognitive ACO approach

for solving the TSP (Traveling Salesman Problem) and adapting PSO (Particle Swarm

Optimization) algorithms in a similar way (thus, creating socio-cognitive PSO). PSO

was applied to the problem of global optimization in the continuous domain [1].

During our earlier experiments, we used an ad-hoc approach in setting the para-

meters of socio-cognitive populations: either by looking for an optimal configuration

manually (e.g., checking the performances of different compositions by trial and error)

or by basing it on the data from the human population [4]. One of the best configurations

found was a population of socio-cognitive ants that contain mostly so-called egocentric

ants but omit the totally random-working ants. This might have been a good choice, but

in order to verify this or search for other good configurations of our metaheuristic, we

had to either do some data-farming experiments (using the Scalarm data-farming sys-

tem1, for example) or employing some kind of meta-algorithm (in order to evolve these

parameters). There is also a third possibility: allowing the system to find these parame-

ters by means of emergence. This is the approach tried in this paper: to seek an optimal

composition of the population for a given problem instead of following a trial-and-error

approach.

Emergent behavior is defined in [16] as a phenomenon occurring suddenly in a com-

plex system consisting of a sum of simpler entities. The behavior of the whole system can

be more-sophisticated that the behavior of the particular entities. Another definition

can be found in [19], where the emergent behavior is described as a phenomenon that

cannot be explained in a simple way based on an observation of the system as a sum

of its simpler entities. One should also refer to a classic cellular automata system here,

such as Conway’s Game of Life, where the emergent behavior of the system can also be

clearly observed by complex structures emerging from very simple rules [12].

Following these guidelines, we have proposed several strategies for the automatic

adaptation of the population of the socio-cognitive entities (ants) to evolve towards an

optimal composition of the computing population. We describe these strategies and

the outcomes of the evaluation experiments here, which achieve a similar efficiency as

those obtained in our previous research using an exhaustive search for the best confi-

guration of the whole system. In the approach presented here, the optimal population

composition arises emergently, so the search is not as tedious as in the earlier approach.

Thus, the main contribution of this paper does not consist of exceeding the up-to-date

attainments in the search for the optimal parameters of a socio-cognitive system but

rather proposing ways to do this more easily and quickly. It must be noted that, similar

to other metaheuristics, socio-cognitive ACO is configured by a number of different

1www.scalarm.com

www.scalarm.com
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parameters, and our approach relieves the user from the necessity of tuning them by

trial and error.

After this introduction, we give a brief ACO background, then summarize the

most-important information about the socio-cognitive ACO. Next, the emergent mi-

gration strategies are defined, and the evaluation results are presented. The conclu-

sions are presented in the final section.

2. From classic to socio-cognitive ACO

The Ant System, introduced in 1991 by Marco Dorigo to solve graph problems, is

a progenitor of all ant colony optimization (ACO) techniques [8]. The classic ACO

algorithm is an iterative process during which a certain number of agents (ants) create

a solution step-by-step [9, 10]. The main goal of the ants is to traverse a graph and

find the path with the lowest cost (usually the shortest distance, but it can also be

the lowest fuel consumption, and so on). The socio-cognitive ACO proposed by us

follows the results shown in [20] and the inspirations presented by Nowé et al. [18]

as well as Chira et al. [6]. We have introduced a different ant species and vary their

sensitivity to the pheromones of other ant species.

2.1. Socio-cognitive inspirations

Our socio-cognitive approach is rooted in cognitive psychology, where the character

traits of egocentrism (taking one’s own perspective) and altercentrism (taking another

person’s perspective into consideration) have long been recognized as playing a key

role in interpersonal relationships (see, for instance, [11, 17]). Moreover, brain-imaging

studies have shown that altercentricity and the strategy of perspective-taking develop in

parallel with brain maturation and psychosocial development during adolescence [3, 7].

Perhaps mirroring this psychological development, artificial intelligence researchers

have started to incorporate altercentricity into robots and autonomous systems in

recent years [15]. We also continue with the utilization of the notions of egocentrism

and altercentrism, adapting them appropriately for use in our computing system.

It has been shown that the less a person focuses on his/her own perspective, the

more that person will be motivated to engage in perspective-taking [2]. Experimental

research has suggested that these two dimensions (conflict handling and perspective

priority) might be independent; also, factors such as guilt or shame affect each of

these dimensions individually [4]. This two-dimensional approach to perspective-

taking inspired us to follow the definitions of four types of individuals:

• Egocentric individuals, focusing on their own perspectives and becoming creative

thanks to finding their own new solutions to given tasks. These individuals do

not pay attention to others and do not get inspired by the actions of others (or

these inspirations do not become a main factor of their work).

• Altercentric individuals, focusing on the perspective of others and, thus, following

the masses. Such individuals become less creative, but they can still end up

supporting good solutions by simply following others.
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• Good-at-conflict-handling individuals, getting inspired in a complex way by the

actions of other individuals, considering different perspectives, and choosing

the one considered as the best for them.

• Bad-at-conflict-handling individuals, acting purely randomly, sometimes follo-

wing one perspective, sometimes another without any inner logic.

Such assumptions along with the findings of Samson and Bukowski presented in [4]

lead us to propose the following types of populations with arbitrarily chosen parame-

ters, reflecting the real-world human populations driven by such feelings as guilt and

anger:

• Control Sample (baseline proportions of different types of perspective takers

found in a typical human population), where good conflict handlers form a ma-

jor proportion with a roughly similar proportion of the three other types of

perspective takers. It is to note that this is also the sample with the highest

proportion of egocentric individuals.

• Increased Good Conflict Handling Sample (proportions based on a population

of humans that has been induced to feel anger), where the proportion of good

conflict handlers is further increased as compared to the control sample while

reducing the fraction of the altercentric and egocentric individuals.

• Increased Altercentricity Sample (proportions based on a population of humans

that has been induced to feel guilt), where the proportion of good conflict hand-

lers and egocentric individuals is significantly decreased and is compensated by

a higher proportion of altercentric individuals and, to a lesser extent, a higher

proportion of bad conflict handlers.

The outcomes of our research presented in previous papers [5, 20] are based on

the above-mentioned ideas.

3. Socio-cognitive ACO

In this section, an outline of the socio-cognitive ACO is presented (for details, please

refer to [5], for example). In the classical ACO algorithm, the individuals (ants) are

deployed in a graph in which each edge is associated with a distance. Each ant gets

a randomly chosen starting graph node and searches for a cycle by moving between

the nodes (always choosing the next one, never returning to a previous node). While

choosing which node to visit next, the ant has to evaluate the attractiveness factor

for all possible edges that can be followed from the present node. The attractiveness

is proportional to the amount of pheromone placed on the edge and inversely propor-

tional to the distance that the ant must travel. After visiting all of the nodes exactly

once, the ant finishes its trip and returns the found cycle as a proposed solution and

then retreats, depositing a certain amount of pheromone on the path of its current

cycle. The pheromone is not only deposited, but it also slowly evaporates from the

edges in order to avoid getting caught in a local extremum of the goal function.
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In the proposed socio-cognitive ACO, the idea of having many pheromones

instead of only one is implemented by introducing different “species” of ants and

enabling their interactions (similar to the approach taken in [18]). The interaction

is considered a partial inspiration (similar to perspective-taking in the real world)

realized by a particular ant reacting to the decisions taken by ants belonging to ot-

her species. This is made possible by having ants of different species leave different

“smells” (see Fig. 1).
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Figure 1. Multi-pheromone ACO setting: different species of ants leave different pheromones;

however, the ants may make decisions based not only on the pheromone of its species but

also by combining information about the other ones. In this case, the red ant decides to take

the path based on pheromones from the red and green species.

Different ants follow different rules (i.e., they consider different properties of the

path) of computing the attractiveness factor. They utilize the smells of pheromones

left by other species in a predefined way.

Different ant species leave pheromones that ‘smell’ different, and ants may react

to different combinations of these pheromones. Of course, more species and more

pheromones may be introduced into the system if necessary. Based on this frame-

work, details of the actions undertaken by various ant species are described below.

It is to note that the chosen species (namely, Egocentric, Altercentric, Good-, and

Bad-at-conflict handling) were chosen based on the real-world features of the human

population (based on the suggestions of one of the co-authors).

• Egocentric ants (EC). These ants are supposed to be creative in trying to find

a new solution. They care less about other ants and different pheromone trails.

Instead, they focus mostly on the distance of traveling the path as a way to

determine their subsequent directions.

• Altercentric ants (AC). These ants follow the majority of the others, focusing

on pheromones without caring about the distance.
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• Good-at-conflict-handling ants (GC). These ants observe the others, caring

about all existing pheromones, applying different weights to different levels of

pheromones.

• Bad-at-conflict-handling ants (BC). These ants behave randomly, irrespective of

pheromone or distance.

4. Emergence in socio-cognitive ACO

Following the definition of emergence [16] as a phenomenon occurring suddenly in

a complex system consisting of a sum of simpler entities and being inspired by the

behavior observed in cellular automata, for example (as in Conway’s Game of Life,

for one) and at the same time perceiving the whole computing system proposed here

as a simulation of “living beings,” we try to leverage the emergence phenomenon in

order to properly configure the computing system without the need for doing data-

farming-related experiments, checking thousands of different configurations of the

system parameters. Even if we found an optimal one, it would not be equally best

for all of the considered problems (cf. no free lunch theorem [22]). Thus, we try to

define the simple actions of individuals that affect the structure of the population,

eventually hoping for stabilization and the attainment of good quality in the produced

solution.

To sum up, the emergence in multi-species socio-cognitive ACO is based on the

dynamic exchange of the types of individuals when a certain condition is true (e.g., re-

garding the best solution observed in both species). Because the population consists

of several species, all of the emergence strategies are based on the concept of the

migration of the ant between them, changing its species.

It is worth noting that, in [14], a very sound mathematical notation for social

positions in agent-based systems is introduced that is based on assigning number-

based positions to the agents and introducing a certain order into the agent sets.

A similar notation could be used in the presented paper; however, it would only

be useful in the case of stepwise migration – the other approaches presented do not

assume any order introduced by the positions of agents (there are no “better” or

“worse” agents).

Migration between the species is realized when a certain condition (usually related

to quality) is true; the ants are then chosen and moved to other species. Below,

a summary of all proposed emergent migration settings is given.

Migration from worst to best species

In this strategy, one ant belonging to the current worst species (including the ant

with the worst solution during one iteration) changes its species to the one where the

current best ant belongs. The condition for starting this strategy is decreasing the

global result (the best solution of the ants belonging to all species) down by a certain

percentage.
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Stepwise migration of one ant

In this strategy, the migration is carried out in a more-fluent way; because of this,

the ants are “promoted” gradually. The species are sorted according to the best

solutions belonging to them, and a certain ant is migrated from its current species to

the species located one step above in the mentioned order. The condition for starting

this migration is the same as in the case of the first migration strategy: the worsening

of the best solution in the whole population by a certain percentage.

Stepwise migration of many ants

In this strategy, many ants are migrated in a “stepwise” manner in a similar way

as described in the case of one ant. The number of migrated ants depends on the

percentage of the worsening of the global result as compared to the previous iteration

(e.g., for a 3% worsening, 3 ants will be migrated, while for 0.5%, only one will move).

The condition for starting the migration is similar to the previous case.

Competition-based migration

In this strategy, instead of considering the global result (and following its dynamical

changes, either decreasing or increasing), the ants are migrated based on a predefined

“competition” among them:

1. In the iteration when the migration should arise, two species are randomly chosen

from all available ones.

2. From these species, the better one (having the best current result) is selected.

3. Now, one ant from the worse species is migrated to the better one.

Migration in this method is run periodically; the length of the period is one of its

crucial parameters.

Stochastic migration

In this method, certain probabilities are computed in each iteration:

• probability of leaving one species by an ant,

• probability of joining a new species by an ant.

It is to note that the probability of leaving the best species (and joining the worst) is

equal to zero.

The probabilities of leaving a certain species by an ant may be computed based

on the quality observed in the species (i.e., the quality of the best ants) as follows:

1. For each i-th species (excluding the best one in the current iteration), a difference

between the quality of its best individual diffi according to the following equation:

diffi = fitnessi − fitnessbest (1)

where fitnessbest is the quality of the solution for the best of the species, while

fitnessi describes the quality of the solution in the current iteration for the

species for which the difference is computed.
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2. Next, for each i-th species (besides the best in the current iteration), a probability

is computed for an ant leaving this species:

pi =
diffi∑

j 6=best

diffj
(2)

being the fraction of the difference computed by equation 1 and the sum of

differences for each of the j-th species (besides the best one).

The probabilities of an ant joining certain species i (besides the worst one) are

computed in an analogous way, while the equation for the difference of the quality is

as follows:

diffi = fitnessworst − fitnessi (3)

where fitnessworst is the quality of the solution in the current iteration for the worst

of the species.

Having the probabilities computed, two species are chosen: one that is about to

be left by an ant, and the other that the ant will join.

5. Experimental results

The experiments involved 100 iterations, the total number of the ants in the popula-

tion was 100 for all of the experiments conducted (of course, the population consisted

of dynamically-changing species), and the problem tackled was the Traveling Sales-

man Problem [13], using the selected classic TSPLIB2 benchmarks.

In the beginning, let us observe the actual efficiency of the proposed emergent

migration strategies tackling three problems of varying difficulty: eil51, berlin52,

and kroB200. In this section, the emergent behavior of the ants is evaluated, and the

efficacy of such a dynamically adapting metaheuristic is compared to the classic ACO

and one of its best socio-cognitive versions (egoWithoutBad from [5] containing

60% EC, 20% AC, 20% GC, and 0% BC ants).

Migration from worst to best species

In this case, the migration arises only when the global results are worsening (while

each iteration is observed) by a certain percentage. In Figure 2, the fitness and

number of particular ants in the species are presented, assuming a 2% worsening of

the best quality between the subsequent iterations.

In the case of tackling small problem (eil51), this emergence method made the

system achieve slightly better results than the competitors and retained until the end,

increasing slowly starting from the 40th iteration. In the case of medium problem

(berlin52), the slight domination over the classic and socio-cognitive ants is lost in the

final iterations of the experiment. However, this domination is present significantly

2http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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longer than in the case of the small problem (the classic ants begin to dominate around

the 70th iteration). In the case of big problem (kroB200), the results of the emergent

population are comparable to the egoWithoutBad; however, they are significantly

better than the classic ACO.
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Figure 2. Instances eil51, berlin52, and kroB200, migration from worst to best species

with 2% decrease in quality: a) best quality for eil51; b) population structure for eil51;

c) best quality for berlin52; d) population structure for berlin52; e) best quality for

kroB200; f) population structure for kroB200

Observations of the percentage of particular species in this experiment reveals

that the AC ants gradually dominated the other species for the small problem at

around the 70th iteration; however, in the case of bigger problems, the GC ants
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dominated the other species. In all of the experiments, the BC and EC ants are

removed from the system by the 50th iteration. It seems that, in the case of the small

problem, there is no need to employ complex techniques for perspective-taking and

inspiration on the other’s solutions; simply following the others is good enough. It is

quite self-explanatory: one does not need sophisticated methods to solve simpler

problems. At the same time, the more-sophisticated methods prevailed in the bigger

problems, especially in the case of the biggest problem tackled.

Stepwise migration of one ant

The emergent behavior in the stepwise migration starts when the global quality drops

between the iterations by a predefined percentage. In the tested instances, a 2%

worsening was assumed.

In Figure 3, the results showing the quality and percentage structure of the popu-

lation are presented for the small problem. For this instance (similar to the previous

experiment), the stepwise migration is a little better than the competitive algorithms.

In the medium problem, the results are again similar to the previous setting, as

the advantage is lost near the end of the computation (around the 70th iteration).

For the biggest instance tested, again the results of the emergent and socio-

cognitive populations are very similar, and they are both much better than the

classic ACO.

The percentage of a particular species is again quite similar to that of the previous

setting. Moreover, just like in the previous experiment, the AC ants prevail for the

smallest problem, while the more-sophisticated GC ants dominate the population for

the bigger problem. Therefore, the conclusions resulting from the previous experiment

may be repeated here: complex problems need more-sophisticated solutions.

Stepwise migration of many ants

Similar to the concept of the stepwise migration of one ant, emergent migration is

possible in this case when the best quality decreases by a certain percentage value

(see Fig. 4). However, the number of migrating ants currently depend on the extent

of the quality decrease. In the tested cases, the decrease value was 2%.

In this case (contrary to the migration of one ant), the optimization of the smal-

lest problem resulted in achieving a slightly better result than in the competitive

algorithms; however, these results become visible starting at the 40th iteration. In

the case of the medium and big problems, the emergence yields practically the same

result as egoWithoutBad; however, it fares much better than the classic ACO.

It is to note that, in the case of the small and medium problems, the configuration

of the population becomes more or less stable (about 50% of the GC and AC ants)

starting at the 30th iteration.

At the same time, it seems that the GC ants prevail very quickly and dominate

the other species for the big problem. In the first two experiments, the stability of the
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population structure is probably an effect of exchanging more ants (besides only one

ant in the previous experiments). Moreover, the number of exchanged ants depend

on the decrease in the quality. Therefore, it seems that achieving certain stability

here is easier.

This observation is, however, false for the biggest problem – here, the GC ants

prevail very quickly and yield much-better results than in the case of the classic ants;

however, they are the same as egoWithoutBad.
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Figure 3. Instances eil51, berlin52, and kroB200, stepwise migration of one ant assuming

quality decrease of 2%: : a) best quality for eil51; b) population structure for eil51; c) best

quality for berlin52; d) population structure for berlin52; e) best quality for kroB200;

f) population structure for kroB200
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Figure 4. Instances eil51, berlin52, and kroB200, stepwise migration of many ants assu-

ming quality decrease of 2%: a) best quality for eil51; b) population structure for eil51;

c) best quality for berlin52; d) population structure for berlin52; e) best quality for

kroB200; f) population structure for kroB200

Competition-based migration

In this case, the emergence consists of running a tournament between the ants that

are about to change species periodically. The frequency tackled in this experiment is

two steps.

In the current case (see Fig. 5), the outcome is generally the same as in the

previous cases; however, the situation in the population structure is quite different.

It seems that almost all species are present to the final iteration; only the random

ants (BC) become extinct. This apparent diversity is caused by the type of emergence
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used, and the diversity of the population should assure the diversity of the search;

therefore, this emergence method should be one of the most-preferred when tackling

difficult problems.
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Figure 5. Instances eil51, berlin52, and kroB200, competition-based migration with

period of 2: a) best quality for eil51; b) population structure for eil51; c) best quality for

berlin52; d) population structure for berlin52; e) best quality for kroB200; f) population

structure for kroB200

In the current case (see Fig. 5), the outcome is generally the same as in the

previous cases; however, the situation in the population structure is quite different.

It seems that almost all species are present to the final iteration; only the random

ants (BC) become extinct. This apparent diversity is caused by the type of emergence

used, and the diversity of the population should assure the diversity of the search;

therefore, this emergence method should be one of the most-preferred when tackling

difficult problems.
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Stochastic migration

According to the idea of stochastic migration, one of the ants leaves a randomly

selected species and moves to another in each iteration (also randomly chosen).
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Figure 6. Instances eil51, berlin52, and kroB200, stochastic migration: a) best quality

for eil51; b) population structure for eil51; c) best quality for berlin52; d) population

structure for berlin52; e) best quality for kroB200; f) population structure for kroB200

In Figure 6, one can see the results of emergence with stochastic migration. It is

clear that, in the case of the first problem tackled, the emergent population prevailed

in the end. For the next two problems, the results of the emergent population are the

same as in the case of egoWithoutBad.
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The population structure again shows that, in the simplest case, the AC ants are

the most-important species, while for the more-complex problems, the GC ants

prevail.

Summary

For simpler problems, the results from all of the emergence strategies used were com-

parable with classic ants and egoWithoutBad; in several cases, the emergent popu-

lation yielded better performances.

Observing the emergence strategies and composition of the population in the

case of the three problems tackled, it turns out that AC ants following simple search

algorithms perform better for the simple problems; however, for harder problems,

more-sophisticated GC ants are required. One should compare this observation with

the composition of the population for egoWithoutBad, where the most-numerous

species was EC, with AC and GC accounting for 20% each.

To sum up, there are many near-equal optimal results of the search for the best

composition of the population. However, it is not necessary to do such a search

manually using a trial-and-error approach; instead, it is enough to define emergence

strategies and wait for a feasible configuration to stabilize.

6. Conclusion

Metaheuristics can be complex, requiring a large number of parameters in the software

application to be adjusted before it can efficiently solve a certain problem. Seeking

optimal (or rather quasi-optimal) values of these parameters is usually realized by

a trial-and-error approach, which can be tedious.

In this paper, we have presented an enhancement of the earlier proposed meta-

heuristics (namely, socio-cognitive ACO) by introducing emergence mechanisms for

automatically configuring the composition of the population (in terms of ant species)

to optimize performance. The emergence mechanisms are based on observing the qua-

lity value in the population and taking other actions that exchange ants among the

species. The efficacy of these proposed mechanisms was tested with several selected

benchmark functions from the well-known TSPLIB library.

The results show that the emergence mechanisms yield an outcome very similar

to that obtained from manual tuning. In particular, population egoWithoutBad,

which was found to be the best composition in our previous research, was easily

reached by the emergent migration mechanism proposed here, thereby relieving the

user from a tedious trial-and-error approach.

We plan to further examine the parametrization of the proposed metaheuris-

tic, employing other means such as the diversity measures introduced in our earlier

research ([21]) for assessing the quality of particular configurations.
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