
Computer Science • 19(1) 2018 https://doi.org/10.7494/csci.2018.19.1.2505

Mateusz Piech
Robert Marcjan

A NEW APPROACH
TO STORING DYNAMIC DATA
IN RELATIONAL DATABASES USING JSON

Abstract JavaScript Object Notation was originally designed to transfer data; however,
it soon found another use as a way of persisting data in NoSQL databases.
Recently, the most-popular relational databases have introduced JSON as
a native column type, which makes it easier to store and query dynamic da-
tabase schema. In this paper, we review the currently popular techniques of
storing data with a dynamic model with a large number of relationships between
entities in relational databases. We focus on creating a simple dynamic schema
with JSON in the most-popular relational databases, and we compare it with
the well-known EAV data model and the document database. The results of pre-
cisely selected tests in the field of criminal data suggest that the use of JSON in
dynamic database schema greatly simplifies queries and reduces their execution
time compared to the widely used approaches.

Keywords JSON, relation databases, EAV, criminal data, PostgreSQL

Citation Computer Science 19(1) 2018: 3–20

3

https://doi.org/10.7494/csci.2018.19.1.2505

4 Mateusz Piech, Robert Marcjan

1. Introduction

Storing data with a dynamic structure in relational databases is not a trivial pro-
blem – these databases are well-suited for structured data with lots of relationships.
While the most-popular way of persisting data with open schema is using a docu-
ment database, sometimes it is not possible due to the need for ACID transactions
or highly relational types of queries. There are also data models that allow for sto-
ring this kind of data in relational databases, such as Entity-Attribute-Value [21] or
Inverted Index [27]; however, their main weaknesses is their complexity in preparing
queries, execution time, and model readability. Our goal was to develop a new data
model to store data with a dynamic structure in the relational database with query
performance comparable to that of document databases and a structure simpler and
more readable than in Entity-Attribute-Value.

Improving the open schema data model has an impact on several fields of science,
such as medicine (clinical databases) or forensic science (criminal data), where the
numbers of the types and attributes of objects are enormous and feature a lot of
relationships between them. Inspiration for our research was closing the gap between
relational databases and NoSQL databases through introducing JSON as a native
type [16]. This facilitated a new approach to storing data with a dynamic schema.

The built-in support for the JSON type depends on the database engine. The first
relational database management system that introduced native support for JSON was
PostgreSQL [24], followed by MySQL [20] and Oracle Database [11]. Other databases
like Microsoft SQL Server [23] provide only a library to handle JSON stored in the
text column.

The inspiration for our work was from two issues. The first was the problem of
optimal data storage and analysis of dynamic multi-domain criminal data [5]. Storing
and processing dynamic data is prevalent in many other domains as well, such as
clinical databases [3] or biomedical databases [21]. These databases have been using
well-known and mature Entity-Attribute-Value representation to organize data. Our
second inspiration was finding and testing a better data model. We decided to use a
JSON document to store open schema data, inspired by the Sinew system.

This paper presents our open schema data model in a relational database. The
model was tested by using carefully selected use cases in the field of criminal data.
It was also compared with the Entity-Attribute-Value data model and MongoDB as
the most-popular representative of document database engines. The results of our
research show that using JSON to create a new dynamic data model simplifies and
improves the current well-known data models, and it can replace current solutions.

2. Related work

Before databases adopted JSON, systems with an open schema in relational databa-
ses usually used the Entity-Attribute-Value or Inverted Index approaches. However,
these techniques reduce the readability of entities and require a lot of work to process

A new approach to storing dynamic data in relational databases using JSON 5

complex queries, which results in longer execution times as compared to JSON. Most
relational databases provide the ability to store XML as a native type, but this
approach requires storing schema as well, resulting in its perception as a heavyweight
format. The lack of satisfactory techniques for storing open schema initiated the
attempts to create a proper solution using JSON.

One of the first interesting ideas was Argo [1] – an automated mapping layer for
storing and querying JSON data in a relational system. One of its advantages was
the ability to represent nested objects in a schema. The main concept was to store
data in one big table with object id, keys, and three columns for string, number, or
boolean, or in three tables with separate types (two variants of the approach). It was
implemented in two relational databases (PostgreSQL, MySQL) and compared with
MongoDB using the NoBench benchmark suite specifically designed for this purpose.
Results show that Argo is faster than MongoDB for small data (1 million objects) but
slower for bigger data (more than 16 million objects). While the concept was smart,
it was only a slight improvement on the EAV data model, so the performance was
not significantly improved.

Sinew is a system for storing documents of key-value pairs in relational data-
base [26]. It was also tested on NoBench and compared with MongoDB, EAV, and
Postgres with JSON. It is worth noting that, in these tests, Postgres with JSON
outperforms EAV.

In the paper describing support for JSON as a native type in the Oracle Data-
base [15], the Oracle Corporation presented results suggesting that indexed JSON is
faster than competing solutions. Their next article concerned closing the functional
and performance gap between SQL and NoSQL [16] and introduced OSON – a new
query-friendly JSON format, which will be released in Oracle Database 12c Release 2.

3. Background

3.1. JSON

JavaScript Object Notification (JSON) [2] is a common data-interchange format de-
signed primarily to serialize and transmit data over a network. It is used, for example,
in the exchange of data between a client and server, REST-based services, and storing
data in a NoSQL [9] database – MongoDB [4]. JSON has many advantages: it is rela-
tively lightweight (when compared to alternatives such as XML), easy for humans to
read and write as a text format, and has good support in many popular programming
languages.

A JSON object consists of key-value pairs, where the key is a string and the value
can be any JSON data type: string, number, another JSON object, or array – see
example in Figure 1.

One of the extensions of this format is JSONB introduced by PostgreSQL. It
allows for storing JSON as a binary object as opposed to a raw string. The purpose
of such an approach is to facilitate the use of indexes and handle objects without the

6 Mateusz Piech, Robert Marcjan

need for parsing strings. A summary of the advantages of introducing binary JSON
format in PostgreSQL (including a performance comparison) can be found in [14].

Figure 1. Graphical and textual representation of JSON object presenting person details

3.2. Criminal data

Crime analysis requires collecting data from the real world that contains many details
related to the case – the so-called criminal intelligence data [25]. The data consist
of two kinds of entities – objects (such as people, items or places, and relationships
between these objects) and events (personal relationships, transactions, and other
forms of association). Analysis of such data can often shed some light on the case.

An example of the graphic visualization of criminal data is presented in Figure 2,
where the objects are represented by figures and relationships by connections. It
depicts the heterogeneity of data – it is impossible to predict a priori the types of
objects and relationships in a particular case, as they depend on the information
collected during the investigation. For example, a person is involved in quite a few
different types of relationships, even in this small example graph. Similarly, the same
kind of relationship, like use, can denote an association between different kinds of
objects. All of that suggests that the traditional approach used in relational databases
(with a fixed schema designed upfront) is poorly suited for storing this kind of data.

The creation of schema for criminal data is a difficult problem due to the variety
and unpredictable growth of the number of objects and relationships. Let us assume
that an analyst examines bank statements to find money laundering. To store the
data, he needs three tables in a database: one for sources and destinations of the

A new approach to storing dynamic data in relational databases using JSON 7

money, one for bank accounts, and one for money transfers. But then, the analyst
gets another data set from an Internet service providing a virtual wallet. This forces
him to extend the model with another pair of tables. Next, he gets a list of postal
orders, which again must be included in the schema. The analyst can get more and
more various data, which makes it difficult to prepare a complete schema when there
is no specification of models and relationships for analysis.

Figure 2. Representation of Criminal Data with phone connection between people and
relationships between them

Even if the schema could be fully specified, the number of possible attributes for
objects and relationships is likely to be large, and the actual data is often sparse – for
each entry, only a small subset of all possible attributes is available. This necessitates
the use of techniques that can handle sparse data efficiently, like EAV, document
databases, or relational databases supporting JSON.

3.3. Relational database overview

We started the selection of relational databases suitable for our solution from doing
a survey of the most-popular databases according to DB-Engines Ranking [6]. We
chose four engines divided into two groups. The first group consists of open-source
relational databases PostgreSQL and MySQL, in which we implemented our solution.
The second consists of commercial engines Oracle Database and Microsoft SQL Server.
Due to licensing restrictions, we did not include these in our tests [17, 22].

3.3.1. PostgreSQL

PostgreSQL [18] added support for JSON in Version 9.2 in 2012. The ability to store
JSON as a native type resulted in recognizing PostgreSQL as Document Database [12].

8 Mateusz Piech, Robert Marcjan

In Version 9.6, there is a possibility to store JSON documents in JSONB format, which
improves performance of querying due to using indexes and a binary format.

The primary operator is ->, which retrieves JSON object by key. Nested objects
are retrieved using operator #> with path in curly brackets, like {address,home}.
Documents stored in JSONB format support additional operators: it is possible to
check for the presence of a key in an object, concatenate objects and delete fields.
A few functions to create and process JSON are provided as well.

3.3.2. MySql

MySQL [19] introduced support for native JSON in Version 5.7 [20]. MySQL sup-
ports handling JSON object with only one operator ->, which is a reference to the
extract value function. It allows for creating, editing, and processing JSON. Access
to the nested objects is possible by providing a path that begins with a dollar sign;
e.g., $.address.home.

The engine allows for creating indexes on JSON documents, but it requires the
creation of a generated column storing values extracted from JSON objects by a gi-
ven path. Unfortunately, this solution is not allowed in our implementation due to
restrictions on modifying the model.

3.3.3. Microsoft SQL Server

Microsoft SQL Server [7] (MS SQL) added support for built-in JSON in Version 13.00
(SQL Server 2016). This is not a native support, because JSON is represented as a
NVARCHAR type. MS SQL provides four operations on JSON objects: testing if a string
is valid JSON, extracting value from JSON, querying a JSON object, and modifying
it. It is possible to use indexes, but the solution is the same as for MySQL.

3.3.4. Oracle Database

Oracle Database [8] introduced support for native JSON in Version Oracle Database
12c Release 1. The function library to handle JSON is almost complete; the only mis-
sing feature is modifying a JSON document, which hinders the creation of a dynamic
model. It forces us to update an entire column instead of the document field. Just
like in PostgreSQL, it is possible to create indexes on a document.

4. Dynamic JSON model schema

Preparing a new open schema model requires an analysis of current models in order to
select their advantages and improve their imperfections. In our research, we examined
the Entity-Attribute-Value data model and technique of storing data in MongoDB.
We mainly focused on the way the relationships are stored in these solutions, because
it is the main issue in the dynamic model.

A new approach to storing dynamic data in relational databases using JSON 9

In the EAV model (Figure 3), it is hard to store dynamic objects with relations-
hips. The id and type of the object are stored in the entity table, and they are used
to find all related attributes and associated values from the table value. The relati-
onships are stored in a separate table entity_relation, which contains information
about the involved objects (left, right) and type of relationship (relation_type).
However, if we want to store the attributes of the relationship itself, we have to
represent relationships as entities and introduce another level of indirection by ha-
ving entity_relation store only the IDs of these entities. From this open schema,
we used dictionary definitions of the object and relationship types. Additionally, we
moved ID to a table with the JSON document. We decided that an associative table
with the relationships between entities used in EAV/CR almost fulfills its assumption,
so we adapted it to the JSON model, adding a structure to store dynamic attributes.

Figure 3. Schema of EAV model used in tests

MongoDB stores JSON documents in collections that are equivalent to a table
in a relational database. In the documents, there are two ways of storing related
objects. The first is creating embedded documents with an associated key. This is
not suitable for our model because it creates duplicate data, making it difficult to
provide transactions. The second is creating a reference to another document by
ID (similar to using foreign keys in a relational database). Analysis of MongoDB has
shown that storing dynamic objects in one table requires a way to distinguish between
different types of a model. Our solution also requires a technique to link models by
reference with the possibility of using foreign keys.

Our model is presented in Figure 4, and it consists of four tables. The first one is
Object_Name, which contains a dictionary of the names of the criminal data objects.
The second one – Object – is the main table, and it has columns that hold JSON
documents, object IDs, and references to the type. The documents do not contain
references to other documents like in MongoDB, because we have moved them to
a third table – Relations, which stores the relationships between the criminal data
objects. Apart from the two objects being related, each entry has an arbitrary list

10 Mateusz Piech, Robert Marcjan

of properties represented as a JSON document. The last table, Relation_Name, is
similar to the first one and contains a dictionary of the names of the relationships
present in the criminal data.

Figure 4. Schema of our new database model

4.1. Simple and readable model

One of our aims was to create a simpler and more-readable model than EAV. To test
the intended result, we have prepared a simple query based on Figure 1. We wanted
to find all persons filtered by three attributes. Its implementation is presented in
Table 1. Comparing the realizations in the JSON and MongoDB models shows that
both present a similar level of complexity. Additionally, the query in the JSON model
looks almost the same as an analogous query using a table with static columns – the
only differences is the extraction operator and the lack of type control.

The same query in the EAV model requires a full separate query for each part
of the filter condition, which causes a significant bloat in the query code. Further-
more, this code is nothing but straightforward; and unlike other models, its semantics
are buried beneath the implementation details – subqueries, joins, etc. It is worth
noting that the EAV query in Table 1 returns only a list of object ids, not a list of
objects themselves like in the other queries – this has been simplified for presentation
purposes.

The difference in readability is clearly visible even in such a simple query; this
will only be greater in more-complex cases. This is mainly due to the different ways of
accessing the attributes, since the relationships between the objects are represented
similarly in each approach. If there is a need to filter by relationship properties
or associated object attributes, the EAV model requires a subquery to select the
corresponding entities.

A new approach to storing dynamic data in relational databases using JSON 11

Table 1
Example query about person implemented in different techniques

Model Query

JSON in
relational
database

SELECT * FROM object AS person
JOIN object_name AS person_name
ON person_name.id = person.name_id AND person_name.name = ’Person’
WHERE person.data -» ’lastname’ = ’Doe’
AND person.data -» ’age’ > 25
AND person.data -» ’previouslyConvicted’ IS TRUE;

MongoDB

db.Person.find({$and: [
{"lastname": {$eq: "Doe"}},
{"age": {$gt: 25}},
{"previouslyConvicted": true},
]})

EAV

SELECT subquery.entity_id
FROM (
SELECT entity_id, 1 AS filter
FROM value JOIN attribute
ON value.attribute_id = attribute.attribute_id
AND attribute.attribute_name = ’lastname’
WHERE value.value = ’Doe’
UNION ALL
SELECT entity_id, 2 AS filter
FROM value JOIN attribute
ON value.attribute_id = attribute.attribute_id
AND attribute.attribute_name = ’age’
WHERE value.value > 25
UNION ALL
SELECT entity_id, 3 AS filter
FROM value JOIN attribute
ON value.attribute_id = attribute.attribute_id
AND attribute.attribute_name = ’previouslyConvicted’
WHERE value.value IS TRUE
) AS subquery
JOIN entity ON subquery.entity_id = entity.entity_id
AND entity.entity_name = ’Person’
GROUP BY subquery.entity_id
HAVING COUNT(subquery.filter) = 3;

5. Model evaluation

The last stage of our research was an evaluation of the developed model. We tested it
by simulating real-use cases in the field of criminal data. For this purpose, we gene-
rated many datasets and selected four queries (presented for PostgreSQL with JSON
in Table 4) with different levels of complexity to precisely examine all characteristics

12 Mateusz Piech, Robert Marcjan

of the models. The first query is a simple search for objects by attribute. The second
and third use aggregate operations on a filtered set of objects. The last one heavily
utilizes joins. The expected result was a performance improvement over the EAV
solution.

We compared our solution implemented in two open-source relational databases:
PostgreSQL and MySql, with the Entity-Attribute-Value data model and document
database MongoDB. The testing computer had a 3.2Ghz quad-core Intel i5-4460 pro-
cessor with 16 GB of memory and 256 GB of solid-state storage. We executed all
queries ten times on each dataset; for each dataset, we selected the median of the
results in order to compute the speedup. Below, we present the system configuration.

PostgreSQL with JSON

Starting with Version 9.5, PostgreSQL includes support for storing JSON in binary
type. This feature allowed us to improve performance by creating indexes. We created
indexes on all JSON elements used in queries and on all foreign keys to speed up join
operations. In our tests, we used PostgreSQL 9.6.1 installed with the default settings.

MySQL with JSON

We installed MySQL Community Server 5.7.16 with the default settings to compare
the prepared model in a different relational database system. Unfortunately, there is
no possibility to create indexes on JSON documents due to issues mentioned before,
so we created indexes only for foreign keys.

Entity-Attribute-Value in PostgreSQL

To compare our prepared model with the Entity-Attribute-Value model, we imple-
mented this solution in PostgreSQL (see Figure 3) – in the same instance as in the
JSON model. In the EAV model, there is no separation between the object and re-
lationship in the criminal data domain, so we represented both as entities. We also
created indexes on foreign keys, like in the other solutions.

MongoDB

MongoDB is the most-popular document database, so comparing it with our solution
objectively determines if storing dynamic data as JSON in relational databases is
an efficient approach. In our tests, we used Community Server 3.2.11 installed with
the default settings. We stored objects and relationships in separate collections and
linked them using references to objects.

5.1. Data sets description

The prepared datasets are comprised of criminal data representing phone billings.
This kind of data includes not only people, phones, and connections, but also many
other objects and relationships – seemingly irrelevant, but important to simulate
the real-world context of the investigated case. For this purpose, we selected extra

A new approach to storing dynamic data in relational databases using JSON 13

object and relationship types. Every entity had a few properties of different types,
including nested objects. We generated datasets for all combinations of size (100K,
250K, 500K, 750K, 1M, 2.5M, 5M, 7.5M, 10M) and five different subsets of objects
and relationships.

Additionally, we measured the time and space required to insert and store the
data from the dataset having the same object and relationship types and the most-
representative sizes (100K, 1M, 10M). The results are presented in Tables 3 and 2,
respectively. The results suggest that our model is scalable with increasing data size.
The difference of size between PostgreSQL and MySQL is mainly due to the possibility
of storing indexes.

Table 2
Size of datasets on disk in different engines

Database 100K records 1M records 10M records

PostgreSQL with JSON 23 MB 221 MB 2216 MB

MySQL 20 MB 152 MB 1507 MB

PostgreSQL with EAV 35 MB 395 MB 3225 MB

MongoDB 7 MB 74 MB 739 MB

Table 3
Time of populate datasets into databases

Database 100K records 1M records 10M records

PostgreSQL with JSON 14 s 150 s 2020 s

MySQL 24 s 229 s 2383 s

PostgreSQL with EAV 30s 314 s 3899 s

MongoDB 13 s 131s 1336 s

5.2. Query tests

To examine the performance differences between our approach and the Entity-
Attribute-Value data model, we prepared four analytical queries designed to simulate
plausible real-life use cases in the field of criminal data analysis. The implementation
of the queries in the proposed model is presented in Table 4. We executed queries
for each solution ten times for each dataset. Then, we used medians of the execution
times for each dataset to compute the speedup relative to the Entity-Attribute-Value
model. Finally, we computed median speedups for fixed data sizes. The median
speedups are presented in Figure 5 and Table 5. We also included results for the
most-complex dataset (by number of different objects and relationships) in Table 6.

14 Mateusz Piech, Robert Marcjan

Table 4
Queries implemented in our model used in tests

ID Query

Q1

SELECT DISTINCT data-»’Lastname’

FROM object JOIN object_name on object.name_id = object_name.id
�AND object_name.name = ’Person’

Q2

SELECT AVG(properties-»’Length’) FROM relation

JOIN relation_name ON relation_name.id = relation.name_id

AND relation_name.name = ’Connection’

WHERE properties-»’Date’ BETWEEN ’2016-03-01’ AND ’2016-05-31’

Q3

SELECT left_id FROM relation

JOIN relation_name ON relation_name.id = relation.name_id

AND relation_name.name = ’Connection’

GROUP BY left_id

HAVING COUNT(left_id) >1

Q4

SLECT DISTINCT caller.id, receiver.id FROM relation AS connection

JOIN relation_name AS connection_relation

ON connection.name_id = connection_relation.id

AND connection_relation.name = ’Connection’

JOIN object AS phone_caller

ON connection.left_id = phone_caller.id

JOIN object AS phone_receiver

ON connection.right_id = phone_receiver.id

JOIN relation AS phone_caller_owner

ON phone_caller_owner.left_id = phone_caller.id

JOIN relation_name AS phone_caller_relation

ON phone_caller_owner.name_id = phone_caller_relation.id

AND phone_caller_relation.name = ’Owning’

JOIN relation AS phone_receiver_owner

ON phone_receiver_owner.left_id = phone_receiver.id

JOIN relation_name AS phone_receiver_relation

ON phone_receiver_owner.name_id = phone_receiver_relation.id

AND phone_receiver_relation.name = ’Owning’

JOIN object AS caller ON phone_caller_owner.right_id = caller.id

JOIN object AS receiver ON phone_receiver_owner.right_id = receiver.id

WHERE connection.properties -»’Length’ >120

A new approach to storing dynamic data in relational databases using JSON 15

 0.1

 1

 10

 100

100K
250K

500K
750K

1M 2.5M
5M 7.5M

10M

S
p

e
e
d

u
p

 c
o
m

p
a
re

d
 t

o
 E

A
V

Number of Objects

Median of speedup for Q1

Postgres
MySQL

MongoDB

 0.1

 1

 10

100K
250K

500K
750K

1M 2.5M
5M 7.5M

10M

S
p

e
e
d

u
p

 c
o
m

p
a
re

d
 t

o
 E

A
V

Number of Objects

Median of speedup for Q2

Postgres
MySQL

MongoDB

 0.01

 0.1

 1

 10

100K
250K

500K
750K

1M 2.5M
5M 7.5M

10M

S
p

e
e
d

u
p

 c
o
m

p
a
re

d
 t

o
 E

A
V

Number of Objects

Median of speedup for Q3

Postgres
MySQL

MongoDB

 0.1

 1

 10

 100

100K
250K

500K
750K

1M 2.5M
5M 7.5M

10M

S
p

e
e
d

u
p

 c
o
m

p
a
re

d
 t

o
 E

A
V

Number of Objects

Median of speedup for Q4

Postgres
MySQL

MongoDB

Figure 5. Median of speedup obtained for test queries during tests

Table 5
Median of speedup obtained for test queries during tests

PostgreSQL MySQL MongoDB

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

100K 1.27 1.59 0.92 14.42 0.33 0.97 0.51 11.02 7.83 3.43 0.01 1.29

250K 1.67 1.94 0.95 14.73 0.46 1.19 0.62 10.68 20.17 4.05 0.01 1.35

500K 1.56 1.87 0.96 17.52 0.40 1.37 0.58 14.30 27.38 3.74 0.01 1.48

750K 1.66 1.93 0.93 15.49 0.42 1.50 0.58 11.41 30.33 3.69 0.01 1.49

1M 1.82 1.86 0.94 15.15 0.47 1.34 0.68 12.16 27.13 3.71 0.01 1.56

2.5M 1.56 1.78 0.95 12.68 0.41 1.11 0.42 2.21 24.98 3.42 0.01 1.79

5M 1.41 1.78 0.99 8.26 0.36 0.93 0.34 0.35 30.64 3.31 0.01 1.87

7.5M 1.38 1.57 0.99 4.91 0.32 0.85 0.26 0.32 24.45 2.54 0.01 1.63

10M 1.96 1.61 1.05 5.83 0.50 0.84 0.24 0.37 22.21 2.36 0.01 2.43

16 Mateusz Piech, Robert Marcjan

Ta
bl

e
6

Sp
ee
du

p
an

d
ti
m
e
ob

ta
in
ed

fo
r
m
os
t-
co
m
pl
ex

da
ta
se
t
du

ri
ng

te
st
s

P
os

tg
re

SQ
L

M
yS

Q
L

E
A
V

in
P
os

tg
re

SQ
L

M
on

go
D

B

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

10
0K

T
im

e
[m

s]
2

3
1

28
16

15
4

47
5

7
1

60
1

2
3

54
30

6

Sp
ee

du
p

2.
50

2.
33

1.
00

21
.4

6
0.

31
0.

47
0.

25
12

.7
9

1.
00

1.
00

1.
00

1.
00

2.
50

2.
33

0.
02

1.
96

25
0K

T
im

e
[m

s]
4

8
4

81
47

16
16

12
5

13
19

3
15

77
2

4
30

9
76

5

Sp
ee

du
p

2.
60

2.
38

0.
75

19
.5

7
0.

42
1.

19
0.

19
12

.6
8

1.
00

1.
00

1.
00

1.
00

6.
50

4.
75

0.
01

2.
07

50
0K

T
im

e
[m

s]
10

18
9

15
9

78
31

16
17

2
26

41
8

35
38

2
10

12
76

16
38

Sp
ee

du
p

2.
60

2.
28

0.
89

22
.2

5
0.

33
1.

32
0.

50
20

.5
7

1.
00

1.
00

1.
00

1.
00

13
.0

0
4.

10
0.

01
2.

16

75
0K

T
im

e
[m

s]
15

28
14

24
1

10
9

31
31

32
8

42
58

12
49

50
2

13
17

02
22

72

Sp
ee

du
p

2.
80

2.
07

0.
86

20
.5

4
0.

39
1.

87
0.

39
15

.0
9

1.
00

1.
00

1.
00

1.
00

21
.0

0
4.

46
0.

01
2.

18

1M
T

im
e

[m
s]

21
43

20
35

0
12

5
47

31
37

5
57

80
18

69
48

10
20

50
67

32
41

Sp
ee

du
p

2.
71

1.
86

0.
90

19
.8

5
0.

46
1.

70
0.

58
18

.5
3

1.
00

1.
00

1.
00

1.
00

5.
70

4.
00

0.
00

2.
14

2.
5M

T
im

e
[m

s]
54

91
47

83
8

29
7

12
5

10
9

11
25

45
8

19
6

45
18

55
3

6
50

28
92

3
79

40

Sp
ee

du
p

8.
48

2.
15

0.
96

22
.1

4
1.

54
1.

57
0.

41
16

.4
9

1.
00

1.
00

1.
00

1.
00

76
.3

3
3.

92
0.

00
2.

34

5M
T

im
e

[m
s]

11
0

18
1

10
1

24
93

71
9

45
3

28
2

10
97

50
67

3
43

1
10

3
38

38
0

20
11

1
75

11
6

16
23

8

Sp
ee

du
p

6.
12

2.
38

1.
02

15
.4

0
0.

94
0.

95
0.

37
0.

35
1.

00
1.

00
1.

00
1.

00
33

.6
5

3.
88

0.
00

2.
36

7.
5M

T
im

e
[m

s]
17

6
27

2
15

3
60

44
11

41
65

2
48

4
15

00
94

85
1

64
1

15
4

60
30

0
33

17
4

11
53

72
23

77
6

Sp
ee

du
p

4.
84

2.
36

1.
01

9.
98

0.
75

0.
98

0.
32

0.
40

1.
00

1.
00

1.
00

1.
00

25
.7

9
3.

68
0.

00
2.

54

10
M

T
im

e
[m

s]
23

7
37

9
21

5
10

14
7

15
94

93
7

58
3

50
68

66
11

76
89

7
28

6
90

03
6

40
27

8
18

22
65

33
84

6

Sp
ee

du
p

4.
96

2.
37

1.
33

8.
87

0.
74

0.
96

0.
49

0.
18

1.
00

1.
00

1.
00

1.
00

29
.4

0
3.

23
0.

00
2.

66

A new approach to storing dynamic data in relational databases using JSON 17

First query

The first query consists of searching objects by the value of a specified attribute. The
purpose of this test is to examine the performance of access to the dynamic attributes.
The query selects all unique last names of people in the datasets. We can observe that
the median speedups for all of the engines are at a similar level. However, our model
does not achieve the performance of MongoDB. We achieve the highest speedup for
datasets with the largest number of attributes. For the dataset with the smallest
number of unique attributes (which prevents the efficient use of indexes), we observed
the lowest speedup (below 1). This indicates that our solution provides the best
performance benefits in the presence of complex data.

We noticed that the MySQL solution is slower than the Entity-Attribute-Value
model. This is caused by the low performance of MySQL compared to PostgreSQL,
which has been addressed in [10, 13].

Second query

The second query is of the report type and returns the average time of the connections
in a specified time period. This allows us to examine the performance of the aggrega-
tion functions for the objects within the dynamic data model. Again, we can observe
that the median speedup for each engine is similar and decreases slightly with incre-
asing problem size. This can be explained by the cost of accessing JSON decreasing
relative to the cost of aggregation.The results show that speedup does not depend
on the type of dataset and that our solution approaches the level of MongoDB’s
performance.

Third query

The third test involves a more-complex report type query, utilizing aggregation, join,
and grouping – it selects people that started the call more than once. For this query,
MongoDB is significantly slower than our model and the reference EAV model. This
seems to suggest that MongoDB performs poorly in the presence of filtering based on
conditions involving aggregate functions and joins. However, the PostgreSQL solution
and EAV have almost the same performance, as both solutions have a very similar
execution plan. It is completely understandable because, in this test, we did not
access the dynamic data. As with the first query, we observe the performance issues
of MySQL.

Fourth query

The final query was designed to simulate a simple graph query, searching for pairs
of people who communicated with each other for longer than a specified amount of
time. It requires a lot of joins, so it evaluates the performance of queries involving the
relationships of objects. In this test, our model has the highest speedup among the
tested solutions and the highest overall speedup observed in the entire experiment.
These results prove that the Entity-Attribute-Value model is too complex and Mon-
goDB is not a good engine to execute queries involving relationships. However, there

18 Mateusz Piech, Robert Marcjan

is a decreasing trend for larger data sizes. This is due to the fact that, for a large-
enough data set size, there is a need to use the disk, because the space required for
the operation exceeds the available memory, which is marked in the execution plans.

5.3. Discussion

The conducted tests demonstrate that our solution in PostgreSQL is, in general,
a little faster than Entity-Attribute-Value and much faster in the case of complex que-
ries and datasets. Furthermore, it leads to simpler schema than the Entity-Attribute-
-Value and can be used in the field of criminal data, as well as other fields that require
a dynamic data model with relationships.

Our main goal was to check whether our model is faster than the Entity-
-Attribute-Value. The most-significant results are those concerning the model imple-
mented in PostgreSQL, which is also the engine in which the Entity-Attribute-Value
solution was implemented. For all queries, the obtained speedup is almost constant
with respect to the size of the dataset; the only increasing trend is observed when
there is a need to use disk space to execute a query.

We achieved all set goals by representing dynamic data in the JSON document.
It resulted in the improvement of readability and simplifying the creation of queries
by reducing the numbers of joins in graph queries.

While the observed performance of the implementations of our solution in Post-
greSQL and MySQL differ significantly in some cases, the results remain acceptable
considering MySQL’s performance issues. This suggests that the speedup provided
by our solution (relative to the EAV model) is not dependent on a particular database
engine as long as it provides JSON support.

The test results for MongoDB show that, while a document database is indeed the
best solution for storing and retrieving data from a dynamic model, the same is not
true when use cases are more complicated and involve aggregation or relationships.
For these types of queries, MongoDB clearly fails to exhibit performance comparable
with our model.

6. Conclusion and future work

In this paper, we presented a solution for storing open schema data in a relational
database supporting JSON as a native type. The prepared model was set in the
field of criminal data, but it can be easily adapted to other domains. Our solution
has been implemented in two relational databases and compared with the NoSQL
document database – MongoDB, and the Entity-Attribute-Value solution commonly
used in relational databases. The results of the conducted tests confirm that storing
data with dynamic schema in a relational database using JSON can be even more
efficient than MongoDB in some cases.

In the future, we want to focus on developing the presented model and adapting it
to graph queries, which are prevalent in the analysis of criminal data. This will allow

A new approach to storing dynamic data in relational databases using JSON 19

us to implement complex algorithms for data queries like searching paths or closest
neighbors and, as a result, bring us one step closer to creating a general solution with
the benefits of NoSQL databases.

Acknowledgements

This research was partially supported by Grant No. DOB-BIO6/08/129/2014 from
the Polish National Center for Research and Development.

References

[1] Chasseur C., Li Y., Patel J.M.: Enabling JSON Document Stores in Relatio-
nal Systems. In: Proceedings of 16th International Workshop on the Web and
Databases (WebDB 2013), pp. 1–16, 2013.

[2] Chen H.: Javascript object notation schema definition language, US Patent App.
13/596,694, 2014. https://www.google.com/patents/US20140067866.

[3] Chen R.S., Nadkarni P., Marenco L., Levin F., Erdos J., Miller P.L.: Exploring
performance issues for a clinical database organized using an entity-attribute-
value representation, Journal of the American Medical Informatics Association,
vol. 7(5), pp. 475–487, 2000.

[4] Chodorow K.: MongoDB: the definitive guide, O’Reilly Media Inc., 2013.
[5] Dajda J., Dębski R., Kisiel-Dorohinicki M., Piętak K.: Multi-domain data inte-

gration for criminal intelligence. In: Man-Machine Interactions 3, pp. 345–352.
Springer, 2014.

[6] DB-Engines Ranking. http://db-engines.com/en/ranking.
[7] Gray J.: Microsoft SQL Server, 1997. https://www.microsoft.com/en-us/

research/publication/microsoft-sql-server/.
[8] Greenwald R., Stackowiak R., Stern J.: Oracle essentials: Oracle database 12c,

O’Reilly Media Inc., 2013.
[9] Han J., Haihong E., Le G., Du J.: Survey on NoSQL database. In: Pervasive

computing and applications (ICPCA), 2011 6th international conference on,
pp. 363–366, IEEE, 2011.

[10] Jajeśnica Ł., Piórkowski A.: Productivity and nesting join the schemes and stan-
darized and denormalized, Studia Informatica, vol. 31(2A), pp. 445–456, 2010.

[11] JSON in Oracle Database. https://docs.oracle.com/database/121/ADXDB/
json.htm.

[12] Lerner R.M.: At the forge: PostgreSQL, the NoSQL database, Linux Journal,
vol. 2014(247), p. 5, 2014.

[13] Lim N.H.: PostgreSQL [9.5.0] vs MariaDB [10.1.11] vs MySQL [5.7.0] year
2016. http://nghenglim.github.io/PostgreSQL-9.5.0-vs-MariaDB-10.1.
11-vs-MySQL-5.7.0-year-2016/.

[14] Litt G., Thompson S., Whittaker J.: Improving performance of schemaless do-
cument storage in PostgreSQL using BSON, CPSC 438 Final Project, April 29,
2013, New Haven, CT, 2013.

https://www.google.com/patents/US20140067866
http://db-engines.com/en/ranking
https://www.microsoft.com/en-us/research/publication/microsoft-sql-server/
https://www.microsoft.com/en-us/research/publication/microsoft-sql-server/
https://docs.oracle.com/database/121/ADXDB/json.htm
https://docs.oracle.com/database/121/ADXDB/json.htm
http://nghenglim.github.io/PostgreSQL-9.5.0-vs-MariaDB-10.1.11-vs-MySQL-5.7.0-year-2016/
http://nghenglim.github.io/PostgreSQL-9.5.0-vs-MariaDB-10.1.11-vs-MySQL-5.7.0-year-2016/

20 Mateusz Piech, Robert Marcjan

[15] Liu Z.H., Hammerschmidt B., McMahon D.: JSON data management: support-
ing schemaless development in RDBMS. In: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, pp. 1247–1258,
2014.

[16] Liu Z.H., Hammerschmidt B., McMahon D., Liu Y., Chang H.J.: Closing the
functional and Performance Gap between SQL and NoSQL. In: Proceedings of
the 2016 International Conference on Management of Data, pp. 227–238, 2016.

[17] Microsoft SQL Server End-User License Agreement. http://contracts.onecle.
com/aristotle-international/microsoft-eula.shtml.

[18] Momjian B.: PostgreSQL: introduction and concepts, vol. 192, Addison-Wesley,
New York, 2001.

[19] MySQL A.: MySQL, 2001.
[20] MySQL – The JSON Data Type. https://dev.mysql.com/doc/refman/5.7/

en/json.html.
[21] Nadkarni P.M., Marenco L., Chen R., Skoufos E., Shepherd G., Miller P.: Organi-

zation of heterogeneous scientific data using the EAV/CR representation, Journal
of the American Medical Informatics Association, vol. 6(6), pp. 478–493, 1999.

[22] Oracle Technology Network License Agreement. http://www.oracle.com/
technetwork/licenses/standard-license-152015.html.

[23] Popovic J.: JSON Support in SQL Server 2016. https://blogs.msdn.
microsoft.com/jocapc/2015/05/16/json-support-in-sql-server-2016/.

[24] PostgreSQL – JSON Types. https://www.postgresql.org/docs/9.6/static/
datatype-json.html.

[25] Sparrow M.K.: The application of network analysis to criminal intelligence: An
assessment of the prospects, Social Networks, vol. 13(3), pp. 251–274, 1991.

[26] Tahara D., Diamond T., Abadi D.J.: Sinew: a SQL system for multi-structured
data. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, pp. 815–826, 2014.

[27] Whang K.Y., Park B.K., Han W.S., Lee Y.K.: Inverted index storage structure
using subindexes and large objects for tight coupling of information retrieval with
database management systems, 2002. US Patent 6,349,308.

Affiliations

Mateusz Piech
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Department of Computer Science, Krakow, Poland, mpiech@agh.edu.pl

Robert Marcjan
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Department of Computer Science, Krakow, Poland, marcjan@agh.edu.pl

Received: 08.05.2017
Revised: 18.12.2017
Accepted: 18.12.2017

http://contracts.onecle.com/aristotle-international/microsoft-eula.shtml
http://contracts.onecle.com/aristotle-international/microsoft-eula.shtml
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
http://www.oracle.com/technetwork/licenses/standard-license-152015.html
http://www.oracle.com/technetwork/licenses/standard-license-152015.html
https://blogs.msdn.microsoft.com/jocapc/2015/05/16/json-support-in-sql-server-2016/
https://blogs.msdn.microsoft.com/jocapc/2015/05/16/json-support-in-sql-server-2016/
https://www.postgresql.org/docs/9.6/static/datatype-json.html
https://www.postgresql.org/docs/9.6/static/datatype-json.html

	Introduction
	Related work
	Background
	JSON
	Criminal data
	Relational database overview
	PostgreSQL
	MySql
	Microsoft SQL Server
	Oracle Database

	Dynamic JSON model schema
	Simple and readable model

	Model evaluation
	Data sets description
	Query tests
	Discussion

	Conclusion and future work

