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Abstract In this paper, a reasoning algorithm for a creative decision support system

is proposed. It allows for the integration of inference and machine learning

algorithms. The execution of the learning algorithm is automatic since it is

formalized by applying a complex inference rule, which generates intrinsically

new knowledge using the facts already stored in the knowledge base as training

data. This new knowledge may be used in the same inference chain to derive

a decision. A solution of this type makes the reasoning process more creative

and also allows for its continuation in cases when the knowledge base does not

have the appropriate explicitly encoded knowledge. In this paper, an appropri-

ate knowledge representation and inference model are proposed. Experimental

verication is performed on the decision support system operating in a casting

domain.
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1. Introduction

Classical reasoning algorithms applied in artificial intelligence (AI) offer a method

of applying stored knowledge without providing new knowledge. This is the case of

classical logic [16] rule-based systems using classical logic [18, 24], fuzzy logic [31], and

Bayesian Networks – [21]). On the other hand, machine learning techniques may be

creative and provide some diversity but are not integrated with the inference process.

In this paper, an inference algorithm integrating these two approaches is proposed.

A solution of this type allows for the re-conceptualization of agent experiences

depending on the context. As a result, reasoning may be performed even in cases

not covered by the knowledge base. Some attempts have already been made to solve

this problem [8, 14]); but so far, inference and execution of learning have not been

integrated in the form of a deductive system such as the one shown in this study.

Using the proposed system, inference and machine learning can be integrated

for various knowledge representations and reasoning techniques. The condition is

to develop an inference process that could be formalized as a deductive system. For

this purpose, both reasoning and learning assume the application of inference (proof)

rules. The results of the machine learning algorithm should take a form that may be

represented in the chosen formalism, thus allowing for the further use of these results

in the inference process. For example, rule induction may generate rules that can be

used in a rule-based system.

In our solution, we assume that the knowledge representation has two types of

inference rules: simple inference rules (like Modus Ponens) and complex inference

rules, the application of which corresponds to the execution of a learning algorithm.

Complex rules are used in an inference chain if the reasoning process is not able

to continue classical reasoning. Training data relies on facts already stored in the

knowledge base. The new knowledge may be used in the same inference chain to

derive a decision.

The solution proposed is formulated as a Multi-strategy Inference and Learning

System (MILS). The idea is based on the Inferential Theory of Learning disclosed

in [19], where learning and inference can be presented as a goal-guided exploration of

the knowledge space using operators called knowledge transmutations.

In our research, we have chosen a complex knowledge representation and reaso-

ning formalism called the Logic of Plausible Reasoning (LPR) [7].

As a result, the developed algorithm allows us to combine several knowledge

manipulation techniques during the process of reasoning. To infer a decision, there

are options to use background knowledge, simple proof rules (such as Modus Ponens

or generalization), or complex ones (machine learning or searching algorithms).

In the following sections, the related research is discussed, and the MILS model

and inference algorithm are presented. Next, LPR basics and the related software are

described. The results of the experiments to support the material choice for casting

(knowledge base, reasoning scenarios, and performance tests) conclude the work.
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2. Related research

The Inferential Theory of Learning (ITL), on which the MILS is based, was formulated

by Ryszard Michalski [19]. Michalski et al. also developed ITL partial implementation

– which is an INTERLACE system [2], wherein knowledge representation is based

on Dynamically Interlaced Hierarchies (DIH see below). The system can generate

sequences of knowledge operations that will enable the derivation of a target trace

from the input hierarchies and traces. Machine learning was not integrated in this

system.

DIH formalism was proposed by Michalski et al. [12, 13]. Knowledge consists

of a static part represented by hierarchies and a dynamic part, which are traces

representing the relationships between hierarchy nodes. The DIH distinguishes three

types of hierarchies: types, components, and priorities. The latter type of hierarchy

can be divided into subclasses: hierarchies of measures (used to represent the physical

quantities), hierarchies of quantification (allowing quantifiers to be included in traces,

such as one, most, or all, for example), and hierarchies of schemes (used as a means

for defining multi-argument relationships and needed to interpret the traces).

Logic of Plausible Reasoning (LPR), which is the base of DIH works, was propo-

sed by Collins and Michalski [7]. The aim of the study was to identify the reasoning

patterns used by humans and create a formal system, which would be able to represent

these patterns. The mere objective set by the creators has made the LPR signicantly

dierent from other known knowledge representation methods, such as classical logic,

fuzzy logic, multi-valued logic, Demster-Shafer theory, probabilistic logic, Bayesian

networks, semantic networks, ontologies, rough sets, or default logic. There are many

inference rules in the LPR that are not present in the formalisms mentioned above.

Equally important is also the fact that there are many parameters specied to repre-

sent the uncertainty of knowledge. The basic operations performed on the knowledge

dened in the LPR include:

• abduction and deduction – used to explain and predict the characteristics of

objects based on domain knowledge;

• generalization and specialization – allow for the generalization and refining

of information by changing the set of objects to which this information relates to

a set larger or smaller;

• abstraction and concretization – change the level of detail in the description

of objects;

• similarity and contrast – allow inference by analogy or lack of similarity bet-

ween objects.

The experimental results confirming that the methods of reasoning used by hu-

mans can be represented in the LPR are presented in subsequent papers [4, 5].

Integration of expert systems and machine learning was analyzed some time

ago. A system presented in [14] is based on neural logic networks corresponding to
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three-valued logic. The system allows for the adaptive learning of new rules from its

experience [1].

In [8] a neural network was also applied to overcome the brittleness of classical

expert systems. It is used for choosing the most-appropriate questions for the current

case. The description of user interaction with the system is collected as training data

for the network.

In [10] an adaptive expert system is proposed for aircraft maintenance. It re-

commends the most-accurate action for symptoms reported by a user. Like in the

examples above, learning uses historical data (in this case, a repair register) to update

association weights between symptoms and actions. The certainty of the suggested

diagnosis increases in the case of successful prediction or decreased in the case of

failure. Symptoms may be also combined using generalization.

In the solutions presented above, machine learning algorithms are not part of the

formal reasoning system. Therefore, the integration of machine learning and reasoning

is not complete.

In the CoMES system [3], an attempt has been made to combine several popular

techniques from the fields of Artificial Intelligence and Software Engineering. Machine

learning is used to update the knowledge base, which can be accessed by a few algo-

rithms in parallel. The system uses agent architecture to integrate knowledge from

human experts and other expert systems.

3. MILS model

The reasoning algorithm is based on the MILS model, which assumes that the know-

ledge representation and reasoning method can be formalized as a labeled deductive

system (LDS) [9]. Knowledge is represented by formulas F , which may be uncertain.

To model uncertainty, a label algebra may be used:

A “ pA, tfriuq. (1)

where A is a set of labels that estimate the uncertainty of formulas.

Labeled formula is a pair f : l where: f P F is a formula and l P A is a label.

A finite set of labeled formulas can be considered as a knowledge base. Functions fri
are used to calculate labels of reasoning results.

The inference patterns should be defined as proof rules. Each rule ri has a se-

quence of premises αi (of length ni) and a conclusion α:

α1 : l1
α2 : l2
...

αn : ln
α : l

(2)
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For rule ri, the plausible label of its conclusion is calculated using fri : Ani Ñ A,

hence l “ fripl1, ..., lnq.

Having introduced the inference rules, one can define the proof of labeled formula

ϕ selected from a set of labeled formulas comprised in knowledge base (KB). This

proof can be dened as a tree. The tree P is a proof of labeled formula ϕ : l selected

from a set of labeled formulas comprised in knowledge base KB, if a root node of P

is equal to ϕ : l and for every node ψ : lψ:

• if ψ : lψ is a leaf, then ψ : lψ P KB,

• else, there are nodes pψ1 : lψ1 , ..., ψk : lψk
q, connected to ψ : lψ and a proof rule ri

such, that ψ : lψ is a consequence of ri and pψ1 : lψ1 , ..., ψk : lψk
q are its premises

(label of ψ is calculated using fri).

The MILS adds additional and more-general proof rules to the basic deductive

system. They are called knowledge transmutations. As a result, we have three types

of these:

• simple, based on syntactic operations (e.g., Modus Ponens),

• complex, based on procedure execution (e.g., rule induction algorithms, clustering

methods,

• search (database or web searching procedures).

Knowledge transmutation can be represented as a triple:

kt “ pp, c, aq, (3)

where: p is a (possibly empty) premise or preconditions, c is a consequence (pattern

of formula(s) that can be generated), and a is an action (empty for simple transmuta-

tions) that should be executed to generate consequence if premises are true according

to the knowledge base.

Every transmutation has its cost assigned. The cost should represent the com-

putational complexity and/or other important resources that are consumed (e.g.,

database access or search engine fees). Usually, simple transmutations result in lower

costs and complex ones result in higher costs [25].

4. Reasoning algorithm

According to [28], the MILS inference algorithm (see algorithm 1) is an adaptation of

the LPR proof algorithm, where proof rules are replaced by more-general knowledge

transmutations. It is based on the AUTOLOGIC system developed by Morgan [20].

To limit the number of nodes and to generate optimal inference chains, algorithm A*

[11] is used.

The input data is a set of labeled formulas stored in knowledge base KB and

a hypothesis (question) represented by formula ϕ, which should be derived from KB.

If label l P A exists such that ϕ : l can be inferred from KB, the appropriate inference

chain is returned; otherwise, the procedure exits with failure.
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Algorithm 1 Reasoning algorithm for MILS.

Input: ϕ – formula, KB – finite set of labeled formulas

Output: If Dl P A such that ϕ : l can be inferred from KB: success, P – inference chain of

ϕ : l from KB; else: failure

1: T :“ tree with one node (root) s “ rϕs

2: OPEN :“ rss

3: while OPEN is not empty do

4: n :“ the first element from OPEN

5: Remove n from OPEN

6: if n “ rs then

7: Generate proof P using path from s to n

8: Exit with success

9: else if the first formula of n represents action then

10: Execute action

11: if action was successful then

12: add action’s results to KB

13: E:=nodes generated by removing from n action formula

14: end if

15: else

16: K :“ knowledge transmutations, whose consequence can be unified with the first

formula of n

17: E :“ nodes generated by replacing the first formula of n by premises and action

of transmutations from K and applying substitutions from unifier generated in the

previous step

18: if the first formula from n can be unified with element of KB then

19: Add to E node obtained from n by removing the first formula and applying

substitutions from the unifier

20: end if

21: end if

22: Remove from E nodes generating loops

23: Append E to T connecting nodes to n

24: Insert nodes from E to OPEN

25: Order OPEN

26: end while

27: Exit with failure

Agent experience and the context description should be also stored in KB as

LPR formulas.

This algorithm generates tree T , the nodes (N) of which are labeled by sequen-

ces of formulas. Every edge of T is labeled by a knowledge transmutation, whose

consequence can be unified with the first formula of a parent node or is labeled by

term kbplq if the first formula of a parent node can be unified with ψ : l P KB. s is

the root of T , and it is labeled by rϕs. The goal is to generate a node labeled by an

empty set of formulas.
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As previously mentioned, the A* algorithm is used to limit the number of ex-

panded nodes. Therefore, nodes in the OPEN sequence are ordered according to the

values of evaluation function f : N Ñ R, which is defined as follows:

fpnq “ gpnq ` hpnq, (4)

where: g : N Ñ R represents the actual cost of the inference chain, using knowledge

transmutation costs, and label of ϕ that can be generated, and h : N Ñ R is a heuristic

function which estimates the cost of the path from n to the goal node (e.g., minimal

knowledge transmutation cost multiplied by the length of n can be used).

All formulas in the proof path can be forgotten when a new task is executed.

But, it is also possible to keep learned formulas in the cache knowledge base together

with a counter that will indicate the number of proofs in which this formula is used.

Using a formula in some proofs should increase the number of counted events, whereas

a lack of use should decrease this number. If the number of counted events is equal

to 0, the formula should be removed from the temporal knowledge base [15].

5. LIIS system

In this section, the LPR Intelligent Information System (LIIS) used in experiments

is described. Knowledge is represented with the logic of plausible reasoning (LPR);

therefore, this formalism is introduced at the very beginning. As a next step, the main

features and implementation details of the system are described. Finally, the label

algebra is presented.

5.1. Introduction to LPR

To show that the MILS may be applied to complex inference systems, LPR has been

chosen for basic knowledge representation and reasoning. Instead of LPR, another

technique that can be formulated using LDS may be used if needed.

The language used by LPR consists of a countable set of constants C, varia-

bles X, the seven relational symbols, and logical connectives Ñ and ^. Formally,

it is a quadruple: L “ pC,X, tV,H,B,E, S, P,Nu, tÑ,^uq. Relational symbols

pV,H,B,E, S, P,Nq are used for defining the following relationships:

• H defines the hierarchy between concepts; notation Hpo1, o, cq means that o1 is

o in context c;

• B represents the fact that one object is placed below another in a hierarchy;

• V represents statements: notation V po, a, vq represents the fact that object o has

an attribute a equal to v;

• E represents relationships; notation Epo1, a1, o2, a2q means that the values of

attribute a1 of first object o1 depend on the values of attribute a2 of second

object o2;

• S determines the similarity between objects; notation Spo1, o2, cq represents the

fact that o1 is similar to o2 in context c;
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• P represents the order between concepts: notation P po1, o2q means that concept

o1 precedes concept o2;

• N compares the concepts; notation Npo1, o2q means that concept o1 is different

from concept o2. This relationship does not appear in the knowledge base, but

it is only used as a premise for some implications.

To represent the vagueness of the knowledge, it is possible to extend the statement

definition and allow it to use composite value rv1, v2, . . . , vns (list of elements of C).

It can be interpreted that object o has an attribute a equal to v1 or v2, . . ., or vn. If

n “ 1 instead of V po, a, rv1sq, notation V po, a, v1q is used. In the statements, a value

should be placed in a hierarchy below the attribute: if V po, a, rv1, v2, . . . , vnsq is in

a knowledge base, there should also be Hpvi, a, cq for any 1 ď i ď n, c P C.

An LPR formula is any atomic formula: Hpo1, o2, cq, Bpo1, o2q, V po, a, vq,

Epo1, a1, o2, a2q, Spo1, o2, cq, P po1, o2q, where o, o1, o2, a, a1, a2, c, v P C, a conjunction

of atomic formulas and implications in the form of α1 ^ α2 ^ . . . αn Ñ V poα, aα, vαq,

where n PN, n ą 0. It is assumed that αi has the form of V poαi , a
α
i , v

α
i q, P pv

α
i , w

α
i q or

Npvαi , w
α
i q, and oα, oαi , a

α, aαi , v
α, vαi , w

α
i P C YX for 1 ď i ď n.

The most-commonly-used proof rules operate on the statement (others can be

found in [7]). An index attached to the name of the rule tells us what is being

transformed: o is an object, and v is the value. These rules are shown in Table 1.

Table 1

Rules transforming object-attribute-value triples.

GENo

po1, o, cq

po, a, o, cq

po1, a, vq

po, a, vq

SPECo

po1, o, cq

po, a, o, cq

po, a, vq

po1, a, vq

SIMo

po1, o2, cq

po1, a, o1, cq

po2, a, vq

po1, a, vq

GENv

pv1, v, cq

pa, o, a, cq

po1, o, c2q

pv, aq

po1, a, v1q

po1, a, vq

SPECv

pv1, v, cq

pa, o, a, cq

po1, o, c1q

po1, a, vq

po1, a, v1q

SIMv

pv1, v2, cq

pa, o, a, cq

po1, o, c1q

pv1, aq

po1, a, v2q

po1, a, v1q

MP

α1 ^ . . .^ αn Ñ

po, a, vq

α1

...

αn

po, a, vq

GENo and SPECo are the generalization and specialization of the objects in

the statements, respectively, while GENo and SPECo are similar transformations

of the values, SIMo represents reasoning by analogy (similarity) between objects,

while SIMv represents the analogy of the values. MP is the classical Modus Ponens

inference rule.
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5.1.1. Reasoning

The main function of the system is to perform inference based on the knowledge base

available and user-defined hypothesis (also known as a query). This function is based

on the MILS framework.

The query is a statement that can include constants, variables, and numeric

values. The hypothesis is verified by the inference engine. If it can be proven to have

a non-zero probability, a proof is submitted. If there are several proofs, all of them are

presented to the user along with the relevant information concerning their credibility.

The user can choose the maximum depth of the proof tree as well as the knowledge

transmutations that are to be used in the process.

5.1.2. Expert system

The system provides an engine to perform decision support. This functionality has

been extensively used in the case study described in the next section. Expert system

scenarios use both formulas from the base and information provided by a user exe-

cuting the decision support procedure. The user can supply knowledge by selecting

an answer from the list or filling in inputs with numerical values. Questions can be

skipped. Scenarios can be developed using a GUI.

5.1.3. Search

The search is understood as a search in the knowledge base for the concept that

has attributes of the given values. This operation can be performed in two modes:

standard and rapid (the latter uses fewer possibilities offered by LPR). As in the case

of inference, here we can also determine the maximum depth of the proof tree. In

addition, we can select the hierarchy (or a sub-tree of the hierarchy) in which the

system is supposed to perform the search.

5.1.4. Knowledge base edition

Application supports the edition of knowledge base elements, providing tools that

facilitate this process. A single formula is created with a form, suggesting object

names based on the ones already used in the system. Formulas of different types

are placed in respective tables, where they can be ltered by the name of one of their

objects [30].

5.1.5. Machine learning

In the knowledge base, machine learning can be carried out manually. The collected

knowledge (statements or results of reasoning) forms the training and test data sets.

Within the given configuration, the system allows us to define the range of knowledge

for learning, choose the learning algorithm, and set all necessary parameters. Before

adding the learned rules to the knowledge base, the user may review and verify the

new knowledge [22].
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Machine learning algorithms may be automatically executed during the inference

process. Currently, two complex knowledge transmutations are defined. Both apply

the rule induction using the AQ [17] and C4.5 [23] algorithms. Consequence c (see (3))

has the form of a statement for both transmutations. To reduce the computation time,

the user may limit the learning process to a set of attributes called the category set.

In premise p, it is checked if it is possible to generate enough examples from the

knowledge base. Examples are divided into training and testing data. The second set

is used to estimate the strength of the rules learned.

5.2. Description of LIIS implementation

In the description of the developed application, an attempt was made to characterize

the solution, heading for the widest-possible use of the existing development tools

while providing the functionality needed to effectively meet the functional require-

ments. As a result, the LPR Intelligent Information System is a web application

created with Google Web Toolkit, a solution supporting the development of browser-

based applications. The technology affects the system architecture, dividing it into

three logical parts. The LIIS architecture is shown in Figure 1.

Tomcat Web Server

Client

< < c o m p o n e n t > >
Graphical User

Inter face

< < c o m p o n e n t > >
< < s e r v i c e > >
LPR Service

Implementat ion

< < c o m p o n e n t > >
< < s e r v i c e > >
App Service

Implementat ion

< < c o m p o n e n t > >
Data Transfer

Objects

< < c o m p o n e n t > >
< < s e r v i c e > >
User Service

Implementat ion

< < c o m p o n e n t > >
< < l i b r a r y > >
LPR Library

< < c o m p o n e n t > >
< < s e r v i c e > >

Expert  System
Service

Implementat ion

< < c o m p o n e n t > >
< < s e r v i c e > >

Reasoning Service
Implementat ion

< < c o m p o n e n t > >
Data Access Objects

< < c o m p o n e n t > >
Hibernate Mappings

MySQL Database Server

< < c o m p o n e n t > >
< < d a t a b a s e > >
LIIS Database

< < c o m p o n e n t > >
Data Transfer

Objects

< < c o m p o n e n t > >
Reasoning Engine

LPR Service

App Service

Reasoning Service

Expert System Service

User Service

Visual Paradigm Standard Edition(AGH University of Science and Technology)

Figure 1. LIIS architecture

The server-side part of the system is responsible for the realization of the main

features. Using LPR-Library, the reasoning engine implements inferencing, executes

machine learning, and conducts expertise. The engine is used by the services responsi-

ble for providing these functionalities to users: Reasoning Service and Expert System
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Service. The LPR Service allows storing and obtaining knowledge base elements from

the MySQL database with the use of Data Access Objects. The persistence layer

takes advantage of Hibernate object-relational mapping and stores formulas, expert

system scenarios, user data, and knowledge-based metadata. System management is

provided via User Service and App Service [6].

The client part of the application contains JavaScript views compiled from Java

classes. It communicates with the server-side part through Remote Proxy Calls, where

data is transported via HTTP as Data Transfer Objects - plain serializable Java classes

shared by both sides. LIIS is built with the Maven Dependencies Management Tool.

It runs on the Apache Tomcat web server.

In the current implementation of the reasoning engine, the following formulas can

be used: statements (V ), hierarchy (H), similarity (S), and implications P and N .

The applied transformations include object rules and value generalization, specializa-

tion, similarity, Modus Ponens, ordering, and hierarchy transitivity.

5.3. Label algebra

In our studies, we have used a simplied version of label algebra dened in [27]. To

represent certainty, the system uses the following coefficients (which are real numbers

within a range of [0,1]):

• for formulas V – confidence;

• for formulas S – similarity rate;

• for formulas H – typicality and dominance;

• for formulas B – confidence;

• for formulas I (implications) – strength.

Formulas P and N are certain (have label equal to 1.0).

The certainty label of the statement (which is the conclusion of proof rule ri) is

a product of the label of each of the following premises:

fripl1, l2, . . . , lni
q “

ni
ź

i“1

li (5)

If the premise represents the hierarchy, it is typicality used in object transforma-

tion, and dominance is used in value transformation.

6. Experimental results: material choice support system

The MILS framework was tested before in two small domains [29, 26]. To show the ad-

vantages of the proposed solution on a larger scale, a decision support system was de-

veloped in the domain that is complex enough, contains hierarchies of the objects, and

is characterized by a number of parameters of an intuitive nature, dicult to measure.

The system supports the choice of metal-product-manufacturing technology (cas-

ting technology included). The knowledge base consists of more than 700 formulas.
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Often, the choice of technology for the manufacture of metal items and of the

material from which this item is to be produced stems from the experience and know-

ledge of the engineer designing this item. These human aspects are dicult to represent

using formal languages. When the task of designing machine parts is undertaken, the

parameters that the item should have and the related operational and utility functi-

ons must be taken into account. This also applies to the case of material conversion.

A new type of material must provide at least the same mechanical properties and

reliability as the original one. The choice of the manufacturing process is aected by

batch size, dimensional accuracy, overall dimensions, complexity, type of the neces-

sary machining, heat treatment, etc. All of these factors also create costs. In this

situation, the problem that the designer of a particular product (machine part) has

to face and solve consists of selecting the material as well as the technology of its ma-

nufacture to ensure that the specic technical requirements are satised while allowing

for the maximum reduction of production costs. In the LIIS embodiment considered

here, it is very important to indicate the appropriate material that can replace the

traditional materials (forged steel, cast steel). This material can be Austempered

Ductile Iron (ADI), which has a favorable relationship between tensile strength (Rm)

and elongation (A), oering signicantly lower manufacturing costs (savings of approx.

20%) at the same time. However, the decision about the possible use of ADI must be

based on a more-detailed analysis of the requirements imposed on a particular product

and its characteristics (to mention as an example, the damping capacity, corrosion

resistance, dimensions, batch size, and weight of a single item).

It was assumed (including the technology used) that the ADI items would be

made by casting with further heat treatment and machining, while items made of

carburized steel (e.g., 16MnCr5) would be cut from sheet metal, rough machined,

carburized, and then nished. Therefore, comparing these two materials, the following

parameters were taken into account: the cost of application, heat treatment, machi-

ning, cutting, pattern equipment, molding technology, melting of metal and pouring

of molds, and price of the carburized steel sheet.

It is understood that the low-volume production includes up to 50 pieces of

castings weighing between 0 and 25 kg. Low-volume production is also comprised

of up to ten cast pieces (if the casting weight is 25–500 kg). If the casting weight

exceeds 500 kg, the low-volume production consists of one cast piece. Medium-volume

production covers 50–5000 pieces for a weight range between 0 and 25 kg, 10–100

pieces for a weight range of 25–500 kg, and 2–10 pieces for a total weight of more

than 500 kg. All values above the last level stand for large-lot production.

The batch size (production volume) depends on the weight of the products in

each of the three type ranges. This helps us better understand the comparison of

prices for the same product made from ADI and carburized steel for different batch

sizes and product weights.

The knowledge base shown below (expressed with LPR formalisms) was con-

structed basing on data prepared with the significant participation of technologists,
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who helped in the proper interpretation of technical requirements and resolved doubts

arising when some of the equations were formulated.

The core of the knowledge base consists of hierarchies. They were defined during

consultations with experts. Formulas representing the hierarchy of ADI are presen-

ted below. They represent the facts that ADI is a kind of cast iron and defines its

63 subtypes (ADI GSJ-1400-1, ADI 1, ADI 2, ..., ADI 31, ..., ADI 34, ADI 41, ...,

ADI 44, ADI 51, ..., ADI 68, ... ). The context is related to cost, production volume,

application, and mechanical properties. The first label value (typicality) is high (of-

ten equal to 1.0), which means that the certainty of the specialization of objects and

values (SPECo and SPECv) will also be high. The second label (dominance) is low.

Part of the hierarchy is presented below:

1. H(adi, cast iron, cost): 0.8: 0.1
2. H(adi, cast iron, volume production):0.8:0.1
3. H(adi gsj-1400-1,adi, application):1.0:0.1
4. H(adi 4, adi, application):1.0:0.1
5. H(adi 42, adi, application):1.0:0.1
6. H(adi 52, adi, application):1.0:0.1
7. H(adi gsj-1400-1, adi, tensile strength Rm):1.0:0.1
8. H(adi 4, adi, tensile strength Rm):1.0:0.1
9. H(adi 42, adi, tensile strength Rm):1.0:0.1

10. H(adi 52, adi, tensile strength Rm):1.0:0.1
11. H(adi gsj-1400-1, adi, minimal elongation A):1.0:0.1
12. H(adi 4, adi, minimal elongation A):1.0:0.1
13. H(adi 42, adi, minimal elongation A):1.0:0.1
14. H(adi 52, adi, minimal elongation A):1.0:0.1
15. H(adi gsj-1400-1, adi, cost):1.0:1.0
16. H(adi 4, adi, cost):1.0:0.1
17. H(adi 42, adi, cost):1.0:0.1
18. H(adi 52, adi, cost):1.0:0.1

The following notation denotes the similarity between two types of materials (in

this case, ADI and carburized steel) discussed in terms of their application. The label

represents a high similarity level.

S(adi,steel carburized,application):0.8

In the statements presented below, the minimum elongation and tensile strength

of the selected steel grades are expressed. Labels representing certainty have high

values. Similar statements have been prepared for other types of ADI (like ADI 4,

ADI 42, ADI 52, etc.). Some parameters are not known, and their corresponding

statements are missing.

1. V(adi, application, rake):1.0
2. V(adi gsj-1400-1, minimal elongation A, 1):1.0
3. V(adi gsj-1400-1, tensile strength Rm, 1400):1.0
4. V(engjs 14001, chemical composition c, 3.462-3.524):1.0
5. V(adi gsj-1400-1, chemical composition si, 2.39-2.51):1.0
6. V(adi gsj-1400-1, chemical composition mn, 0.334-0.422):1.0
7. V(adi gsj-1400-1, chemical composition p, 0-0.146):1.0
8. V(adi gsj-1400-1, chemical composition s, 0-0.0104):1.0
9. V(adi gsj-1400-1, chemical composition mo, 0.286-inf):1.0
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10. V(adi gsj-1400-1, chemical composition ni, 1.296-1.598):1.0
11. V(adi gsj-1400-1, chemical composition cu, 0.23-0.405):1.0
12. V(adi gsj-1400-1, chemical composition mg, 0-0.0422):1.0
13. V(adi gsj-1400-1, chemical composition ti, 0.0188-inf):1.0
14. V(adi gsj-1400-1, chemical composition cr, 0-0.108):1.0
15. V(adi gsj-1400-1, austenization time, 105-inf):1.0
16. V(adi gsj-1400-1, austenization temp, 867.5-895):1.0
17. V(adi gsj-1400-1, hardening time, 187.5-inf):1.0
18. V(adi gsj-1400-1, hardening temp, 0-293.75):1.0

The remaining formulas have the form of implication. The first three allow us

to recommend a material for production. They have conclusion V(casting, mate-

rial alternative, X). The more parameters that are checked (and the more premises

has the rule), the more certain is the answer. The first implication checks applica-

tion, costs, tensile strength, and minimum elongation, and it has certainty of 1.0. The

fourth rule only checks application; therefore, its certainty is equal to 0.25. Other

rules (5–22) allow us to predict the production costs at a selected value of the batch

size and product weight.

1. V(casting,application required,A) ^ V(X, application,A) ^ V(casting,cost required,
COST MAX) ^ V(X,cost,COST CALCULATED) ^ P(COST CALCULATED,COST MAX)
^ V(casting,tensile strength Rm required,STRENGTH MIN) ^ V(X, tensile strength Rm,C)
^ P(STRENGTH MIN,C) ^ V(casting,minimal elongation A required,ELONG MIN) ^
V(X,minimal elongation A,E) ^ P(ELONG MIN,E)] Ñ V(casting,material alternative,X):1.0

2. V(casting, application required,A) ^ V(X, application,A) ^
V(casting,cost required,COST MAX) ^ V(X,cost,COST CALCULATED) ^
P(COST CALCULATED,COST MAX) ^ V(casting, tensile strength Rm required,
STRENGTH MIN) ^ V(X, tensile strength Rm,C) ^ P(STRENGTH MIN,C) Ñ V(casting,
material alternative,X):0.75

3. V(casting, application required,A) ^ V(X, application,A) ^ V(casting,
cost required,COST MAX) ^ V(X, cost, COST CALCULATED) ^
P(COST CALCULATED, COST MAX)] Ñ V(casting, material alternative,X):0.5

4. V(casting, application required, A) ^ V(X, application, A)] Ñ V(casting, mate-
rial alternative,X):0.25

5. V(casting, weight, small) ^ V(casting, volume production, small) Ñ V(adi,cost,70):0.8
6. V(casting, weight, small) ^ V(casting, volume production, medium)] Ñ V(adi,cost,20):0.9
7. V(casting, weight, small) ^ V(casting, volume production, large)] Ñ V(adi,cost,16):1.0
8. V(casting, weight,medium) ^ V(casting, volume production, small)] Ñ V(adi,cost,21):0.8
9. V(casting, weight, medium) ^ V(casting, volume production, medium)] Ñ V(adi,cost,18):0.9

10. V(casting, weight, medium) ^ V(casting, volume production, large)] Ñ V(adi,cost,14):1.0
11. V(casting, weight, large) ^ V(casting, volume production, small)] Ñ V(adi,cost,16):0.8
12. V(casting, weight,large) ^ V(casting, volume production, medium)] Ñ V(adi,cost,14):0.9
13. V(casting, weight,large) ^ V(casting, volume production,large)] Ñ V(adi,cost,12):1.0
14. V(casting, weight,small) ^ V(casting, volume production,small)] Ñ

V(steel carburized,cost,23):0.8
15. V(casting, weight, small) ^ V(casting, volume production, medium)] Ñ

V(steel carburized,cost,20):0.9
16. V(casting, weight, small) ^ V(casting, volume production,large)] Ñ

V(steel carburized,cost,19):1.0
17. V(casting, weight,medium) ^ V(casting, volume production,small)] Ñ

V(steel carburized,cost,21):0.8
18. V(casting, weight, medium) ^ V(casting , volume production, medium)] Ñ

V(steel carburized,cost,21):0.9
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19. V(casting, weight, medium) ^ V(casting, volume production,large)] Ñ
V(steel carburized,cost,22):1.0

20. V(casting, weight,large) ^ V(casting, volume production,small)] Ñ
V(steel carburized,cost,30):0.8

21. V(casting, weight,large) ^ V(casting, volume production, medium)] Ñ
V(steel carburized,cost,40):0.9

22. V(casting, weight,large) ^ V(casting, volume production,large)] Ñ
V(steel carburized,cost,50):1.0

7. Usage scenarios

In order to check the correctness of the inference algorithm, various scenarios have

been developed. Below, the selected three scenarios are presented. The description

of the scenarios contains the hypotheses, user responses, proof obtained, proof rules

used during inference, and description of the inference process.

The goal of the decision support system is to find a material that, while fitting

the requirements, will also reduce the casting cost through its use.

7.1. Scenario 1

The first scenario illustrates a simple case in which all knowledge necessary for rea-

soning is given explicitly in the knowledge base. The application of the material is

a rack1, the maximum cost limit is equal to 15, the product weight is heavy, the batch

size is large, the minimum tensile strength Rm is equal to 1100, and the hardness is

high. As a result, the system recommends ADI 4 with 1.0 confidence.

The proof was obtained by double application of the Modus Ponens (MP) rule

and double object specialization (SPECo) rule. It is presented in Figure 2.

V(casting, material_alternative, adi_4):1.0

[V(casting, application_required, A), V(X, application, A), 

V(casting, cost_required, COST_MAX),

V(X, cost, COST_CALCULATED), P(COST_CALCULATED, COST_MAX),

V(casting, strength_tensile_Rm_required, STRENGTH_MIN), 

V(X, tensile_strength_Rm, C), P(STRENGTH_MIN, C), 

V(casting, hardness_required, D), 

V(X, hardness, D)]

 → V(casting, material_alternative, X):1.0

V(casting, application_required, rake):1.0

MP

V(adi_4, application, rake):0.9

S(adi_4, adi, application):1.0 V(adi, application, rake):1.0

SPECo

V(casting, cost_required, 15):1.0

V(adi_4, cost, 12):1.0

H(adi_4, adi, cost):1.0:1.0V(adi, cost, 12):1.0

SPECo

[V(casting, weight, heavy), 
V(casting, volume_production, large)]
→ V(adi, cost, 12):1.0

V(casting, weight, heavy):1.0

V(casting,volume_production, large):1.0

MP

P(12, 15)

V(casting, strength_tensile_Rm_required, 1100):1.0

V(adi_4, tensile_strength_Rm, 1233.6-1417.8):1.0
P(1100, 1233.6-1417.8)

V(casting, hardness_required, high):1.0

V(adi_4, hardness, high):1.0

Figure 2. Graphical presentation of proof found in Scenario 1.

1A rack is a tool used in sewage-treatment plants. Its main task is to mix organic materials
such as straw, grass, hay, etc. with the semi-liquid material obtained from municipal waste-water
treatment after suitable processing. This is then mixed with soil and refining additives to obtain
a mineral fertilizer used in agriculture.
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In the first step, the MP rule was applied to Implication no. 1, which means that,

if the required application of casting under consideration is equal to A (premise 1)

and is the same as the application allowed for an alternative material in the rule

marked by variable X (Premise 2), the required maximum cost is equal to COST MAX

(Premise 3), and the cost calculated for an alternative material is equal to COST

CALCULATED (Premise 4) and is lower than the maximum cost (Premise 5), the

required minimum tensile strength Rm is STRENGTH MIN (Premise 6), and for

an alternative material, it is C (Premise 7) and is higher than STRENGTH MIN

(Premise 8), and the required hardness described as HARDNESS (Premise 9) is the

same as for alternative material (Premise 10), then the alternative material (X) should

be used with 1.0 confidence.

Premises 1 and 3 are adaptable to the knowledge base elements or answers to

questions. Premise 2 (application acceptable for ADI 4) was inferred using the SPECo

object specialization rule because ADI 4 is a typical ADI in terms of application, and

it is known that ADI may be used to produce racks. In a like manner, Premise 4

was derived using the SPECo specialization rule, and knowing that ADI 4 is a typical

ADI in terms of the manufacturing cost, calculating this cost is based on the casting

weight and using Implication no. 13 as above. Premises 5–10 can be unified with the

knowledge base elements or answers to questions.

7.2. Scenario 2

User requirements in this scenario are the following:

• the application is also rack,

• the maximum allowable cost is 15,

• the casting weight (diameter) is medium this time,

• the batch size is large,

• the minimum tensile strength Rm is lower, and it is 1000,

• the value of hardness is high.

The last parameter is problematic because there are some materials for which

this is not measured. This is the case for ADI 42, which matches the other criteria.

However, having other examples, the classifier predicting hardness may be trained

and applied to this case. Therefore, the expert system recommends ADI 42 with 1.0

confidence.

The proof was obtained by triple application of the Modus Ponens (MP) rule and

double application of the object specialization (SPECo) rule. Most of the inference

steps were similar to the first scenario. At the beginning, the MP rule was applied

to Implication no. 1. Its premises 1, 3, 6, and 9 are user responses. The proof is

presented graphically in Figure 3.

Exactly as in the first scenario, Premises 2 and 4 were inferred using the SPECo

object specialization rule, because ADI 42 is a typical ADI in terms of both appli-

cation and cost. Premises 5 and 8 express the idea that the cost inferred (variable

COST CALCULATED) or the tensile strength given by the user (Variable C) fit the
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demanded range. Premise 7 was unified with the knowledge base. The last premise

related to hardness was missing, and the system was not able to infer it. Therefore,

a complex knowledge transmutation was applied, and 14 examples described by all of

the available attributes were prepared.

V(casting, material_alternative, adi_42):1.0

[V(casting, application_required, A), V(X, application, A), 

V(casting, cost_required, COST_MAX),

V(X, cost, COST_CALCULATED), P(COST_CALCULATED, COST_MAX),

V(casting, strength_tensile_Rm_required, STRENGTH_MIN), 

V(X, tensile_strength_Rm, C), P(STRENGTH_MIN, C), 

V(casting, hardness_required, D), 

V(X, hardness, D)]

 → V(casting, material_alternative, X):1.0

V(casting, application_required, rake):1.0

MP

V(adi_42, application, rake):0.9

S(adi_42, adi, application):1.0 V(adi, application, rake):1.0

SPECo

V(casting, cost_required, 15):1.0

V(adi_42, cost, 14):1.0

H(adi_42, adi, cost):1.0:1.0V(adi, cost, 14):1.0

SPECo

[V(casting, weight, medium), 
V(casting, volume_production, large)]
→ V(adi, cost, 14):1.0

V(casting, weight, medium):1.0

V(casting,volume_production, large):1.0

MP

P(14, 15)

V(casting, strength_tensile_Rm_required, 1000):1.0
V(adi_42, tensile_strength_Rm, 1049.4-1233.6):1.0

P(1000, 1049.4-1233.6)
V(casting, hardness_hb_required, high):1.0

V(adi_42, hardness_hb, high):1.0
MP

LEARNED: [V(CASTING_,hardening_temp,
[0-293.75,293.75-337.5]), 
V(CASTING_,chemical_composition_c,
[3.462-3.524,3.586-inf])]
→ V(CASTING_,hardness_hb,high):1.0

V(adi_42,hardening_temp,0-293.75):1.0

V(adi_42,chemical_composition_c,3.462-3.524):1.0

Figure 3. Graphical presentation of proof found in Scenario 2.

One of the rules checked the hardening temperature and carbon content:

V pCASTING, hardening temp, r0´ 293.75, 293.75´ 337.5sq

^ V pCASTING, chemical composition c, r3.462´ 3.524, 3.586´ inf sq

Ñ V pCASTING, hardness hb, highq : 1.0. (6)

The premises were true for ADI 42 and allowed for the derivation of its hardness

(which was supposed to be high), thus recommending ADI 42 to the user.

7.3. Scenario 3

The requirements in this scenario were the same as in the previous one; but, to predict

hardness, another implication was selected from the machine learning results.

The proof structure is shown in Figure 4. The inference is similar to the one

made in the second scenario. The only difference is replacing the learned implication

in the last step with implication:

V pCASTING, hardening temp, r0´ 293.75, 293.75´ 337.5sq

Ñ V pCASTING, hardness hb, highq : 1.0. (7)

It has a shorter form, since the premise related to carbon content is omitted.

As a result, ADI 52 was recommended as a casting material with 1.0 confidence. In

the previous scenario, this material was not selected because it did not match the

condition related to the carbon content.
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V(casting, material_alternative, adi_52):1.0

[V(casting, application_required, A), V(X, application, A), 

V(casting, cost_required, COST_MAX),

V(X, cost, COST_CALCULATED), P(COST_CALCULATED, COST_MAX),

V(casting, strength_tensile_Rm_required, STRENGTH_MIN), 

V(X, tensile_strength_Rm, C), P(STRENGTH_MIN, C), 

V(casting, hardness_required, D), 

V(X, hardness, D)]

 → V(casting, material_alternative, X):1.0

V(casting, application_required, rake):1.0

MP

V(adi_52, application, rake):0.9

S(adi_52, adi, application):1.0 V(adi, application, rake):1.0

SPECo

V(casting, cost_required, 15):1.0

V(adi_52, cost, 14):1.0

H(adi_52, adi, cost):1.0:1.0V(adi, cost, 14):1.0

SPECo

[V(casting, weight, medium), 
V(casting, volume_production, large)]
→ V(adi, cost, 14):1.0

V(casting, weight, medium):1.0

V(casting,volume_production, large):1.0

MP

P(14, 15)

V(casting, strength_tensile_Rm_required, 1000):1.0
V(adi_52, tensile_strength_Rm, 1049.4-1233.6):1.0

P(1000, 1049.4-1233.6)
V(casting, hardness_hb_required, high):1.0

V(adi_52, hardness_hb, high):1.0
MP

LEARNED: [V(CASTING_,hardening_temp,
[0-293.75,293.75-337.5])]
→ V(CASTING_,hardness_hb,high):1.0

V(adi_52,hardening_temp,0-293.75):1.0

Figure 4. Graphical presentation of proof found in Scenario 3.

7.4. Summary

Domain experts reviewed the results of the presented scenarios. The obtained answers

and their certainties were evaluated as correct. The second and third scenarios show

us that the use of the MILS model allows for reasoning to be continued even in cases

not covered by the knowledge base (KB). In such cases, recommendations depend on

the learned implications.

8. Reasoning algorithm time complexity tests

The LPR reasoning process is complex because of a large number of inference ru-

les. The application of machine learning additionally increases the time complexity.

Therefore, the performance tests were carried out on the implemented application to

check how learning prolongs the computation time.

All tests were performed on a computer with 4 GB of RAM and 4ˆ3.33 GHz

processor. Times were measured on the server-side of the application.

The rst test was designed to check how the maximum depth of the proof tree

inuences the performance. The inference times for five values of this parameter and

two modes of reasoning (i.e., with and without learning) are presented in Figure 5.

All times were measured for a scenario that gave meaningful results both with and

without machine learning. When complex knowledge transmutations were included,

three attributes were allowed as categories: hardness, application, and cost. All proofs

with depths less than the allowed maximum one were searched. This corresponds to

a pessimistic time complexity, because it is often enough to find the first proof in the

expert system mode, which results in a much-shorter calculation time.

The second test was designed to check how the number of possible category attri-

butes influences the performance. The following attributes were added one by one to

the category set: hardness hb, application, cost, tensile strength Rm, hardening temp,

austenization time, and hardening time. The inference times for the second scenario

and category set size from 1 to 6 are presented in Figure 6.
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Figure 6. Dependency between inference time and size of category set.

The analysis of the performance test results yielded the following conclusions.

The application of machine learning affects the duration of the inference process. For

the cases examined, the reasoning was longer by between 10 and almost 100 percent.

In spite of this, the results are still acceptable from the users point of view. Another

important fact is that, currently, the software is not time-optimized; due to this, the

calculation time can be reduced.
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An important factor related to the complexity of the machine learning procedure

is the number of possible category attributes, which limits the number of complex

knowledge transmutations applied. For a xed size of the problem, any increase in

this number rapidly escalates the time-consumption. Therefore, the system should be

congured in an appropriate way, and only attributes with missing values correspon-

ding to important parameters that are difficult to measure (like hardness) should be

selected.

9. Conclusion

The experiments performed on the implemented LIIS system have proven the correct

operation of the reasoning algorithm. Its application enables us to design a creative

decision support system that, instead of getting stuck in the case when no rule is ap-

plicable, automatically creates intrinsically new knowledge to continue the reasoning

process.

Our solution can be considered a deductive system that can manage knowledge

in a multi-fashion way; i.e., in a similar manner as humans. It combines the search,

inference, and machine learning capabilities that are performed in a uniform way,

using one reasoning algorithm. As a result, the reasoning process is more creative

than in the classical AI models. Depending on the agent experience and context,

other knowledge may be discovered from the stored statements.

Further works will concern the enrichment of software capabilities by extending

the range of implemented knowledge transmutations. For example, it is planned to

add a clustering algorithm that will be used to derive similarity formulas. Testing the

system in other domains is also considered. The system should also be optimized to

improve its performance.
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