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AUDIO-VISUAL SPEECH-PROCESSING
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Abstract This paper describes an audio-visual speech recognition system for the Polish
language as well as a set of performance tests under various acoustic conditions.
We first present the overall structure of AVASR systems with three main areas:
audio feature extraction, visual feature extraction, and (subsequently) audio-
visual speech integration. We present the MFCC features for an audio stream
with the standard HMM modeling technique, then we describe the appearance-
and shape-based visual features. Subsequently, we present two feature integra-
tion techniques, feature concatenation, and model fusion. We also discuss the
results of a set of experiments conducted to select the best system setup for Po-
lish under noisy audio conditions. The experiments simulate human-computer
interaction in a computer control case with voice commands in difficult audio
environments. With the Active Appearance Model (AAM) and multi-stream
Hidden Markov Model (HMM), we can improve system accuracy by reducing
the word error rate by more than 30% (as compared to audio-only speech re-
cognition) when the signal-to-noise ratio drops to 0 dB.

Keywords audio-visual speech recognition, visual feature extraction, human-computer
interaction

Citation Computer Science 19(1) 2018: 41–63

41

https://doi.org/10.7494/csci.2018.19.1.2398


42 Tomasz Jadczyk

1. Introduction

Speech processing is a key item in a natural human-computer interaction where this
type of communication is highly integrated with a usage model, like virtual assistants
or smart environments. This is even more important for all devices that are not equ-
ipped with ’standard’ interaction mechanisms (e.g., mice, keyboards) due to their
size (e.g., smart watches) or inability to use (e.g., car navigation systems). Auto-
matic speech recognition (ASR) systems based on hidden Markov models (HMM)
have become an industry-standard. Such systems perform very well under good audio
conditions, but their performance decreases rapidly when the signal-to-noise (SNR)
ratio drops. The other drawback is that HMM-based systems require training samples
that match the testing/working conditions. When this requirement is not met, the
system works unpredictably. One of the main challenges in the ASR domain is how
to develop systems that work in real-world situations as well as they do in laboratory
environments. This means robustness to all typical kinds of noise, like other sound
sources (background, other people speaking, etc.), room reverberation, or micropho-
ne distortions. It may be especially difficult to secure good communication conditions
in some public areas where spoken-language processing may be the most useful, like
automatic information points (kiosks) on streets, airports, etc. One approach to this
problem is to use a deep neural network-based model (DNN) that lead to some impro-
vements in ASR accuracy; however, low SNR is still an issue. Another approach is to
introduce another modality to complement the acoustic speech information that is
not susceptible to acoustic distortion.

Human speech production and perception are bimodal in nature. This phenome-
non was demonstrated by McGurk [28]: when the sound /ga/ is combined with video
of a person uttering the sound /ba/, most people perceive the speaker as uttering
the sound /da/. The most-important benefit from visual modality is the complimen-
tary information about the place of articulation that can help disambiguate highly
confusable acoustic units; for example, unvoiced consonants (‘p’ and ‘k’) or voiced
consonants (‘b’ and ‘d’) [51]. The other benefits are supplying additional information
to the audio speech segmentation and helping in audio source (speaker) localization.

Incorporating visual modality into an ASR system may help in overcoming dif-
ficult conditions and help generate a robust system [45]. By exploiting the visual
modality of the speaker’s mouth region, the automatic recognition of visual speech is
formally known as speechreading or lipreading. Compared to audio-only speech reco-
gnition, AV-ASR introduces two challenging tasks. First, the visual-feature-extraction
stage must be executed. This step requires robust face detection and region-of-interest
(ROI) extraction and tracking. ROI mostly contains only the speaker’s mouth region.
ROI location estimation is followed by the visual-feature-extraction stage. Visual fe-
atures may be divided into two main categories: appearance-based and shape-based.
Visual features are also highly speaker-dependent and encode more information about
a person’s identity than his/her content of speech. To resolve this problem, some nor-
malization techniques must be applied [23]. The second issue, an audio-visual fusion,
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is the problem of looking for an efficient way to fuse the streams’ information and
avoid the situation when the system performance for combined streams is worse than
one of its streams used independently. Audio and video information can be integrated
by feature fusion, decision fusion, or model fusion. Feature fusion is a combination
of audio and video features into a single vector, which is later processed by a sin-
gle classifier. Features may simply be concatenated, reweighted (different domains),
or processed with the PCA or LDA dimensionality reduction block to extract the
most-important features. Decision fusion is based on independent stream processing
in separate classifiers and a linear combination of class-belonging likelihoods. This
fusion type provides a mechanism for modeling the reliabilities of each future stream.
Stream reliability may vary during recognition; i.e., audio noise level may be increased,
so the audio stream weight should be reduced. An efficient technique for data fusion
is based on dynamic Bayesian networks [33]. These allow for data integration based
on model fusion [50]. Additional improvements may be obtained when the DBN ba-
sed model also incorporates constrained de-synchronization between modalities [48],
while streams from the same modality should stay synchronized. The general scheme
of an audio-visual speech recognition system is presented in Figure 1.

Figure 1. General scheme of audio-visual speech recognition system with separate tracks
(without AV fusion) to audio-only and video-only (lip reading) speech recognition

In this work, we provide a brief overview of the main techniques applicable to
Audio-Visual Automatic Speech Recognition and their potential in human-computer
interaction for Polish speech. The results from some experiments are also presented.
This paper is organized as follows: in Section 2, we describe previous work in the
AVASR domain, then we present audio (Sec. 3) and visual stream (Sec. 4) proces-
sing methods, with ROI extraction and various parametrizations. Section 5 describes
feature fusion techniques. The audio-visual database of Polish speech that was used
for training as well as an evaluation of our system is presented in Section 6. The
general setup of our AVASR system and the results from all of the experiments are
described in Section 7. Final conclusions are presented in 8.



44 Tomasz Jadczyk

2. Related work

The first automatic speechreading system was reported in 1984 by Petajan [42].
Visual features were extracted from mouth ROI, interpolated by image threshol-
ding. The following shape features were used: mouth height, width, perimeter, and
area. The extracted features were used by a visual-only recognizer to rescore the best
two hypothesis from an audio-only system. Since the Petajan work, many AVASR
system have been presented that differ in four main aspects: the audio-visual data-
base used during the training and system-evaluation phase, visual front-end design,
audio-visual integration strategy, and speech recognition method used.

AVASR systems were tested on small vocabulary tasks with nonsense words [1],
isolated words [5], connected letters [43], and digits [10]. Some attempts of continuous
speech processing with small vocabularies have also been reported [25]. With new
Audio-Visual corpora like AV-TIMIT [18] or XM2VTS [29], researchers have tried to
run large-vocabulary continuous speech recognition with AVASR. Some experiments
were based on stereo-vision and databases containing both frontal and profile speaker
images [16].

Visual front-end differs in several points. Because the mouth area contains the
most relevant information about what was spoken, the most-popular region-of-interest
(ROI) is a rectangular area that contains only the speaker’s mouth. In some cases,
larger parts of the lower face (jaw, cheeks) [44] or even the entire face [35] were used.
The next step after ROI extraction is the parametrization of the selected area. We can
define three main feature types: shape-based, appearance-based, and a combination
of these two. All geometric-type features that describe the mouth (the assumption
that most of the information is coded in the contours of the speaker’s lips) such as
height, width, and area are used [1, 5]. Lip countour descriptors [9, 15] and statistical
models of shape [24] were also investigated. The second category, appearance-based
features, are becoming more popular [26]. Appearance features are built from various
transforms of the whole ROI, because all pixels within an ROI may contain useful
information. Nowadays, AVASR systems are based mostly on appearance features
due to the lower cost of building initial models – training samples with manually
annotated contours or positioned landmarks are not required. The final category is
a concatenation of the shape and appearance features. Very popular is a statistical
model named the active appearance model [6], which has been used in many systems.

The second aspect of a different AVASR system is the integration of informa-
tion from the audio and visual streams. Audio-visual fusion is an instance of the
general classifier combination problem where observations from two streams are ava-
ilable. The traditional approach to information-fusion schemes classifies them on
early-, intermediate-, and late-fusion strategies. Another nomenclature is for feature-,
classifier-, and decision-level fusion strategies, respectively.

The first one, feature-level fusion (early fusion), is also referred as the ‘data
to decision’ fusion scheme [49]. In this case, one concatenates the feature vectors
from the multiple modalities to obtain a combined feature vector. We can mention
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two main advantages of this scheme: it provides better discriminatory abilities by
exploiting covariations between the audio and video features, and it is much simpler
to implement. The dimensionality of the resulting feature vector is often too large,
so certain dimensionality reduction technique like discrete cosine transform (DCT),
principal component analysis (PCA), or linear discriminant analysis (LDA) must be
used. The main drawback of this fusion technique is that it cannot be applied to model
asynchrony between different streams. It also performs poorly when the reliability of
the different modalities during the training phase differ from the actual working phase.
This fusion scheme was explored, for example, by [39, 27].

The coupled HMMs and the multistream HMMs exploited by [10] and dynamic
Bayesian networks (DBNs, [14, 48]) are used in classifier-level fusion strategies. In such
cases, the information is processed in a single classifier but with separate feature vec-
tors. A composite classifier allows for the weighted combination of different modalities
taken on each frame based on their reliability. Asynchrony between different streams
can also be modeled to some extent. Both properties are very important for the audio-
-visual speech-processing task, where the audio and video asynchrony is of the order
of 100 ms, whereas the frame duration is typically 25 ms [45]. In real-world situations,
the reliability of the different streams varies with time. For example, the video channel
might be completely unreliable if the speaker turns away from the camera, and audio
stream reliability goes down when the background noise level increases.

The late (decision-level) fusion strategy involves the combination of probability
scores or likelihood values obtained from separate unimodal classifiers for each stream
based on some reliability weighting scheme. In this scheme, each classifier may be
retrained with some additional data from a single domain. However, in the case of
audio-visual speech recognition, it has been shown that this strategy gives worse
results than model fusion [10].

One of the most-important trends in machine learning, deep neural networks
(DNNs) have shown impressive performance in both audio and visual classification
tasks. This mechanism was also introduced to AVASR systems at different levels: for
feature extraction from different streams [38], where the multistream HMM was used
as a classifier. DNNs were also used as complete classifiers with multimodal obse-
rvations [37]. Using DNNs was also reported as beneficial not only in difficult audio
conditions but even when the signal-to-noise ratio is high [32]. The main drawback
with DNNs is that they require much more data for training, so it is especially difficult
to build a DNN for under-resourced languages.

Most of the work in the audio-visual speech-processing domain has been made
for English [14, 45], but some attempts in other languages have also been reported;
e.g., Polish [22], French [10], Czech [40], or Japanese [34].

3. Audio stream processing

Recognizing speech directly from a digitized waveform is not possible due to the
large variability between the same word utterances spoken even by a single person.
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Automatic speech recognition systems that are based only on audio streams use one
standard-feature-extraction scheme. The most-popular are Linear Predictive Coding
(LPC)and Mel-frequency Cepstral Coefficients (MFCC). Some normalization and fil-
tering techniques are also used for make the system more robust to the speaker and
noise-level changes. In our audio-visual experiments, we are using an audio-processing
front-end from the Sarmata ASR system [56] with MFCC parametrization. Input
speech signal (16 kHz sampling rate, 16 bits/sample) is windowed first, with a Ham-
ming Window of a length of 20 ms that is moved by a 10 ms offset. For each frame, an
FFT transform is executed, resulting in 256 frequency bins containing spectrum ma-
gnitudes. Then, it is filtered with a set of 15 triangular filters that are equally spaced
along the mel-scale defined in HTK book [55] (eq. 1) with lower- and upper-frequency
cut-offs of 100 and 3900 Hz, respectively. The cepstral coefficients are calculated from
log filterbank amplitudes mj using the Discrete Cosine Transform (eq. 2), where N
is the number of filterbank items. The final feature vector is reduced to K = 12,
first coefficients ck, and an energy feature. The energy is computed as a log of the
signal energy; that is, for speech samples sn, n = 1, N (eq. 3). The energy coefficients
may be normalized to overcome problems with underflow by applying a floor ener-
gy level and normalizing it to a range of (−Emin; 1.0). To capture speech dynamics,
each frame is concatenated with its first- and second-order derivatives, resulting in
a 39-dimensional feature vector. This process is depicted in Figure 2. The other way
to capture speech dynamics is an LDA projection of ±n consecutive frames of MFCC
coefficients around the current frame. In particular, the effect of inserting a transmis-
sion channel on the input speech is to multiply the speech spectrum by the channel
transfer function. In the log cepstral domain, this multiplication becomes a simple ad-
dition that can be removed by subtracting the cepstral mean from all input vectors.
This technique (Cepstral Mean Normalization) is very effective in compensating for
long-term spectral effects, like different microphones and between-speaker variability.

Mel(f) = 2595 log10(1 +
f

700
) (1)
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√
2
N

N∑
j=1

mj cos
(
πi

N
(j − 0.5)

)
(2)

E = log
N∑
n=1

s2n (3)

MFCCs are the parameterization of choice for many speech recognition appli-
cations. They give good discrimination and lend themselves to a number of manipu-
lations. An alternative to Mel-Frequency Cepstral Coefficients is the use of Perceptual
Linear Prediction (PLP) coefficients. The mel filterbank coefficients are weighted by
an equal-loudness curve and then compressed by taking the cubic root. LP coeffi-
cients are estimated from the resulting auditory spectrum, which are then converted
to cepstral coefficients in the normal way.
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Figure 2. Data flow for audio stream processing during MFCC feature extraction

Basic units in speech recognition are phonemes. A phoneme is a minimal unit of
sound that has a semantic content. Phonemes have some specific features by which
their can be distinguished. Two major categories are vowels and consonants (which can
be further separated to voiced and unvoiced). The consonants may be also separated
by a manner of articulation to several classes, like stops, nasals, fricatives, and affri-
cates. In the ASR system for Polish, we are using 37 phonetic classes and a silence
model. The connection between words (ortographic notation) and their pronuncia-
tion (phonetic transcription) are defined in dictionary. The dictionaries may contain
multiple transcriptions for each word, because there are several ways of how a word
may be pronounced. The dictionaries are created by linguisticians or by specialistic
software based on transcription rules [57].

One of the most-popular ways of modeling phones and connecting between them
inside words is the hidden Markov model (HMM, see Fig. 3), where audio features
extracted from an input stream are observations and phone labels are latent variables.
Given a set of observation vectors O = o1, o2, . . . , oT , we are looking for word wi that
maximizes the score over equation 4.

P (wi|O) =
P (O|wi)P (wi)

P (O)
(4)

For a given set of prior probabilities P (wi), the most-probable spoken word de-
pends only on likelihood P (O|wi), which requires approximating joint conditional
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probability P (o1, o2, . . . , oT |wi) by an estimation of the Markov model parameters for
the most-likely state sequence (eq. 5).

P (wi|O) =
P (O|wi)P (wi)

P (O)
, (5)

where ax(t)x(t+1) is the transition probability between states and bx(t) is the obse-
rvation probability. When the state distribution probability is modeled by Gaussian
Mixtures, the formula for computing bj(ot) is then

bj(ot) =
M∑
m=1

cjm
1√

2π|Σjm|
, exp (x− µjm)TΣ−1jm(ot − µjm) (6)

Figure 3. Scheme of building HMM word model by concatenating phone models,
with optional silence at beginning

4. Video stream processing

The problem of visual-stream processing is two-fold: first, the speaker’s face must be
found on an image, and then the selected area is restricted to the region-of-interest
(ROI) (containing only the mouth in most cases). The second step is a transformation
of the extracted ROI to a relatively small number of informative features. Visual
features may be broadly categorized in two approaches [23]. The first one (the top-
down approach) is derived from higher-level, model-based features that utilize shape-
only images or shape-and-appearance-of-mouth-area images and requires annotated
samples during the learning stage. The second is a bottom-up approach, where the
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model is built from low-level image-based features that are then compressed using
one dimensionality-reduction algorithm, such as a discrete cosine transform (DCT)
or principal component analysis (PCA).

The resulting visual features are often post-processed to improve system robust-
ness and manage speaker variability. One of the most-important problems is that the
feature extraction rate differs between the audio and visual streams. The large number
of algorithms require that the features should be extracted uniformly for both modali-
ties. This is often resolved by the simple element-wise linear interpolation of the visual
features, which are extracted at 25 Hz to the audio frame rate, extracted at 100 Hz.
The other problems are mainly related to the video stream. Between-speaker variabili-
ty and recording conditions can be overcome by a subtraction of the vector mean over
each utterance [55], which is a standard visual feature mean normalization (FMN)
technique. In addition, utilizing visual speech dynamics [47] by augmenting static vi-
sual features with their first- and second-order temporal derivatives [55] may also be
beneficial in improving recognition.

4.1. Region-Of-Interest extraction

Both types of features require the mouth-region extraction to be executed as an
initial step. We are using the Viola-Jones algorithm [54], which is based on the idea
of a boosted cascade of weak classifiers where each one is trained to accept a very
large number of regions (high detection ratio and false positive but very low value of
true-reject ratio). The square window moves over the whole image at different scales.
All classifiers must accept the analyzed part of the image to regard this part as an
interesting region (see Fig. 4).

Figure 4. Data flow during visual speech feature extraction

As a first step, the speaker’s face must be found in the image. After that, another
run of the Viola-Jones algorithm is executed at the bottom-half of the face region with
a mouth-trained classifier. The models defining the face and mouth area come from
[4] and are provided with OpenCV framework. As a result, we gather a rectangular
area with varying size, which is later processed. We are testing features from both
categories. Visual features are extracted at 25 Hz and then interpolated to meet
audio-feature frequency (100 Hz).
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4.2. Appearance-based features

All pixels in the image part (mouth region typically, but sometimes larger portions of
the lower face) are considered as informative for visual speech. The pixel values from
the image converted to Hue-Saturation-Value color space or gray-scale are concatena-
ted into a single vector. In the case of an M ×N -pixel region, the dimensionality of
the resulting vector is too large. Some of the well-known image transformations must
be used to obtain a feature vector that contains most speech-reading information wi-
thin its d � M × N elements. The most-popular are principal component analysis
(PCA), discrete cosine or wavelet transform (DCT, DWT), and Linear discriminant
analysis (LDA). In our case, the appearance-based features (denoted as DCT) are
extracted by downsampling the ROI to 64×32 pixels and converting it to a gray-scale
image. A two-dimensional discrete cosine transform (DCT) is applied. The first 30
coefficients (without a DC value and their derivatives) constitute a 60-dimensional
vector. The exemplary results from the following steps of appearance feature extrac-
tion are presented in Figure 5.

Figure 5. Mouth region and low-level image-based feature extraction (DCT)

4.3. Shape-based features

In contrast to the appearance-based features, the shape-based feature assumes that
the contours (shapes) of the speaker’s lips contain most of the speechreading informa-
tion. The first attempts were based on geometric features, like lip width and height,
area, and perimeter. Active shape model (ASM) is a statistical model that represents
an object by the coordinates of a set of labeled points [7]. A number of K contour
points (from the union of various face shapes; i.e., inner and outer lip) are first labe-
led on available training images, and their coordinates are placed on 2K-dimensional
vectors: x = [x1, y1, x2, y2, . . . , xK , yK ]. A statistical model of the lip shape is identi-
fied by optimal orthogonal linear transform (PCA), given a set of vectors x that was
tracked and aligned. Procrustes analysis is an iterative procedure used in mean shape
s̄ computation. In our experiments, we are using a set of 24 points on the outer lips
and 18 points along the inner lip contour. The first 12 components after PCA are used
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as a feature vector. To obtain the shape features, an appropriate tracking algorithm
is required. We are using the inverse compositional fitting algorithm [41] that was
designed to fit the AAM features described below. Model adaptation is a two-stage
process: first, the whole face model is fit to the image, and then the mouth-only model
fitting starts from a face-initialized pose.

4.4. Combined features

The model-based features are using the Active Appearance Model (AAM) [6] algo-
rithm that utilizes shape and appearance information. Shape component (7) is formed
in the same way as in the ASM model, by concatenating the 2D coordinates of a set
of n vertices that are boundary markers. Appearance vector (8) is defined by pixels
that lie inside mean shape s̄. Appearance can be represented in a similar way as
the shape component, as a base appearance and linear combination of k appearances
(computed by applying PCA to the shape-normalized training images). The shape
and appearance components are concatenated, reweighted (due to their natures: shape
are coordinates and appearance are pixel intensities) and processed by a final PCA
to obtain more-compact and decorrellated features.

s = s̄+
m∑
i=1

pisi (7)

A = Ā+
l∑
i=1

λiAi (8)

5. Fusion strategies

When more than one sensor is used to gather information, the features extracted from
different modalities must be integrated in order to meet the sampling frequencies
between streams (audio frames are sampled at 100 Hz, while video frames are at
25 Hz). Fusion schemes may be categorized in three main strategies: feature level,
classifier level, and decision level. The first (also known as early fusion) is based
on concatenation of the feature vectors from multiple modalities that are temporally
correlated. A combined vector is then used for the classification task. This strategy can
provide a better discriminatory ability for the classifier by exploiting the co-variations
between the audio and video features [52]. The high-dimensionality of the feature
vector requires the application of a dimensionality-reduction technique. Sometimes,
it is beneficial to run hierarchical dimensionality reduction [45].

Feature concatenation is the simplest method to implement (see Fig. 6). Conca-
tenated features may be processed by systems that have previously worked for audio-
only speech recognition. However, it cannot model asynchrony between the streams
well, nor can it handle different reliabilities of the modalities during the training and
testing phases.
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Figure 6. Feature concatenation

In the classifier-fusion strategy, the information is fused within a single classi-
fier, but only after processing the features separately (a composite classifier, like the
multistream Hidden Markov Model or Dynamic Bayesian Network may be used, see
Fig. 7). At this level, a weighted combination of different modalities may be used;
some asynchrony between streams may also be modeled. The late (or decision) fu-
sion strategy involves a combination of the likelihood scores obtained from separate
classifiers that run on each stream to get a combined decision. In this approach, the
reliability of the streams is introduced by an exponentially weighting linear combina-
tion of likelihoods from independent classifiers. In AVASR systems, this strategy has
been shown to give worse results than both early and intermediate fusion [10].

Figure 7. Decision fusion strategy
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In our experiments, we are using two fusion schemes: feature concatenation fol-
lowed by LDA projection for dimensionality reduction, and model-level fusion with
two-stream, left-to-right, three-state HMM models defined for each phoneme (due
to the nature of multi-stream HMM classifier, separate viseme models for the visual
stream are not extracted; we are using 37 phonemes and a silence model for both
streams) and concatenated to model whole words.

Multistream HMM

Multistream HMM (MSHMM) is an HMM-based structure that handles multiple mo-
dalities for timeline data where we can model synchronous and independent streams
(see Fig. 8). For the continuous case, multi-stream HMM was originally introduced to
fuse the audio and visual streams in speech recognition using continuous HMM [20]. In
this case, independent streams are treated separately, the feature space is partitioned
into subspaces, and different probability density functions (pdf) are learned for the
corresponding streams. The relevance of the different streams is encoded by exponent
weights, and a weighted geometric mean of the streams is used to approximate the pdf.

Figure 8. Example of a multistream HMM with audio
and video streams and three states per stream

To learn all of the model parameters, a two-step learning mechanism is employed.
In the first step, the standard Baum-Welch algorithm [46] is used to learn all model
parameters. In the second step, discriminative training is used to learn the exponent
weights of adequate streams. The main drawback of this approach is its inability to
provide an optimization framework that learns all of the HMM parameters simul-
taneously. In addition, solving this issue using two layers of training that optimize
two different types of parameters is susceptible to local optima. To alleviate these
limitations, the authors in [31] proposed an MSHMM structure that allows for the si-
multaneous learning of all model parameters (including the stream-relevance weights)
by linearizing the approximation of the pdf. In this approach, the stream-relevance
weights were introduced at the mixture level, and the Baum-Welch (BW) learning
algorithm was generalized to derive the necessary conditions to learn all parameters
simultaneously. Compared to HMM, the observation probability bx(t) is modified to

bj(ot) =
L∏
k=1

[
M∑
m=1

cjmk
1√

2π|Σjmk|
, exp (x− µjmk)TΣ−1jmk(ot − µjmk)

]wjk
(9)

where
∑L
k=1 wjk = 1.
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This is known as state-level weighting. Total observation probability is weighted
product wjk of the observation probabilities from K separate streams. The weights
are learned during training and are adjusted to each phone/state separately according
to its reliability and relevance.

Dynamic Bayesian network

The Bayesian network encodes the dependencies between sets of random variables,
which are represented as edges and nodes of a directed graph. A dynamic Bayesian
network is an extension of a plain network that is used for modeling random variable
evolution over time. It is achieved by repeating the network structure and connecting
the corresponding nodes. In speech recognition, nodes in a network represent hidden
variables (words, phonemes, transitions) and observed variables (acoustic features like
MFCC), while the edges correspond to conditional probability functions or determi-
nistic dependencies [3]. For example, when modeling word-inner phone position and
phone transition, the next phone is determined by word transcription and the occur-
rence of phone transition in a previous time-slice. Random transition may be used for
incorporating language models.

The structure of the model used in our system is shown in Figure 9. Observa-
ble features are presented as filled circles. For audio streams, the features extracted
with MFCC are marked as OMFCC, ODWT and are wavelet features. Features from
the speaker’s mouth region used in video stream are labeled with OV. For mode-
ling asynchrony between modalities, there are two different nodes that represents the
phoneme and its states, but both modalities share a single word variable. The audio
signal is parametrized with two independent algorithms, but both audio streams are
synchronized on the same state of the phoneme.

Figure 9. Scheme of DBN models with two modalities and asynchrony
represented by separate phone nodes
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6. Audio-visual corpus of Polish speech

In this work, we have used the audio-visual database of Polish speech recordings [21].
It contains three different types of utterances: numbers and commands (160 short
phrases from a list of the most-popular questions asked to Virtual Assistant), using
spoken language, and parts of read texts (7 different utterances, like articles, defi-
nitions, and part of stories). Longer utterances was split into several-words phrases
for learning and testing purposes. There are 24 speakers: 13 males and 11 females.
The recordings contain only faces (frontal view) on bright background with rather-
invariant lighting conditions, and feature full HD quality with 25 frames per second.
Each speaker has been recorded for about 10 minutes, totaling about 4 hours.

7. Experiments

In our testing environment, the audio-visual database was divided into two sets. The
training set consisted of 21 speakers, and the 3 remaining speakers were used as the
testing set. This was repeated 8 times to test all speakers, resulting in about 1000
testing utterances from the human-computer interaction domain. All remaining data
was used for system training. In all of the following experiments, an original audio
stream was mixed with random samples of background noise from various environ-
ments at eight different SNR levels (from 30 dB to 0 dB). The system performance
for clean audio conditions was also investigated. The background noise was a random
part of the CHiME-3 noise database [2]. We are using data recorded in one channel
(from the six available) and for all four environments where the background noise
recordings were collected: in a cafe, at a street junction, in public transport, and at
a pedestrian area.

7.1. System implementation

The Audio-Visual Automatic Speech Recognition (AVASR) system is based on the
ASR System for Polish, called Sarmata [56]. Sarmata uses MFCC for audio parame-
trization. It works on HMM models and context-dependent phoneme representations.
The audio-visual extension is implemented in C# .NET language, with the use of the
EmguCV framework for image processing and computer vision algorithms. EmguCV
is a .NET platform wrapper for the well-known C++ library OpenCV. When the
feature concatenation method was used for data fusion, AVASR extensions were used
during the feature extraction stage for enhancing the MFCC features according to
previous descriptions. Further processing of the feature vector was done by a stan-
dard ASR engine and HMM decoder. For the model fusion technique, both stages
(feature extraction and decoding) were performed inside the AVASR code. For multi-
stream HMM, our own implementation was used, while for DBN modeling, we used
an Infer.NET framework.
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7.2. Results

The first task was to compare different visual stream parametrization methods under
various noisy conditions when feature concatenation was used as a fusion scheme. The
collected results are presented in Figure 10.

Figure 10. Comparison of different visual feature extraction methods

Three different AVASR setups with appearance-based visual features (DCT) and
two with Active Appearance Models (AAM) that differ between the corresponding
setups by visual feature vector dimensionality. For the DCT feature after LDA trans-
formation, the resulting vector was investigated for 30, 40, and 60 dimensions. The
first AAM model setup was built from 42 points along the contours of the mouth
(24 points along the outer lip and 18 points from the inner lip). The top 12 eigen-
shapes were used as a shape component of AAM. The shape features were combined
with the appearance component, resulting in a 40-dimensional vector after the LDA
reduction of 5 concatenated frames (to gather speech dynamics). All AVASR features
were compared with the results from an audio-only speech recognition system. We can
see that, when audio conditions are very good, it is hard for the AVASR system with
feature concatenation as a fusion scheme to approach the audio-only speech recogni-
tion system, regardless of the visual feature setup. Two aspects might be important
for the most part: the audio system was trained on a large amount of mostly clean
data (near 100 h), and when the testing conditions match the training conditions,
system performance is very high. In this situation, the visual stream gives no addi-
tional information to the audio stream, and it is harder to train a system with less
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data when the feature vector has more components. When SNR goes down, the visual
components becomes more and more beneficial. The appearance-only feature (DCT)
gives worse results than both the AAM models, and the second AAM setup is the
most stable regarding noisy audio conditions, giving an over 75% recognition rate at
0 dB (24.76% Word Error Rate, which is more than a 30% reduction from 36% WER
for audio-only ASR). The best results for DCT was achieved for the 40-dim vector
(30.16% WER at 0 dB).

In the second experiment, the best visual features selected from the previous
experiment (one for AAM and one for DCT) were used to test the feature fusion
schemes. The AAM model with N parametrization points and 40-dim DCT vector
were used to investigate the multistream Hidden Markov Model (HMM) and Dynamic
Bayesian Network (DBN) classifiers apart from feature concatenation fusion (FC).
Nearly all of the new setups give better results than plain feature concatenation at
clean audio conditions (except the DBN with DCT visual features); however, neither
of them outperforms the ASR system.

The transition between 10 and 5 dB SNR is still critical to recognize the incor-
poration of the visual stream to audio stream processing as beneficial. Multistream
HMM gives better results than both DBN and feature concatenation. The active
appearance model is still more stable than the DCT features.

The results are presented in Figure 11, Table 1 and Table 2.

Figure 11. Comparison of different feature fusion schemes
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Table 1
Phrase recognition rates for various visual features and feature concatenation fusion and

selected SNR

Experiment 0 dB 2 dB 5 dB 10 dB 15 dB 20 dB Clean
Audio [%] 63.99 68.32 79.17 93.65 95.24 97.62 98.51
DCT-60dim [%] 69.05 75.40 80.95 85.71 87.30 89.68 92.86
DCT-40dim [%] 69.84 76.19 82.54 87.30 91.27 92.86 94.44
DCT-30dim [%] 66.67 76.19 79.37 84.13 88.10 88.89 91.27
AAM-I [%] 71.59 74.44 79.44 84.29 86.90 89.37 91.90
AAM-II [%] 75.24 77.38 81.67 90.08 91.03 91.27 93.57

Table 2
Phrase recognition rates for different feature fusion methods with best visual features,

at selected SNR

Experiment 0 dB 2 dB 5 dB 10 dB 15 dB 20 dB Clean
Audio [%] 63.99 68.32 79.17 93.65 95.24 97.62 98.51
FC-DCT [%] 69.84 76.19 82.54 87.30 91.27 92.86 94.44
FC-AAM [%] 75.24 77.38 81.67 90.08 91.03 91.27 93.57
HMM-DCT [%] 75.79 78.57 84.13 88.10 91.67 93.56 95.24
HMM-AAM [%] 78.57 81.75 86.51 90.48 92.06 95.24 96.83
DBN-DCT [%] 73.02 74.60 76.19 85.71 88.10 92.06 93.65
DBN-AAM [%] 76.53 78.65 84.13 90.48 92.86 94.44 96.03

8. Conclusions

In this paper, we provided a brief literature review of the basic components in the
automatic processing of audio-visual speech signals. The main three components of an
AVASR system were described; namely, the audio signal extraction and processing,
visual stream processing with extraction of an interesting region from a whole-face
image, and different types of ROI parametrization. The strategies for audio-visual
feature integration with multi-stream hidden Markov models and Dynamic Bayesian
Networks were also presented. We focused on the algorithms and techniques used in
our audio-visual speech-processing system.

In the second part, we also presented the results of audio-visual speech reco-
gnition under noisy conditions as compared to the results of an audio-only speech
recognition system. The experiments were evaluated using an audio-visual database
of Polish speech, where additional noise was introduced to the audio channel with
different intensities. We selected simple commands and single words from the da-
tabase to simulate human-computer interaction for the computer control case. The
experiments show that it may be beneficial to add visual modality to speech proces-
sing, especially in low signal-to-noise conditions, to reduce word error rate by more
than 30%. It is important to note that, for processing visual modality, we need much
more computational power than for audio-only speech processing. The experiments
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show that using an audio-visual speech-processing system for recognizing the Polish
language may be reasonable for human-computer interaction, especially under some
difficult audio conditions; i.e., in public places where SNRs are low (which was also
described in this work).
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